
Grading Rubric for Undergraduate Software Projects
	Characteristic
	Outstanding
	Above Average
	Average
	Below Average
	Failing

	Meets

Computational

Specifications
	The program meets all of the computational specifications
	The program produces the correct results and displays them correctly for almost all computational specifications
	The program produces correct results for most computational specs, has a few bugs
	The program is produces incorrect results, has several bugs
	The program is does not work or has many bugs

	 Displays Output Correctly
	The program displays results very clearly and intuitively, and meets all display specifications
	The program displays results clearly and meets most of the display specifications
	The program displays results clearly and meets many of the display specifications
	The program does not display results clearly or does not meet most display specs
	The program does not display results correctly and does not meet most display specs

	Error Handling
	The program checks for all error conditions and handles them appropriately
	The program checks for most error conditions and handles them appropriately
	The program checks for some error conditions and handles them appropriately
	The program checks for few error conditions and doesn't handle them appropriately
	The program does not check error conditions

	Readability
	The code is well organized and very easy to understand, with clear comments both in-line and in headers
	The code is pretty well organized, fairly easy to read, and has good comments
	The code has some organization,is a challenge to read, and has minimal comments

	The code is readable only by someone who knows what it is supposed to do, has few comments
	The code is poorly organized and very difficult to read, with no comments

	Reusability
	The code could be reused as a whole and each routine could be reused
	Most of the code could be reused in other programs
	Some parts of the code could be reused in other programs
	A few parts of the code could be reused in other programs
	The code is not organized for reusability

	Documentation
	Documentation is clear and well written, and clearly explains what the code does and how. It includes how to configure the system and how to use it correctly

	Documentation is reasonably clear and mostly complete, and is useful in understanding the system and how to configure and use it correctly

	Documentation is adequate, but not well written or thorough; configuration and user information is minimal
	Documentation is does not explain the purpose or methods well, and does not help the reader understand the program or system; configuration and user documentation is inadequate
	No separate documentation is provided

	Testing
	Test cases are thorough and systematic, well documented with expected and actual output
	Test cases are thorough and systematic, known bugs are documented
	Tests cover most representative cases, tests and known bugs are adequately documented
	Test cases miss significant scenarios, and are poorly documented; bugs are poorly documented
	Test cases are absent or very few, and are poorly documented or undocumented ; bugs not documented

	Efficiency and Performance
	The code is very efficient, system meets or exceeds all performance requirements
	The code is fairly efficient, system meets performance requirements

	The code is naïve or brute force, system meets most

 performance requirements
	The code is brute force and unnecessarily long, system meets some performance requirements
	The code is huge and grossly inefficient, system meets few or no performance requirements

	Delivery
	The code and documentation were turned in ahead of schedule
	The code and documentation were turned in on schedule
	The code and documentation were turned within one day of the due date
	The code and documentation were turned in within a week of the due date
	The code and documentation were turned in more than one week late

