CIS 4362 – Intro to Cryptology

Project 1 – Generalized S-DES encryption and decryption

version 2

Due: 2/11/15

Overview
Write a program to implement DES-like ciphers and in particular S-DES as described in the text and online at http://mercury.webster.edu/aleshunas/COSC%205130/G-SDES.pdf, but make it generalizable so that (many of) the parameters can be specified at run-time. These specifiable parameters are given below.

Your program will be executable from the shell and have at least 7 types of command-line parameters (eight flags). By default it will read the file params.txt for parameters, then read/write plaintext from the file ptxt and read/write ciphertext from file ctxt by default. These will generally be binary files.

· If different input file name is desired, then the -i<file-name> flag may be used to read from the specified file (with no space before the file name) or from stdin if “-” is used for the file name.

· Likewise, the -o<file-name> may be used to specify a different output file, or to write output to stdout if “-” is the file name.

· The -e flag indicates to encrypt, while the -d flag indicates to decrypt the input.

· The key to use is read by default from the key.txt file, which contains only the master key in hexidecimal ascii format (not binary). A key may be entered on the command line using the -k<key> option, giving the key in hexidecimal after the -k flag (with no space before the key).

· If a different set of parameters is desired, the -p<param-file> option may be used to specify a text file (no space between flag and file name) containing parameters with a name different from params.txt.

· The -s flag indicates to show intermediate steps, including round keys (in ascii represented binary), left and right side input to each round (as ascii represented binary),

· Finally, the -x flag indicates that hexidecimal representations should be used instead of binary for the input and output, including -s output.

You may also want to provide your own flags for debugging purposes. (For example, you may want a -b flag that enables ascii-coded binary like the round keys, or a -I flag that puts your program into interactive mode with the user.) You may also want to implement a little program or two that transforms a binary file into an ascii-represented hexidecimal (or ascii-represented binary) file and vice versa.

Cipher Parameters
All numbering for bits expressed in permutations starts from 1 as given in text.

B: Block size

Q: Key size – number of bits in key

QE: Effective key size – number of key bits after PC-1

R: Round key size

N: Number of Rounds

PC-1: Initial Permuted Choice for Round Key Generation – takes Q bits in and outputs QE bits

PC-2: Permuted Choice to set bits for Round Key

RS: Left Rotation Schedule: List of N integers, indicates number of logical left shifts before each round

IP: Initial Permutation

IP-1: Inverse IP is derived from IP

E: Expansion permutation – lists where each of R bits comes from in input of length B/2

P: P-box transposition permutation

T: Number of S-Boxes (each takes in R/T bits, outputs B/2T bits)

Row: Permuted choice to select the bits from the input to an S-box that are used to select the row

Col: Permuted choice to select the bits from the input to an S-box that are used to select the column

Si: ith S-box substitution – array of 2x rows and 2y columns, where x = R/T – B/2T, and y = B/2T

Key Generation
Key generation assumes that the master key (of length Q) is used to generate round keys in a fashion similar to DES.

First, zero or more bits are dropped from the master key, and the remaining bits are permuted. This is PC-1, which names each of the QE output bit positions according to which bit position of the master key is copied to that index. Again, all indexing starts at 1, not 0.

Next, the resulting effective master key is split into two halves, and each half is rotated left (cumulatively) one or two times before each round. The list RS with N entries states the number of (additional) times the left and right half keys are rotated left before the corresponding round.

Finally, PC-2 selects R bits from the (rotated) effective key and permutes them to form the round key for each round.

Decryption generates the same round keys, but applies them in reverse order.

Encryption/Decryption
Like DES, the plaintext input P is first transposed using the initial permutation IP (again, IP names where each of the N bits after the IP comes from in the original plaintext). The scrambled plaintext is then split into left and right halves L0 and R0. Outputs L1 and R1 are computed according to the Feistel round process, with Li = Ri-1 and Ri = Li-1 XOR F(Ki, Ri-1), where Ki is the ith round key and F is the mangler function. After the Nth round is completed, LN and RN are concatenated and the inverse initial permutation IP-1 is applied to compute the ciphertext C corresponding to P.

The mangler function F(.,.) takes in round key Ki and the old right half Ri-1 to produce output Ui, which is then XORed with the left half Li-1 to produce the new right half Ri. First, Ri-1 has the expansion permutation EP applied to derive R bits from the N/2 input bits. Each of the R positions in the EP list indicates which of the N/2 input bits is copied to that location. The expanded and permuted input is then XORed with the round key Ki to produce Xi, the input to the S-boxes. (Note: in the classic description of S-DES, F is described this way in detail, except that the output is Li after XOR with Li-1 rather than Ri as is done in classical DES descriptions. In addition, the high-level description of S-DES includes both the left and right outputs of the round, rather than just being the mangler function itself. I find this confusing, so I will stick to classical DES meaning of F here.)

Xi is split into T equal pieces, each with R/T bits. The Row permuted choice names the bits from the R/T input bits that are used to select the row of the S-box, and the Col permuted choice names the B/2T bits from the R/T input bits that are used to select the column of the S-box. Assume that there are R/T-B/2T row selection bits. Each of the rows of each S-box specifies a permutation of the the B/2T-bit input, and a cell specifies the B/2T output from the S-box when the corresponding row and column are selected. The outputs from the S-boxes form Yi.

The concatenated output from the T S-boxes, Yi, is then transposed using the P-box permutation, which specifies where each of the B/2 output bits comes from in Yi. This forms Ui, which is then XORed with Li-1 to form Ri. (Note: In the classical S-DES description, Ui is XORed with Li-1 to become the left output, while the Ri-1 is carried forward to become the right output. These are then swapped, so the result is the same as described above.)

After the final round, the left and right halves are swapped and the inverse initial permutation is applied to form the ciphertext C. (Again, note that the classical S-DES description, the left and right halves are swapped after each round except the last. This is the same as directly computing the left and right outputs as described above, without the swap, until the final round, which has a swap).

The specifiable parameters will be given in a param.txt file, with each scalar or vector parameter on its own line, delimited by spaces, and with the S-Boxes given as T tables, with a blank line recommended before each of the T tables, and one line per row of the table.

Parameter file param.txt description:
Any line may have comments, which start with // and continue to the end of the line

Any line may be left blank or only have a comment on it; however, the parameters must appear in the following order, as described.

B: Block size – a single even positive integer in decimal

Q: Key size – number of bits in key – a single positive decimal integer

QE: Effective key size – number of key bits after PC-1 – a single positive decimal integer

R: Round key size – a single positive decimal integer

N: Number of Rounds – a single positive decimal integer

PC-1: Initial Permuted Choice for Round Key Generation – QE decimal integers on one line separated by spaces, with each integer between 1 and Q

PC-2: Permuted Choice to set bits for Round Key – R decimal integers on one line separated by spaces with each integer between 1 and QE

RS: Left Rotation Schedule: List of N integers, indicates number of logical left shifts before each round – N decimal integers separated by spaces all on one line with each between -QE/2+1 and QE/2-1

IP: Initial Permutation – the B decimal integers between 1 and B (one of each) all on one line separated by spaces

E: Expansion permutation – lists where each of R bits comes from in input of length B/2 – R decimal integers, each between 1 and B/2, all on one line, separated by spaces

P: P-box transposition permutation – the decimal integers between 1 and B/2 (one of each) all on one line separated by spaces

T: Number of S-Boxes (each takes in R/T bits, outputs B/2T bits) – single positive decimal integer, which must evenly divide R

Row: Permuted choice to select the bits from the input to an S-box that are used to select the row – R/T-B/2T distinct decimal integers between 1 and R/T, all on one line separated by spaces

Col: Permuted choice to select the bits from the input to an S-box that are used to select the column – B/2T distinct decimal integers between 1 and R/T that do not appear in Row, all on one line separated by spaces

Si: ith S-box substitution – array of 2x rows and 2y columns, where x = R/T – B/2T, and y = B/2T – one blank line is recommended but not required, followed by 2x lines, each with 2y integers between 1 and 2y
A param.txt file for S-DES is as follows:

8
// block size is 8 bits

10
// key size (input length of PC-1)

10
// effective key size (output length of PC-1)

8
// round key size (output length of EP)

2
// 2 rounds

3 5 2 7 4 A 1 9 8 6
// PC-1 aka PC-10 in S-DES

6 3 7 4 8 5 A 9
// PD-2 aka PC-8 in S-DES

1 2
// left rotation schedule – shift once before round 1, then two more times before round 2

2 6 3 1 4 8 5 7
// Initial Permutation

4 1 2 3 2 3 4 1
// Expansion Permutation

2 4 3 1
// P-Box transposition

2
// 2 S-Boxes

1 4
// Row selection bits

2 3
// Column selection bits

// S-Box0

1 0 3 2
// row 0

3 2 1 0
// row 1

0 2 1 3
// row 2

3 1 3 2
// row 3

// S-Box1

0 1 2 3
// row 0

2 0 1 3
// row 1

3 0 1 0
// row 2

2 1 0 3
// row 3

Deliverables
You will submit via Sakai in a tar, zip, or rar file:

· All source code, written in C, C++, or Java, that compiles and runs (or is interpreted correctly) on the CISE machines. Your source will adhere to the interface-implementation-client model, and you will provide a makefile as appropriate for incremental compilation and linking with whatever compiler options and libraries are needed. Typing “make proj1” on the command line of a shell on a CISE linux machine must correctly compile your program and produce an executable called proj1. You code shall be well-structured, adhere to good programming practices, and be appropriately commented.

· Project Report, in PDF format, with an overview of the project (you can crib from this description for that part), a description of the organization of your code, its interfaces, and any particular data structures and algorithms you used. It shall also include a bug list of all known bugs or limitations, and a section on testing describing how you tested your program, the test cases (input and expected output) and the test results.

· User documentation: this may be an man(1) page or a PDF document describing how to use the program, including all options, along with some examples. It should be thorough and clear.

