
1

Crash Course in Unix

For more info check out the Unix man pages 
-or-

http://www.cs.rpi.edu/~hollingd/unix
-or-

Unix in a Nutshell (an O’Reilly book).



2

Unix Accounts

• To access a Unix system you need to have 
an account.

• Unix account includes:
– username and password
– userid and groupid
– home directory
– shell 



3

username
• A username is (typically) a sequence of 

alphanumeric characters of length no more than 
8.

• username is the primary identifying attribute of 
your account.

• username is (usually) used as an email address
• the name of your home directory is usually 

related to your username.



4

password
• a password is a secret string that only the 

user knows (not even the system knows!)
• When you enter your password the system 

encrypts it and compares to a stored string.
• passwords are (usually) no more than 8 

characters long.
• It's a good idea to include numbers and/or 

special characters (don't use an english 
word!)



5

userid

• a userid is a number (an integer) that 
identifies a Unix  account. Each userid is 
unique.

• It's easier (and more efficient) for the 
system to use a number than a string like 
the username.

• You don't need to know your userid!



6

Unix Groups and groupid

• Unix includes the notion of a "group" of users.
• A Unix group can share files and active 

processes.
• Each account is assigned a "primary" group.
• The groupid is a number that corresponds to 

this primary group.
• A single account can belong to many groups 

(but has only one primary group).



7

Home Directory

• A home directory is a place in the file 
system where files related to an account are 
stored.

• A directory is like a Windows folder (more 
on this later).

• Many unix commands and applications 
make use of the account home directory (as 
a place to look for customization files).



8

Shell

• A Shell is a unix program that provides an 
interactive session - a text-based user 
interface.

• When you log in to a Unix system, the 
program you initially interact with is your 
shell.

• There are a number of popular shells that 
are available.



9

Logging In

• To log in to a Unix machine you can either:
– sit at the console (the computer itself)
– access via the net (using telnet, rsh, ssh, kermit, 

or some other remote access client).
• The system prompts you for your username 

and password.
• Usernames and passwords are case 

sensitive!



10

Session Startup

• Once you log in, your shell will be started 
and it will display a prompt.

• When the shell is started it looks in your 
home directory for some customization 
files.
– You can change the shell prompt, your PATH, 

and a bunch of other things by creating 
customization files.



11

Your Home Directory

• Every Unix process* has a notion of the 
“current working directory”.

• You shell (which is a process) starts with 
the current working directory set to your 
home directory.

*A process is an instance of a program 
that is currently running.



12

Interacting with the Shell

• The shell prints a prompt and waits for you 
to type in a command.

• The shell can deal with a couple of types of 
commands:
– shell internals - commands that the shell 

handles directly.
– External programs - the shell runs a program 

for you.



13

Files and File Names
• A file is a basic unit of storage (usually storage 

on a disk).
• Every file has a name.
• Unix file names can contain any characters 

(although some make it difficult to access the 
file).

• Unix file names can be long!
– how long depends on your specific flavor of Unix



14

File Contents

• Each file can hold some raw data.
• Unix does not impose any structure on files

– files can hold any sequence of bytes.
• Many programs interpret the contents of a 

file as having some special structure
– text file, sequence of integers, database records, 

etc.



15

Directories
• A directory is a special kind of file - Unix 

uses a directory to hold information about 
other files.

• We often think of a directory as a container 
that holds other files (or directories).

• Mac and Windows weenies*: A directory is 
the same idea as a folder.

• *weenies is actually a term usually used to 
describe Unix users - I'm being defensive...



16

More about File Names 

• Review: every file has a name.

• Each file in the same directory must have a 
unique name.

• Files that are in different directories can 
have the same name.



17

The Filesystem
/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who



18

Unix Filesystem

• The filesystem is a hierarchical system of 
organizing files and directories.

• The top level in the hierarchy is called the 
"root" and holds all files and directories.

• The name of the root directory is /



19

Pathnames

• The pathname of a file includes the file 
name and the name of the directory that 
holds the file, and the name of the directory 
that holds the directory that holds the file, 
and the name of the … up to the root

• The pathname of every file in a Unix 
filesystem is unique.



20

Pathnames (cont.)

• To create a pathname you start at the root 
(so you start with "/"), then follow the path 
down the hierarchy (including each 
directory name) and you end with the 
filename.

• In between every directory name you put a 
"/". 



21

Pathname Examples
/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who

/usr/bin/lsSyllabus
/users/hollid2/unix/Syllabus



22

Absolute Pathnames

• The pathnames described in the previous 
slides start at the root.

• These pathnames are called "absolute 
pathnames".

• We can also talk about the pathname of a 
file relative to a directory.



23

Relative Pathnames

• If we are in the directory /users/hollid2, the 
relative pathname of the file Syllabus in the 
directory /users2/hollid2/unix/ is:

unix/Syllabus

• Most Unix commands deal with pathnames!
• We will usually use relative pathnames when 

specifying files.



24

Example: The ls command

• Exercise: login to a unix account and type 
the command "ls".

• The names of the files are shown 
(displayed) as relative pathnames.

• Try this:
ls /usr

•ls should display the name of each file in 
the directory /usr.



25

Disk vs. Filesystem
• The entire hierarchy can actually include 

many disk drives.
– some directories can be on other computers

/

bin etc users tmp usr

hollid2 scully



26

The current directory 
and parent directory

• There is a special relative pathname for the 
current directory:

.
• There is a special relative pathname for the 

parent directory:
..



27

Some Simple Commands

• Here are some simple commands to get you 
started:
–ls lists file names (like DOS dir command).
–who lists users currently logged in.
–date shows the current time and date.
–pwd print working directory



28

The ls command

• The ls command displays the names of 
some files.

• If you give it the name of a directory as a 
command line parameter it will list all the 
files in the named directory.



29

ls Command Line Options
• We can modify the output format of the ls 

program with a command line option.
• The ls command support a bunch of options:
–l    long format (include file times, owner and 

permissions)
–a  all (shows hidden* files as well as regular files)
–F   include special char to indicate file types.

*hidden files have names that start with "."



30

Moving Around in the 
Filesystem

• The cd command can change the current 
working directory:

cd change directory

• The general form is:
cd [directoryname]



31

cd
• With no parameter, the cd command 

changes the current directory to your home 
directory.

• You can also give cd a relative or absolute 
pathname:

cd /usr
cd ..



32

Some more commands and 
command line options

•ls -R  will list everything in a directory 
and in all the subdirectories recursively (the 
entire hierarchy).
– you might want to know that Ctrl-C will cancel 

a command (stop the command)!
•pwd: print working directory
•df: shows what disk holds a directory.



33

Copying Files

• The cp command copies files:
cp [options] source dest

• The source is the name of the file you want 
to copy.

• dest is the name of the new file.
• source and dest can be relative or absolute.



34

Another form of cp
• If you specify a dest that is a directory, cp 

will put a copy of the source in the 
directory.

• The filename will be the same as the 
filename of the source file. 
cp [options] source destdir



35

Deleting (removing) Files

• The rm command deletes files:
rm [options] names...

•rm stands for "remove".
• You can remove many files at once:

rm foo /tmp/blah /users/clinton/intern 



36

File attributes
• Every file has some attributes:

– Access Times: 
• when the file was created
• when the file was last changed
• when the file was last read

– Size
– Owners (user and group)
– Permissions



37

File Time Attributes

• Time Attributes:
– when the file was last changed ls -l
– when the file was created* ls -lc
– when the file was last read (accessed) ls -ul

*actually it’s the time the file status last changed.



38

File Owners

• Each file is owned by a user.
• You can find out the username of the file's 

owner with the -l option to ls,

• Each file is also owned by a Unix group.
•ls -lg also shows the group that owns 

the file.



39

File Permissions
• Each file has a set of permissions that 

control who can mess with the file.
• There are three kinds of permissions:

– read abbreviated r
– write abbreviated w
– execute abbreviated x

• There are separate permissions for the file 
owner, group owner and everyone else.



40

ls -l
> ls -l foo
-rw-rw----   1 hollingd grads 13 Jan 10 23:05 foo

permissions
owner group

size

time

name



41

ls -l and permissions

-rwxrwxrwx
      Owner       Group      Others

Type of file:
- means plain file
d means directory



42

rwx
• Files:

r - allowed to read.
w - allowed to write.
x - allowed to execute

• Directories:
r - allowed to see the names of the files.
w - allowed to add and remove files.
x - allowed to enter the directory



43

Changing Permissions 

• The chmod command changes the 
permissions associated with a file or 
directory.

• There are a number of forms of chmod, this 
is the simplest:

chmod mode file



44

chmod mode file

• Mode has the following form*:
[ugoa][+-=][rwx]

u=user      g=group       o=other      a=all
+ add permission     - remove permission       = set permission

*The form is really more complicated, but this simple 
version will do enough for now.



45

chmod examples

> ls -al foo
rwxrwx--x   1 hollingd grads …

> chmod g-wx foo
> ls -al foo
-rwxrw----   1 hollingd grads

>chmod u-r .
>ls -al foo
ls: .: Permission denied



46

Other filesystem and file commands
•mkdir make directory

•rmdir remove directory

•touch change file timestamp (can also 
create a blank file)

•cat concatenate files and print out to 
terminal.



47

Shells

Also known as: Unix Command Interpreter



48

Shell as a user interface

• A shell is a command interpreter that turns 
text that you type (at the command line) in 
to actions:
– runs a program, perhaps the ls program.
– allows you to edit a command line.
– can establish alternative sources of input and 

destinations for output for programs.



49

Running a Program
• You type in the name of a program and 

some command line options:
– The shell reads this line, finds the program and 

runs it, feeding it the options you specified.

– The shell establishes 3 I/O channels:
• Standard Input
• Standard Output
• Standard Error



50

Programs and Standard I/O

Program
Standard Input

(STDIN)
Standard Output

(STDOUT)

Standard Error
(STDERR)



51

Unix Commands

• Most Unix commands (programs):
– read something from standard input.
– send something to standard output (typically 

depends on what the input is!).
– send error messages to standard error.



52

Defaults for I/O

• When a shell runs a program for you:
– standard input is your keyboard.
– standard output is your screen/window.
– standard error is your screen/window.



53

Terminating Standard Input

• If standard input is your keyboard, you can 
type stuff in that goes to a program.

• To end the input you press Ctrl-D (^D) on a 
line by itself, this ends the input stream.

• The shell is a program that reads from 
standard input.

• What happens when you give the shell ^D?



54

Popular Shells

sh Bourne Shell  
ksh   Korn Shell 
csh   C Shell
bash   Bourne-Again Shell 
 



55

Customization

• Each shell supports some customization.
– User prompt
– Where to find mail
– Shortcuts

• The customization takes place in startup 
files – files that are read by the shell when it 
starts up



56

Startup files
sh,ksh: 
/etc/profile (system defaults)   
  ~/.profile

bash:
~/.bash_profile
~/.bashrc

 ~/.bash_logout
csh:
~/.cshrc
~/.login
~/.logout



57

Wildcards (metacharacters) for 
filename abbreviation

• When you type in a command line the shell 
treats some characters as special.

• These special characters make it easy to 
specify filenames.

• The shell processes what you give it, using 
the special characters to replace your 
command line with one that includes a 
bunch of file names.



58

The special character *

• * matches anything.
• If you give the shell * by itself (as a 

command line argument) the shell will 
remove the * and replace it with all the 
filenames in the current directory.

•“a*b” matches all files in the current 
directory that start with a and end with b. 



59

Understanding *

• The echo command prints out whatever 
you give it:
> echo hi
hi

• Try this:
> echo *



60

* and ls
• Things to try:
ls *
ls –al *
ls a*
ls *b



61

Input Redirection

• The shell can attach things other than your 
keyboard to standard input.
– A file (the contents of the file are fed to a 

program as if you typed it).
– A pipe (the output of another program is fed as 

input as if you typed it).



62

Output Redirection

• The shell can attach things other than your 
screen to standard output (or stderr).
– A file (the output of a program is stored in  

file).
– A pipe (the output of a program is fed as input 

to another program).



63

How to tell the shell to redirect 
things

• To tell the shell to store the output of your 
program in a file, follow the command line 
for the program with the “>” character 
followed by the filename:

ls > lsout
the command above will create a file named 
lsout and put the output of the ls 
command in the file.



64

Input redirection

• To tell the shell to get standard input from 
a file, use the “<“ character:

sort < nums
• The command above would sort the lines 

in the file nums and send the result to 
stdout.



65

You can do both!
sort < nums > sortednums

tr a-z A-Z < letter > rudeletter



66

Pipes

• A pipe is a holder for a stream of data.
• A pipe can be used to hold the output of one 

program and feed it to the input of another.

prog1 prog2
STDOUT STDIN



67

Asking for a pipe

• Separate 2 commands with the “|” 
character.

• The shell does all the work!

ls | sort 
ls | sort > sortedls



68

Shell Variables
• The shell keeps track of a set of parameter 

names and values.
• Some of these parameters determine the 

behavior of the shell.
• We can access these variables:

– set new values for some to customize the shell.
– find out the value of some to help accomplish a 

task.



69

Example Shell Variables
sh / ksh / bash

PWD  current working directory
PATH list of places to look for commands
HOME home directory of user

MAIL where your email is stored
TERM what kind of terminal you have
HISTFILE where your command history 

is saved



70

Displaying Shell Variables

• Prefix the name of a shell variable with "$".
• The echo command will do:

echo $HOME
echo $PATH

• You can use these variables on any 
command line:

ls -al $HOME



71

Setting Shell Variables

• You can change the value of a shell variable 
with an assignment command (this is a shell 
builtin command):

HOME=/etc
PATH=/usr/bin:/usr/etc:/sbin
NEWVAR="blah blah blah"



72

set command (shell builtin)

• The set command with no parameters will 
print out a list of all the shell varibles.

• You'll probably get a pretty long list…

• Depending on your shell, you might get 
other stuff as well...



73

The PATH
• Each time you give the shell a command 

line it does the following:
– Checks to see if the command is a shell built-in.
– If not - tries to find a program whose name (the 

filename) is the same as the command.
• The PATH variable tells the shell where to 

look for programs (non built-in commands).



74

echo $PATH
======= [foo.cs.rpi.edu] - 22:43:17 =======
/cs/hollingd/introunix echo $PATH
/home/hollingd/bin:/usr/bin:/bin:/usr/local/b
in:/usr/sbin:/usr/bin/X11:/usr/games:/usr/l
ocal/packages/netscape

• The PATH is a list of ":" delimited directories.
• The PATH is a list and a search order.

• You can add stuff to your PATH by changing the shell 
startup file (on RCS change ~/.bashrc)



75

Job Control 

• The shell allows you to manage jobs
– place jobs in the background
– move a job to the foreground
– suspend a job
– kill a job



76

Background jobs

• If you follow a command line with "&", the 
shell will run the job in the background.
– you don't need to wait for the job to complete, 

you can type in a new command right away.
– you can have a bunch of jobs running at once.
– you can do all this with a single terminal 

(window).
ls -lR > saved_ls &



77

Listing jobs

• The command jobs will list all background 
jobs:

> jobs
[1] Running     ls -lR > saved_ls &
>
• The shell assigns a number to each job (this 

one is job number 1).



78

Suspending and Killing the 
Foreground Job

• You can suspend the foreground job by 
pressing ^Z (Ctrl-Z). 
– Suspend means the job is stopped, but not dead.
– The job will show up in the jobs output.

• You can kill the foreground job by pressing 
^C (Ctrl-C). 
– It's gone...



79

Quoting - the problem
• We've already seen that some characters 

mean something special when typed on the 
command line: *   (also ?, []) 

• What if we don't want the shell to treat 
these as special - we really mean *, not all 
the files in the current directory:

echo here is a star *



80

Quoting - the solution

• To turn off special meaning - surround a 
string with double quotes:

echo here is a star "*"

echo "here is a star"



81

Quoting Exceptions
• Some special characters are not ignored 

even if inside double quotes:
• $ (prefix for variable names)
• " the quote character itself
• \  slash is always something special (\n)

– you can use \$ to mean $ or \" to mean "

echo "This is a quote \" "



82

Single quotes

• You can use single quotes just like double 
quotes.
– Nothing (except ') is treated special.

> echo 'This is a quote \" '
This is a quote \"
> 



83

Backquotes are different!

• If you surround a string with backquotes the 
string is replaced with the result of running 
the command in backquotes:

> echo ̀ ls̀
foo fee file?
> PS1=̀ datè
Tue Jan 25 00:32:04 EST 2000

new prompt!



84

Programming

• Text editors
– emacs, vi
– Can also use any PC editor if you can get at the 

files from your PC.
• Compilers – gcc is probably best.
• Debuggers: gdb xxgdb


