COP3530 Data Structures and Algorithms

Project 1b: Implement a Double-Ended Queue Template

version 1

due 2/23/15
Brief Description:
Modify your double-ended queue (Deque) using only arrays to be a template. As before, the queue shall automatically grow and shrink depending on the usage with an initial and minimum size of eight (8). Its size shall double when it is full and shrink to half its size when it is less than 1/4 full (and not already of minimum size).
Your deque shall implement the following functions.

· push_front - Inserts an element at the front of the queue

· push_back - Inserts an element at the back of the queue

· pop_front - Deletes the element at the front of the queue

· pop_back - Deletes the element at the back of the queue

· empty - checks to see if the queue is empty

· size - returns the size of the queue

· toStr – concatenates the contents of the queue from front to back into a return string with each string item followed by a newline character in the return string – how the type that is used when the deque is instantiated will determine what the output is, but you may assume that the type has overloaded the << stream operator. (Consider this an obligation on the programmer that uses your template and exercises this method.)

· appropriate constructors and destructors
Deliverables
· Well commented and well-structured source code. Your header file shall be named tDeque.h Your part b implementations MUST catch and throw exceptions. Your code must be correct and reasonably efficient as well (e.g., it must NOT be quadratic in the worst case).

· Makefile that compiles your code with our tDeque_main.cpp on the CISE linux machines and produces executable tDeque. We will provide the main file. The program must run on CISE linux machines, so be sure to test it there (use remote access as required).

· PDF document containing a description of code organization, any special diagnostics, test cases and test results, as well as known bugs. It should also include information on exceptions thrown, and obligations on template use. This shall be named according to usual convention, i.e., cop3530_sp15_proj1b_your_last_name_first_initial.pdf .
The interface is the same as before, except that it is a template, with the type taking the place of string in your code. Remember that the template “implementation” code must be in the .h file, since the compiler needs it to generate the actual code when a particular type of deque is instantiated.

Exceptions
Your code should catch out of memory exceptions, but does not need to handle them. These should just have an informative string added and be re-thrown. The exceptions you generate (when asked to pop an empty deque) should just be thrown with an appropriate type (at least as specific as runtime_error) and suitably informative string. (See LLJ section 5.6 and 18.1 as needed.)
Grading Rubric for Part b
	Criterion
	Points

	Code compiles without error from makefile
	5

	Code efficiently gives correct answers to test cases
	10

	Code works as template with all types satisfying obligations
	10

	Code catches and handles exceptions appropriately
	5

	Code generates exceptions with meaningful information
	5

	Testing (Writing appropriate test cases and testing the code)
	5

	Proper code comments
	5

	Good code documentation (structure, how to use)
	5

	Following good programming practices
	5

	Total
	55

Remember, ALL of your submissions MUST compile on the CISE department machines (at least on sand.cise.ufl.edu) using your makefile. You may develop your code on your own system/environment, but upload it to your CISE account and test it on the CISE machines well before you submit it. Code that does not compile on the CISE machines from the makefile WILL BE RETURNED ungraded and points (see rubric) will be deducted, as we will NOT debug or port either you code or your makefile.

