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Abstract—We propose DOCA (Detecting Overlapping Commu-
nity Algorithm), a connection-based algorithm for discovering
high quality overlapping community structures in social net-
works. Our proposed method is fast, very limited parameter
dependent and only requires local knowledge about the network
topology. Furthermore, the community structures discovered by
DOCA are deterministic, i.e., no fuzzy community assignments
are produced. DOCA’s performance is certified by extensive
experiments on real-world traces including Enron communica-
tion network, ArXiv citation and Astro physics collaboration
networks as well as Facebook and Foursquare social networks.
The demonstrative benchmark with other detection methods
highlights the efficiency of DOCA when discovering community
structures of large-scale networks. By using DOCA to analyze the
community structures of real datasets, we find that overlapping
communities occur naturally and quite frequently, especially for
top largest communities. In addition, overlapped nodes tend to
be active users who participate in multiple communities at the
same time. This happens not only on social networks but also on
collaboration, citation and communication networks.

I. INTRODUCTION

Network communities have long been believed to be groups
of tight-knit nodes having more internal than external connec-
tions [1][2]. In social networks, a social community usually
consists of people sharing common interests who tend to
interact more frequently with other members than to the
outside world. The discovery of network communities provides
us a much better understanding about the structural topology
of each community as well as its organization principles. For
example, a community in biology often consists of proteins,
genes or subunits with functional similarity. Likewise, a com-
munity in social networks usually contains users having similar
characteristics that make them different from the others. In
the social network visualization perspective, the detection of
community structure is extremely helpful since it only displays
core groups of users and their mutual interactions, hence
presents a more compact and understandable description of
the network as a whole. Detecting this special structure also
finds itself extremely useful in other network aspects, such as
forwarding and routing strategies in communication networks
[3][4] and worm containment on cellular networks [5].

In general, community detection can be classified into
two categories: Overlapping and Non-overlapping methods.
Many efficient algorithms have been proposed to identify non-
overlapping network community structure, i.e., detecting pair-
wise disjoint communities, in both static [6][7] and dynamic
networks [4][8]. An excellent survey on disjoint community
detection methods can be found in [9] and references therein.

Network communities in reality, however, are not always
disjoint from each other. In fact, communities in social net-
works usually overlap with each other since many active users
can possibly participate in multiple groups at the same time.
For example, on online social network sites, e.g., Facebook,
Twitter or MySpace, a user with favors in movies, music and
art can join in and becomes an active member of those com-
munities of interests. A disjoint community detection method,
when applied to a network with overlapping communities,
shall misleadingly classify overlapped nodes into different
communities, thus fails to reveal the original network’s struc-
ture. This makes the detection of overlapping communities an
interesting, yet challenging problem.

This problem also drives the need for a different concept of
overlapping community structure. Unlike the non-overlapping
point of view, a (overlaped) community should be local and
independent of its context or topological environment, as
proposed in a recent work [10]. In addition, Goldberg [11]
suggests that a community should also satisfy connectedness,
i.e., it should induce a connected sub-graph in the network,
and local optimality, i.e., the removal or addition of a single
node will not affect the community with respect to a density
function. While we agree upon the independence and connect-
edness properties, we find the local optimality too strict to
allow the extension of network communities, especially when
they can overlap. Therefore, in this paper, we suggest a new
concept for a local community satisfying the independence
and connectedness properties, and relax the local optimality
to make it easier for the expansion of highly overlapped
communities in the network.

Many methods have been proposed in the literature to find
the overlapping network communities (section V). Unfortu-
nately, most of them (1) usually require the global knowledge
of the network topology (which is generally missing or un-
known) (2) have parameters that are notoriously difficult to
fine tune and (3) are time consuming when analyzing large-
scale networks. To overcome these limitations, we propose
DOCA, a quick algorithm with performance guarantees ca-
pable for discovering high quality community structures in
social networks. In a big picture, our connection-based DOCA
algorithm works toward the classification of nodes into local
communities when the number of interactions among them
suffices, and then tries to combine highly overlapped commu-
nities if they share significant substructures. By doing this way,
DOCA not only requires just local knowledge about network
topology but also asks for a very light-weight computation.



Moreover, our method only requires a predefined parameter
called overlapping threshold β for its entire operation. This
requirement is necessary since communities can overlap at
different scales and resolutions, and thus, we need to have
a quality control parameter in order to certify how much
the shared substructure means to them. This very limited
parameter-dependence not only gives DOCA more freedom
when analyzing networks with different types, sizes and hier-
archical structures but also expedites its overall performance.

The contributions of this paper are three-fold: First, we
propose DOCA, a fast and effective algorithm for detecting
high quality community structures in social networks (section
III). Next, in section IV, we present the empirical results of our
extensive experiments on real-world networks in reference to
the most effective method COPRA and a recently proposed
method GCE (review in Section V). This benchmark on
real-world traces shows that DOCA performs competitively
with extremely less time consuming. Finally, we use DOCA
to analyze five real-world traces and find that overlapping
communities occur naturally and quite frequently, especially
for top largest communities. Moreover, overlapped nodes tend
to be active users who participate in multiple communities at
the same time. This happens not only on social networks but
also on collaboration, citation and communication networks.

II. PROBLEM FORMULATION

A. Basic notations

Let G = (V,E) be a graph representing a social network
where V is the set of N nodes and E is the set of M
connections. Denote by C = {C1, C2, ..., Ck} the network
community structure, i.e., a collection of subsets of V where
each Ci ∈ C and its induced subgraph form a community
of G. In our model, we allow Ci ∩ Cj 6= ∅ so that the
network communities can overlap with each other. For a node
u ∈ V , let du, N(u) and Com(u) denote its degree, its
neighbors and its community assignment list, respectively. For
any community C of G, let Cin be the set of connections
having both endpoints in C and Cout denote the set of
connections having exactly one endpoint in C.

B. Density function

In order to quantify the goodness of a local commu-
nity C ∈ C, we use the popular internal density function
∆(C) = 2|Cin|

|C|(|C|−1) [12]. The more C approaches a clique
of its size, the higher its density value ∆(C) and the stronger
its internal structure. In order to set up a threshold on the
number of connections that suffices for a set of nodes C to be
a community, we propose the function

σ(C) =
|C|(|C| − 1)

2

1− 2
|C|(|C|−1)

Several functions of the same purpose have been introduced
in the literature, for instance in the work of [13][14][15] and
thus, it is worth mentioning the main differences between those
and ours. Firstly, our function processes on the candidate group
only and neither requires any predefined threshold nor user-
input parameter. Secondly, σ(C) is an increasing function that
closely approaches C’s full number of connections, i.e., the

number of edges in a clique of size |C|. That makes σ(C)
a relaxation version of the traditional density function, yet a
powerful one as it scales well with the community sizes. σ(C)
is used in detecting local communities, i.e., densely connected
parts of the network, as described in section III.
C. Objective

Our objective is to find a community assignment for the
set of nodes V which maximizes the overall internal density
function ∆(C) =

∑
C∈C ∆(C). Unlike the case of disjoint

community structure, in which connections crossing between
communities should be less than those inside them, our
objective does not take into account the number of out-
going links from each community. Informally, we define
detecting overlapping communities as an optimization problem
as follow: Given a graph G = (V,E), find a community
structure C = {Ci} of V with the following objective
function: max

∑
Ci∈C ∆(Ci) subject to |Ci| ≥ 4 ∀Ci ∈ C;

|Cin
i ∩C

in
j |

min{|Cin
i |,|Cin

j |}
+

|Ci∩Cj |
min{|Ci|,|Cj |} ≤ β ∀Ci, Cj ∈ C; and

∆
(⋃s

i=1 Ci
)
< τ

(⋃s
i=1 Ci

)
∀s ∈ [1, |C|] where τ(·) is

a function defined in section III-A and β is an overlapping
threshold. This threshold defines how much substructure two
communities can share, and the higher β the more we allow
communities to overlap.

The first condition |Ci| ≥ 4 is carried out from the
increasing property of σ(·) function. This condition allows us
to skip over network communities of very small sizes. This
makes sense in social networks where a social community
usually consists of more than three people, and intuitively
agrees with the finding of [9][16]. Those tiny communities
will then be identified in the last procedure of our DOCA
algorithm. The next constraint implies two communities that
overlap more than a certain fraction of the smaller’s size
should be merged to a single community. Finally, the last
constraint filters out the unfortunate case in which some sub-
communities (i.e., parts of a bigger one) are contained in
an actual big community. Since this constraint requires an
intensive search for all possible combinations of network
communities, which can grow exponentially especially when
communities can overlap, we do not hope to find the best
solution for this problem in a timely manner. Instead, we
propose DOCA, an algorithm to quickly reveal a high quality
community structure of a given social network.

III. METHOD DESCRIPTION

DOCA consists of three main procedures: (1) Detecting
local communities, (2) Combining overlapping communities
and (3) Revisiting unassigned nodes. Once given a social
network as input, DOCA sequentially executes these three
procedures in their orders to discover the network overlapping
community structure.

In a big picture, our method works toward the classification
of network nodes into different groups by first identifying all
possible densely connected parts of the input network in the
starting phase, and then trying to merge highly overlapped
communities in the next phase. To make sure that all nodes
are properly labeled, the last procedure revisits unassigned
nodes to either classify them into appropriate communities or



(a) (b)
Fig. 1. (a) The group of nodes containing u and v defines a local community
C since ∆(C) = 0.9 ≥ τ(C) = 0.725. (b) Two local communities sharing a
significant substructure and should be combined to a single community. Here
β = 0.75 and overlapping score is 3/5 + 3/7 = 1.027

identify them as outliers. This local community optimization
approach scales well with the network’s size and topology as
it works locally and does not depend on the knowledge of the
whole network. Note that while DOCA shares this strategy
in general, it fundamentally differs from the works recently
suggested [14][17] in which its local communities detection is
done automatically without requiring any user-input parameter.
Moreover, DOCA also differs from [18] in the way it allows
|Ci ∩ Cj | ≥ 2 for any subset Ci, Cj of V , and consequently
allows network communities to overlap not only at a single
vertex but also as a substructure of the whole community.
A. Detecting local communities

The detection of local network communities is the first and
also the most important phase of our method. Knowledge
of these raw communities provides us an overview of the
network principles as well as predictions to critical places
where communities can possibly overlap. In particular, we
term a group of nodes C ⊆ V a local community if its
internal density exceeds a threshold determined based only
on C’s size, regardless to its external connections. Of course,
a clique represents a perfect local community; however, we
do not restrict our starting communities to be only cliques.
Instead, we relax them to be “quasi-cliques” which can overlap
with each other and whose detection can be done in an
automatic fashion. This is the key difference between DOCA
and previous works [19][17][14].

In order for a group of nodes C to be a local community,
its internal density ∆(C) should satisfy the condition ∆(C) ≥
τ(C) where we propose the function τ(C) to be τ(C) =

2σ(C)
|C|(|C|−1) . By the definition of σ(C), τ(C) can be reduced

to τ(C) = |C|(|C|−1)
2

− 2
|C|(|C|−1) . It is clear that the above

function depends only on C’s size, and as a result, it can
be locally computed and be adapted to multiple communities
of different sizes. Moreover, local communities formed in this
manner satisfy the connectedness and independence properties
because they are (1) obviously connected and (2) determined
only by their own internal densities. Local optimality is relaxed
since our τ(·) function does not impose that requirement.

The local community detection algorithm begins by exam-
ining every edge (u, v) in the network. For each edge, the
algorithm inclusively finds the intersection Cuv of N(u) and
N(v) and computes its internal density as well as the threshold
τ(Cuv). If the internal density suffices, i.e. ∆(Cuv) ≥ τ(Cuv),
Cuv is defined as a local community and the community lists
Com(u) and Com(v) are updated. Note that edges whose
endpoints belonging to the same community are excluded from
examination. Figure 1(a) illustrates the algorithm on a simple
example. The detailed description is presented in Alg. 1

Algorithm 1 Detecting Local Communities
Input: Network G = (V,E)
Output: Local (or raw) community structure C = {C1, C2, ..., Ck}
1: C = ∅;
2: for (u, v) ∈ E and Com(u) ∩ Com(v) = ∅ do
3: Let Cuv = N(u) ∩N(v) ∪ {u, v};
4: if ∆(Cuv) ≥ τ(Cuv) then /*Local community check*/
5: C ← C ∪ Cuv ;
6: Update Com(u) and Com(v);
7: end if
8: end for

Complexity: Time complexity of Alg. 1 is O(δM) where
δ = maxu∈V {du}.

Theorem 1: The local community structure C detected by
Alg. 1 satisfies ∆(C) ≥ 0.83 × ∆(OPT ) where OPT is
the optimal community assignment that maximizes the overall
internal density function.

B. Combining overlapping communities

As soon as the first procedure finishes, the raw network
community structure can be pictured as a collection of (pos-
sibly overlapped) dense parts of the network together with
outliers. As some of those dense parts can possibly share sig-
nificant common substructures, we need to merge them if they
are indeed highly overlapped. In order to do so, we introduce
the overlapping score of two communities: OS(Ci, Cj) =

|Iij |
min{|Ci|,|Cj |}+

|Iinij |
min{|Cin

i |,|Cin
j |}

where Iij = Ci∩Cj . Basically,
OS(Ci, Cj) values the importance of the common nodes
and connections shared between Ci and Cj to the smaller
community. In comparison with the distance metric suggested
in [17], our overlapping function not only takes into account
the fraction of common nodes (first term) but also values
the fraction of common connections (second term), which is
crucial in order to merge overlapped communities. In addition,
OS(·, ·) is symmetric and scales well with community sizes.
The higher this score, the more communities in consideration
should be merged.

The second procedure starts out by examining raw commu-
nities identified from the first phase in a bottom up manner.
In this procedure, two communities Ci and Cj are combined
if OS(Ci, Cj) ≥ β. Figure 1(b) works out the merging on a
simple example. The combination process terminates until no
communities are further merged together.

Algorithm 2 Combining Overlapping Communities
Input: Local network community structure C′ = {C′1, ..., C

′
p}

Output: Combined community structure C = {C1, ..., Ct}
1: C = C′;
2: Done← False;
3: while (!Done) do
4: Done← True;
5: for Ci ∈ C do /* i = p..1 */
6: Let N(Ci) = {Cj ∈ C|Cj ∩ Ci 6= ∅};
7: for Cj ∈ N(Ci) do
8: if OC(Cj , Ci) ≥ β then
9: Cmin{i,j} ← Ci ∪ Cj ;

10: C ← C\Cmax{i,j};
11: Update Com(u) for all u ∈ Ci;
12: Done← False;
13: end if
14: end for
15: end for
16: end while



Complexity: Time complexity of Alg. 2 is O(N2
0 ) where

N0 is the number of local communities detected in Alg. 1.
Clearly, N0 ≤ M and thus, it coulld be O(M2). However,
when the intersection of two communities is upper bounded,
by Lemma 1, we know that the number of local communities
is also upper bounded by O(N), and thus, the time complexity
of Alg. 2 is O(N2). In our experiments, we observe that the
running time is indeed much smaller than O(N2).

Lemma 1: The number of raw communities detected in Alg.
1 is O(N) when the number of nodes in the intersection of
any two communities is upper bounded by a constant α.
C. Revisiting unassigned nodes

Even when the above two procedures are executed, there
would still exist leftover nodes or edges due to their less
attraction to the rest of the network. Because of its size
constraint, the first procedure skips over tiny communities
of sizes less than four and thus, may leave out some nodes
unlabeled. These nodes will not be touched in the second
phase since they do not belong to any local communities and
consequently, will remain unassigned afterwards. Therefore,
we need to revisit those nodes to either group them into
appropriate communities or classify them as outliers based on
their connectivity structures.

Alternatively, this process can be thought of as a community
trying to hire adjacent unassigned nodes which are similar
to the host community. To this end, we need a community
fitness function in order to quantify the similarity between
a node u and a neighbor community C. We find the fitness
function FS = |Sin|

2|Sin|+|Sout| (where S ⊆ V ) commonly used
in [11][14][17] performs competitively in both synthesized and
real-world datasets.

Algorithm 3 Revisit Unassigned Nodes
Input: The combined community structure C′ = {C′1, ..., C

′
t}

Output: The final community structure C = {C1, C2, ..., Ck}
1: C = C′;
2: for u ∈ V and Com(u) = ∅ do
3: Let NC(u) = {Cj ∈ C|u is adjacent to Cj};
4: for Cj ∈ NC(u) do
5: if FCj∪{u} ≥ FCj

then
6: Cj ← Cj ∪ {u};
7: Com(u)← Com(u) ∪ {j};
8: end if
9: end for

10: if Com(u) = ∅ then
11: Classify u as an outlier;
12: end if
13: end for

Taking into account this fitness function, a community C
will keep hiring any unassigned adjacent vertex of maximum
similarity in a greedy manner, provided the newly joined
vertex does not shrink down the community’s current fitness
value. If there is no such node, C is defined as a final
network community. Nodes remained unlabeled through this
last procedure are identified as outliers. The detailed algorithm
is presented in Alg. 3. The time complexity of the last
procedure is O(Nδ).

IV. EXPERIMENTAL RESULTS ON REAL-WORLD TRACES

We examine the performance of DOCA on different kinds of
real-world networks including the Arxiv citation network1, the

1www.cs.cornell.edu/projects/kddcup/datasets.html

TABLE I
SUMMARY OF FIVE DATASETS

Dataset Nodes Edges Source
ArXiv citation 27770 352285 KDD Cup 2003
Astro-physic 18772 396160 SNAP
Enron email 36692 367662 SNAP
Facebook 69731 1.5M Ref. [20]
Foursquare 47260 1.6M Our data

collaboration network of Astro Physics2, the email communi-
cation network from Enron3, the Facebook and Foursquare4

social networks. The overview of five datasets is summarized
in table I. Due to space limit, we omit the data descriptions
whose details can be found in the provided links.
A. Reference to other community detection methods

We first compare the performance of DOCA with other
methods COPRA [21] and GCE [17] whose implementations
are available. We keep the default settings as provided in
COPRA and GCE deliverables. The only DOCA’s parameter
β is set to 0.67. Due to the lack of the ground-truths, we
neither want to compete among three methods nor to turn any
method down. Our goal is to observe how DOCA performs in
reference to the other methods. In our experiments, COPRA
gets errors on Astroph and Foursquare networks, and GCE is
not able to finish Foursquare dataset in time, so we exclude
those missing values in the charts.

As depicted in Figure 2a, 2b and 2c, DOCA discovers many
more communities of smaller sizes than other two methods,
except for COPRA on the Enron dataset. For instance, on
Arxiv dataset, DOCA finds out nearly 1500 communities
where COPRA and GCE discover less than 500 communities.
On Facebook network, DOCA and GCE find out relatively
close number of communities with the nearly same average
size. However, the average internal density values found by
DOCA are much higher than those of COPRA and GCE,
meaning that the community structures discovered by DOCA
are somehow stronger.

We next examine the maximum community size (Figure
2d) detected by each method. In general, DOCA and COPRA
tend to find out top communities of very big sizes while those
found by GCE are much smaller. Due to the lack of the proper
ground-truths, it is difficult to justify whether these results are
indeed correct or not. However, the results returned by DOCA
make sense to us since most networks in reality expose to
content a giant connected component that can be regarded as
the biggest community.

The coverage and running times of three testing algorithms
are presented in Figure 2e and 2f. Because coverage is not
a requirement, we only plot it for reference. Running times
on five real datasets indicate that only DOCA was able to
finish all the tasks in a timely manner: COPRA and GCE
take 8 to 60 minutes to analyze just a single network, except
for the Astroph network in which GCE takes more than 30
seconds (1 second for DOCA). This benchmark among three
methods, though relative, gives us an idea of how effective

2snap.stanford.edu/data/ca-AstroPh.html
3snap.stanford.edu/data/email-Enron.html
4sites.google.com/site/namnpuf/original foursquare.7z
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Fig. 2. Comparison on real-world traces among DOCA, COPRA and GCE

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.65  0.66  0.67  0.68  0.69  0.7  0.71  0.72  0.73  0.74  0.75

N
u

m
b

e
r 

o
f 

c
o

m
m

u
n

it
ie

s

Overlapping Threshold (a)

Arxiv
Astroph

Enron
Facebook

Foursquare

 0

 50

 100

 150

 200

 250

 0.65  0.66  0.67  0.68  0.69  0.7  0.71  0.72  0.73  0.74  0.75

A
v
e

ra
g

e
 s

iz
e

Overlapping Threshold (b)

Arxiv
Astroph

Enron
Facebook

Foursquare

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.65  0.66  0.67  0.68  0.69  0.7  0.71  0.72  0.73  0.74  0.75

A
v
e

ra
g

e
 d

e
n

s
it
y

Overlapping Threshold (c)

Arxiv
Astroph

Enron
Facebook

Foursquare

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

A
v
g

 O
v
e

rl
a

p
p

in
g

 R
a

ti
o

Top 10 communities (d)

Arxiv
Astroph

Enron
Facebook

Foursquare

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.65  0.66  0.67  0.68  0.69  0.7  0.71  0.72  0.73  0.74  0.75

R
u

n
n

in
g

 t
im

e
 (

s
)

Overlapping Threshold (e)

Arxiv
Astroph

Enron
Facebook

Foursquare

Fig. 3. Results of DOCA on real-world traces

DOCA is in analyzing and discovering overlapping community
structures of many practical types of networks, ranging from
communication, citation to collaboration and social networks.

B. Reference to non-overlapping community detection method

We further perform Blondel’s method [7], one of the best
non-overlapping community detection methods [22], to give
the reader a point of reference and to illustrate the difference
between overlap and non-overlap community structures. The
results are presented in table II and III (here modularity Q
only applies for Blondel’s method).

The Blondel’s method produces small numbers of found
communities with average to big sizes, while DOCA discov-
ers more communities of smaller sizes. Additionally, those
communities are of much higher densities, meaning they
possess stronger and clearer internal structures in comparison
with the non-overlapping community structure. This can be
explained by DOCA, unlike the non-overlapping method, pays
its attention particularly to crucial parts of the network, thus
is able to captures more structural details of the network
communities. This fact also confirms the goodness of our
proposed objective function.

Coverage is not a strict requirement on real networks since
there could be outliers or isolated nodes that do not belong
to any group or community in reality. Of course, the higher
network coverage (or the less number of network outliers) the
better. The experimental results show that DOCA can classify
from 93% up to 98% of network nodes into non-trivial com-
munities. They also indicate that these real networks indeed
contain outliers, however, they are very small in comparison
with the total number of nodes.
C. Results and findings using DOCA

With the accuracy and efficacy observed through exper-
iments and benchmarks with other detection methods, we

TABLE II
STATISTIC OF GROUPS DISCOVERED BY BLONDEL’S METHOD

Dataset Num. Avg Avg Q Coverage
com size density

ArXiv 172 161.4 0.08 0.65 100%
Astro 327 57.4 0.18 0.62 100%
Enron 1239 29.6 0.88 0.60 100%
Facebook 208 306.4 0.09 0.63 100%
Foursquare 2450 19.2 0.001 0.44 100%

TABLE III
STATISTIC OF GROUPS DISCOVERED BY DOCA

Dataset Avg Avg Avg Coverage
num. com size density

ArXiv 1440 27.3 0.67 97%
Astro 3386 10.6 0.84 98%
Enron 3025 15.6 0.83 93%
Facebook 2195 67.0 0.72 96%
Foursquare 700 130.6 0.56 95%

confidently use DOCA to further analyze the real-world traces
and present our results and findings. In particular, we focus
on the following quantities: Number of communities, Average
community size, Average density, Average overlapping ratios
and finally, Running time of the detection algorithm. We
perform DOCA sequentially at each overlapping threshold β
ranging from 0.65 to 0.75 and report results in Figure 3.

Our first observation shows that the higher β is, the more
communities DOCA can detect (Figure 3a). This intuitively
agrees with what we have expected since the higher β, the
more significant substructures two communities have to share
in order to be merged. In our experiments, the Astroph
dataset achieves the highest number of communities (more
than 4500 at β = 0.75) whereas Foursquare dataset obtains
the lowest (only more than 700 at β = 0.75) and those of
other traces are ranging in between. Note that the numbers
of communities of Facebook and Arxiv networks are nearly
identical in the first half of testing, however, they increase
quickly and differ significantly from each other in the second
half. This implies the numbers of communities are sensitive
to the input parameter β.

We next take a look into the average size and internal
density values (Figure 3b, 3c) as they give us the idea of
how strong the internal structures of discovered communities
are. As expected, the average community sizes decrease as
β increases, upper bounded and lower bounded by the sizes
of Foursquare and Astroph networks, respectively. However,
their internal community structures are quite different. The
high average densities of Astroph dataset indicate this network
is containing many small-sized but tight-knit communities,
where each community can be viewed as a group of collaborat-
ing authors sharing similar research interests and composing
a common paper. The same observations applies on Enron
dataset: this network also shares the almost strong and clear
structure as Astroph dataset with even higher density values.
This can be explained as the everyday email communication
in the same company may occur faster and more frequent
than between scientists composing the same papers. The low
density values of Foursquare network, on the other hand, reveal
that this new social network may contain many big groups of
users whose social interactions may not be active at all time.



The interesting finding is on Facebook social network.
Although this network contains many more users than
Foursquare, its underlying structure is much stronger and
clearer: the network is comprised by many middle-sized com-
munities (from 25 to 125 users) with tight social interactions
among community members. In general, although the average
sizes of Facebook social network also decrease as β varies,
its structures still remain wealthy as indicated by high density
values. Moreover, Facebook users are in general more active
than Foursquare users as they participate in more groups
and communities, thus results in higher overlapping ratios as
depicted in Figure 3d.

We next further investigate the overlapping ratios of each
dataset, i.e., we want to know the fraction of overlapped nodes
in the top 10 biggest communities. This quantity provides us
the concept of how the biggest communities are composed
by and how important the overlapped nodes mean them.
As depicted in Figure 3d, biggest communities in real-world
networks, analyzed by DOCA, are significantly overlap with
the others. The results show that not too many top communities
on Astroph network are significantly overlapped (only com-
munity 1, 3, 7) whereas almost all top communities of Arxiv
citation network are. These results also show that on Facebook
network, nearly all top ten communities contain active users
that involve in at least two groups whereas just less than half of
the top communities on Foursquare and Enron networks appear
to possess this property. The running times of DOCA are
recorded in Figure 3e. DOCA only takes less than 15 seconds
to finish analyzing each network, except for Foursquare which
it finishes in less than a minute. Although time is not a strict
constraint on community detection methods, those who can
identify high quality structures in a timely manner are always
of desire. These results confirm that DOCA is one of them.

V. RELATED WORK
Palla proposes CFinder [19], the seminal and most popular

method based on clique-percolation technique which itera-
tively searches for communities composed of connected k-
cliques, starting from an initial clique of size k. However, due
to the clique requirement and the sparseness of real networks,
the communities discovered by CFinder are usually of low
quality [22]. Recently, Gregory proposes COPRA [21], a label
propagation method with an extended feature to allow multiple
community memberships. Recent benchmarks on community
detection methods [22][23] reveal that with appropriate param-
eters set up, COPRA is the best method for detecting overlap-
ping network communities. In a recent attempt, Goldberg [11]
suggests connectedness and local optimality properties of a
community, and proposes CIS method for finding overlapping
communities. This method consists of repeated scans where
each of them is based on “seeds” obtained in the previous
scan. However, the results may not be deterministic due to
its un-predetermined choice of initial seed nodes. Apart from
that, Lee [17] proposes GCE, a method based on the greedy
and iterative expansion of all “seed” cliques of sizes 3 or
4. This method might not be time effective due to the long
running time inherited from the clique finding process. Other
detection trends include methods based on nodes splitting [24],
modularity [13] and link-based detection methods [18].

VI. CONCLUSIONS

We propose DOCA, a fast algorithm for effectively identi-
fying community structures in social networks. In comparison
with GCE and the state-of-the-art COPRA, DOCA performs
competitively with extremely less time consuming. We further
apply DOCA to analyze real datasets and report our findings.
With only one input parameter, we believe DOCA is one of the
fastest and most effective methods for identifying overlapping
community structures social networks.
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