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Abstract—Society relies heavily on its networked physical infrastructure and information systems. Accurately assessing the
vulnerability of these systems against disruptive events is vital for planning and risk management. Existing approaches to
vulnerability assessments of large-scale systems mainly focus on investigating inhomogeneous properties of the underlying
graph elements. These measures and the associated heuristic solutions are limited in evaluating the vulnerability of large-scale
network topologies. Furthermore, these approaches often fail to provide performance guarantees of the proposed solutions. In
this paper, we propose a vulnerability measure, pairwise connectivity, and use it to formulate network vulnerability assessment
as a graph-theoretical optimization problem, referred to as β-disruptor. The objective is to identify the minimum set of critical
network elements, namely nodes and edges, whose removal results in a specific degradation of the network global pairwise
connectivity. We prove the NP-Completeness and inapproximability of this problem, and propose an O(logn log logn) pseudo-
approximation algorithm to computing the set of critical nodes and anO(log1.5 n) pseudo-approximation algorithm for computing
the set of critical edges. The results of an extensive simulation-based experiment show the feasibility of our proposed vulnerability
assessment framework and the efficiency of the proposed approximation algorithms in comparison with other approaches.
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1 INTRODUCTION

CONNECTIVITY plays a vital role in network per-
formance and is fundamental to vulnerability

assessment. Disruptive events, ranging from natural
disasters to malicious attacks, can drastically com-
promise the network’s ability to meet its quality-of-
service(QoS) requirements, if not cause widespread
service outages and potentially total network break-
down [1], [2], [3], [4], [5], [6]. Robust network design
and management strategies to deal with unexpected
events must be in place to account for potential dis-
ruptions to network connectivity. A critical aspect of
these strategies is their ability to pro-actively assess
network vulnerability to disruptive events, in order
to protect network elements1 against natural disaster
and malicious human acts and mitigate the impact of
such acts on network performance and survivability.

Over the last few years, a considerable amount of
research effort has focused on developing approaches
and methods to assess network vulnerability to dis-
ruptive events [1]. Central to these research studies is
the use of graph theoretic measures to determine how vi-
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1. In this paper, the term ”network elements” is used to refer
network nodes, communications links or a combination thereof.

tal a network element is to the survivability of the net-
work when faced with disruptive events. A number
of these studies proposed global graph measures, such
as cyclomatic number, maximum network circuits, α-
index, β-index and γ-index, as a single index to capture
the network structure. The global index, derived from
the basic properties of the graph, namely the number
of vertices, edges and pairwise shortest paths, is then
used to assess and compare the vulnerability of dif-
ferent networks. Although relatively straightforward
to calculate, global measures can neither be rigorously
mapped to the over network connectivity nor reveal
the set of most critical vertices and edges. Such a
shortcoming limits considerably their suitability for
assessing network vulnerability. Other research stud-
ies proposed local nodal centrality [7], such as degree
centrality, betweenness centrality and closeness cen-
trality, as a local network measure for network vul-
nerability. These local measures, which emphasize the
relative topological characteristics of individual edges
and nodes within a network, are used to identify and
quantify critical network elements of the network,
and evaluate network vulnerability. Unfortunately, the
inability of local network measures to capture global
network connectivity raises concerns about their va-
lidity to accurately assess network vulnerability and
reveal the global damage that may be inflicted on the
network when subjected to failures and attacks.

In this paper, we propose a new framework for
accurately assessing network vulnerability. The basic
tenet of our approach is to model the network as a
connected directed graph and explore the number of
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necessary disruptive events, in terms of connectivity
failures between pairs of nodes, that can cause a
specific level of network disruption. To this end, we
quantify the connectivity of each node pair as 1 if
the pair is strongly connected and as 0 otherwise.
The pairwise connectivity quantification is then used
to determine the minimized set of network elements
whose removal from the graph incurs a specific level
of network disruption. It is worth noting that the
the pairwise connectivity measure correlates with the
number of network elements to be removed for the
network to incur a level of disruption. As such, the
measure can be used not only to assess the vul-
nerability of the network against disruptive events,
but equally important to evaluate the global damage
different levels of disruptive events may cause.

Based on the concept of pairwise connectivity, net-
work vulnerability assessment can be formulated as a
graph-theoretical optimization problem: Find a min-
imized set of network elements whose removal causes a
specific level of network pairwise degradation. The min-
imized set of network elements is thereafter referred
to as β-disruptor, where 0 ≤ β < 1 denotes the
fraction of pairwise connectivity degradation that
is caused by the failure of the minimized set ele-
ments. Two new optimization problems, namely β-
vertex disruptor and β-edge disruptor, are introduced
and proved to be NP-complete. We also propose
two pseudo-approximation algorithms, with provable
performance bounds, to these optimization problems,
thereby ensuring the feasibility of the proposed net-
work vulnerability assessment framework.

The advantage of the β-disruptor based framework,
in comparison with node centrality based frame-
works, can be briefly illustrated using Fig.1, where
two strongly connected networks, A and B, with 7
vertices each, are depicted. Using node degree central-
ity as a vulnerability measure, reveals that removing
the black vertex with maximum outgoing degree 5 in
Fig. 1-(a) leaves the network A still strongly connected
with 5 vertices; whereas, removing the black vertex
with maximum outgoing degree 4 in Fig. 1-(b) parti-
tions the graph into two strongly connected compo-
nents. Therefore, the node-centrality based assessment
leads to the conclusion that A is less vulnerable than
B. The analysis of the network vulnerability based on
the proposed framework, however, shows that delet-
ing only the grey vertex in A is sufficient to decrease
the overall network connectivity to 0. Furthermore,
the analysis shows that at least 3 vertices in B must
be removed to reduce the overall connectivity of the
network to 0. It is clear, therefore, that the β-disruptor
framework leads to the more accurate conclusion that
network A is in fact more vulnerable than network B.

Another aspect of the proposed framework is the
ability to explore different levels of disruption (differ-
ent values of β), which can be used to gain deeper
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Fig. 1. After the “central” vertex (in black) with maximum out-going
degree is removed, network (a) is still strongly connected while (b)
is fragmented; however in fact, only removing one vertex (in grey) is
enough to destroy network (a).

insight into network structure and robustness in var-
ious operating environments. Several recent studies
in the context of wireless networks have focused on
the impact of node and edge removal on network
connectivity[8][9][10]. It is worth noting that most of
these studies are not concerned with quantifying the
level of network disconnectivity, a weaker objective
than that of the β-disruptor framework. We argue
that quantifying network connectivity is essential to
assessing network vulnerability to disruptive events
and evaluate the level of fragmentation these events
may inflict on the network. A scale-free network, for
example, can tolerate high random failure rates, as
the failure of boundary vertices may not significantly
reduce the network connectivity even though the
entire graph becomes disconnected [11]. Furthermore,
different disruption levels may be caused by different
network elements. The node centrality based vul-
nerability assessment framework, for example, only
identifies a set of nodes with non-increasing degrees
with no consideration of the disruption level the
removal of these sets of nodes may cause. The ability
to quantify the disconnectivity level, a unique feature
of β-disruptor framework, is valuable in assessing
accurately network vulnerability to disruptive events
and predicting the impact of these events on network
operations.

The main contributions of this paper are as follows:
• A novel, pairwise-connectivity-centric framework

for investigating vulnerability assessment as an
optimization problem, referred to as β-disruptor,
on general graphs. Two versions of the problem,
namely β-vertex disruptor and β-edge disruptor, are
considered;

• A proof of the NP-completeness of the two
versions of the β-disruptor problem, including
the proof that no polynomial-time approximation
scheme (PTAS) exists for β-vertex disruptor;

• An O(log
3
2 n) pseudo-approximation algorithm

for β-vertex disruptor and an O(log n log log n)
pseudo-approximation algorithm for β-edge dis-
ruptor. These algorithms can be applied to both
homogeneous networks and heterogeneous net-
works with unidirectional links and non-uniform
nodal properties.

1.1 Model and Definitions
Besides the homogeneous network model consisting
of uniform nodes and bidirectional links, the hetero-
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geneous network model, where various interacting
elements of different kinds are connected through
unidirectional links with non-uniform expenses, finds
numerous applications nowadays [12], [13], [14], but
as well, exhibits multiple difficulties for optimization
and maintenance. In the light of this, we abstract our
general network model as a directed graph G(V,E),
where V refers to a set of nodes and E refers to a set
of unidirectional links. The expense of each directed
edge (u, v) between vertex u and v is quantified as a
nonnegative value c(u, v), for all the m = |E| links
among n = |V | nodes. As mentioned above, our
evaluation over the network vulnerability is based
on the value of overall pairwise connectivity in the
abstracted graph, which is defined as follows: given
any vertex pair (u, v) ∈ V × V in the graph, we say
that they are connected iff there exists paths between
u and v in both directions in G, i.e., strongly connected
to each other. The pairwise connectivity p(u, v) is
quantified as 1 if this pair is connected, 0 otherwise.
Since the main purpose of network lies in connecting
all the interacting elements, we study on the aggregate
pairwise connectivity between all pairs, that is, the
sum of quantified pairwise connectivity, which we
denote as P(G) =

∑
u,v∈V×V p(u, v) for graph G.

Apparently P(G) is maximized at
(
n
2

)
when G is a

strongly connected graph. Based on this, we have:
Definition 1: (Edge disruptor) Given 0 ≤ β ≤ 1, a

subset S ⊂ E in G = (V,E) is a β-edge disruptor if the
overall pairwise connectivity in the G[E \S], obtained
by removing S from G, is no more than β

(
n
2

)
. By

minimizing the cost of such edges in S, we have the
β-edge disruptor problem, i.e., find a minimized β-edge
disruptor in a strongly connected graph G(V,E).

Similarly, we define β-vertex disruptor and its corre-
sponding optimization problem:
β-vertex disruptor problem: Given a strongly con-

nected graph G(V,E) and a fixed number 0 ≤ β ≤ 1,
find a subset S ⊆ V with the minimum size such that
the total pairwise connectivity in G[V \S], obtained by
removing S from G, is no more than β

(
n
2

)
. Such a set

S is called β-vertex disruptor.

1.2 Related Work

Several research efforts have sought to address net-
work vulnerability assessment using local network
measures focused on the centrality of a vertex in
the graph, including degree centrality, betweenness,
closeness, and eigenvector centrality [7]. While these
metrics can provide some insight into network vul-
nerability, they are are typically not accurate and in
most cases fail to reveal the level of network dis-
ruption for different levels of attacks. Global graph
measures have also been proposed to assess network
vulnerability. These measures are mainly functions of
graph properties, such as the number of vertices and
edges, operational O-D pairs, operational paths, and
minimum shortest paths [1], [2], [3]. Although useful

in comparing different networks, the graph attributes,
in some cases, cannot be calculated in polynomial-
time for dense networks. Furthermore, the functions
do not reveal the set of most critical vertices and
edges in the network. As such, they may not be
suitable to assess the network vulnerability, in terms
of connectivity.

Several research studies, using concepts similar to
our pairwise connectivity, have been recently inves-
tigated in [15], [16], [17], including average pairwise
connectivity, pairwise connected ratio and cohesion. None
of these studies, however, formulate network vulnera-
bility as an optimization problem. Using an optimiza-
tion based approach to network vulnerability enables
a framework, where the hardness of the problem can
be characterized and approximation algorithms with
performance guarantees can be derived. Moreover,
the problem β-disruptor studied in this paper take
into account the roles of all edges and vertices in
the global network connectivity, thereby providing
the basis for a thorough analysis of the proposed
vulnerability framework.

Finally, a number of research studies focused on a
subproblem of the vulnerability assessment problem,
namely the Critical Vertex/Edge, where the main
objective is to determine the minimum number of
vertices/edges whose removal disconnects the graph.
Several heuristics were proposed to address this prob-
lem, including in the context of wireless networks
[8][9][10]. The proposed heuristics, however, do not
provide performance guarantees. Furthermore, the
research studies in wireless environments focus on
what elements of the graph cause the network to be
disconnected, with no useful insight into the level of
fragmentation caused by disruptive events of differ-
ent scale and impact. As such, these approaches are
limited in assessing network vulnerability accurately.

2 HARDNESS RESULTS

In this section we show that both the β-edge dis-
ruptor and β-vertex disruptor in directed graph are
NP-complete which thus have no polynomial time
exact algorithms unless P = NP. We state a stronger
result that both problems are NP-complete even in
undirected graph with unit cost edges.

Note that only in this section we consider the prob-
lem for undirected graph G(V,E). All results in other
sections are studied on directed graphs, thus solving
both homogeneous and heterogeneous networks.

2.1 NP-completeness of β-edge disruptor

We use a reduction from the balanced cut problem.
Definition 2: A cut 〈S, V \ S〉 corresponding to a

subset S ∈ V in G is the set of edges with exactly
one endpoint in S. The cost of a cut is the sum of its
edges’ costs (or simply its cardinality in the case all
edges have unit costs). We often denote V \ S by S̄.
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Fig. 2. Construction of H(VH , EH) from G(V,E)

Finding a min cut in the graph is polynomial solv-
able [18]. However, if one asks for a somewhat “bal-
anced” cut of minimum size, the problem becomes
intractable. A balanced cut is defined as following:

Definition 3: (Balanced cut) An f -balanced cut of
a graph G(V,E), where f : Z+ → R+, asks us to
find a cut

〈
S, S̄

〉
with the minimum size such that

min{|S|, |S̄|} ≥ f(|V |).
Abusing notations, for 0 < c ≤ 1

2 , we also use c-
balanced cut to find the cut

〈
S, S̄

〉
with the minimum

size such that min{|S|, |S̄|} ≥ c|V |. We will use the
following results on balanced cut shown in [19]:

Corollary 1: (Monotony) Let g be a function with

0 ≤ g(n)− g(n− 1) ≤ 1

Then f(n) ≤ g(n) for all n, implies f -balanced cut is
polynomially reducible to g-balanced cut.

Corollary 2: (Upper bound) αnε-balanced cut is NP-
complete for α, ε > 0.
It follows from Corollaries 1 and 2 that for every f =
Ω(αnε) f -balanced cut is NP-complete. We are ready
to prove the NP-completeness of β-edge disruptor:

Theorem 1: (β-edge disruptor NP-completeness) β-
edge disruptor in undirected graph is NP-complete
even if all edges have unit weights.

Proof: We prove the result for the special case
when β = 1

2 . For other values of β the proof can go
through with a slight modification of the reduction.
We shall assume that n, the number of nodes is a
sufficient large number (for our proof n > 103).

Consider the decision version of the problem

1

2
-ED = {〈G,K〉 | G has a

1

2
-edge disruptor of size K}

To show that 1
2 -ED is in NP-complete we must show

that it is in NP and that all NP-problems are poly-
nomial time reducible to it. The first part is easy;
given a candidate subset of edges, we can easily
check in polynomial time if it is a β-edge disruptor
of size K. To prove the second part, we show that
f -balanced cut is polynomial time reducible to 1

2 -ED

where f = bn−
√

2bn2

3 c+n
2 c.

Let G(V,E) be a graph in which one seeks to find
a f -balanced cut of size k. Construct the following
graph H(VH , EH): VH = V ∪ C1 ∪ C2 where C1, C2

are two cliques of size bn
2

3 c. Denote by N = |VH | =

2bn
2

3 c+n the total number of nodes in H . In addition
to edges in G,C1, and C2, connect each vertex v ∈ V

to bn
2

4 c+ 1 vertices in C1 and bn
2

4 c+ 1 vertices in C2

so that degree difference of nodes in the cliques are at
most one. We illustrate the construction of H(VH , EH)
in Figure 2.

We show that there is a f -balanced cut of size k
in G iff H has an 1

2 -edge disruptor of size K =

n
(
bn

2

4 c+ 1
)

+ k where 0 ≤ k ≤ bn
2

4 c. Note that the
cost of any cut 〈S, V \ S〉 in G is at most |S||V \ S| ≤
b (|S|+|V \S|)

2

4 c = bn
2

4 c.
On one hand, an f -balanced cut

〈
S, S̄

〉
of size k

in G induces a cut
〈
C1 ∪ S,C2 ∪ S̄

〉
with size exactly

n
(
bn

2

4 c+ 1
)

+ k. If we select the cut as the disruptor,

the pairwise connectivity will be at most 1
2

(
N
2

)
.

On the other hand, assume that H has an 1
2 -edge

disruptor of size K = n
(
bn

2

4 c+ 1
)

+ k. Remove
the edges in the disruptor to reduce the pairwise
connectivity to at most 1

2

(
N
2

)
. Since cutting n nodes in

C1 or C2 from the cliques requires removing at least
n(bn

2

3 c − n) > n
(
bn

2

4 c+ 1
)

+ k edges, let C ′1 ⊆ C1

and C ′2 ⊆ C2 be giant connected subsets that induce
connected subgraphs in C1 and C2. These subsets
must satisfy |C ′1| + |C ′2| > |C1| + |C2| − n. Denote by
X1, X2 the subsets of nodes in V that are connected
to C ′1 and C ′2 respectively. We have X1 ∩ X2 = ∅
otherwise C ′1 and C ′2 will be connected; then, the
pairwise connectivity will exceed 1

2

(
N
2

)
.

We will modify the disruptor without increasing its
size and the pairwise connectivity such that no nodes
in the the cliques are cut off i.e. we alter the disruptor
until C ′1 = C1 and C ′2 = C2. For each u ∈ C1 \ C ′1
remove from the disruptor all edges connecting u to
C ′1 and add to the disruptor all edges connecting u
to X2. This will attach u to C ′1 while reducing the
size of the disruptor at least (bn

2

3 c − n) − n. At the
same time select an arbitrary node v ∈ X1 and add
to the disruptor all remaining v’s adjacent edges. This
increases the size of the disruptor at most (bn

2

4 c+1)+n
while making v isolated. By doing so we decrease the
size of the disruptor by (bn

2

3 c−n)−n− ((bn
2

4 c+ 1) +
n) > 0. In addition, the pairwise connectivity will not
increase as we connect u to C ′1 and at the same time
disconnect v from C ′1.

If X1 = ∅, we can select v ∈ X2 as in that
case |C ′2 ∪ X2| > |C ′1 ∪ X1| that makes sure the
pairwise connectivity will not increase. We repeat
the same process for every node in C2 \ C ′2. Since
|(C1\C ′1)∪(C2\C ′2)| < n, the whole process finishes in
less than n steps and results in C ′1 = C1 and C ′2 = C2.

We will prove that X1∪X2 = V i.e. 〈X1, X2〉 induces
a cut in G. Assume not, the cost to separate C1 ∪X1

from C2∪X2 will be at least (bn
2

4 c+1)(|V −X1|+ |V −
X2|) = (bn

2

4 c+1)(2n−|X1|−|X2|) ≥ (bn
2

4 c+1)(n+1) >

n
(
bn

2

4 c+ 1
)

+ k that is a contradiction.
Since X1 ∪ X2 = V we have that the disruptor

induces a cut in G. To have the pairwise connectivity
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at most 1
2

(
N
2

)
both (C1 ∪ X1) and (C2 ∪ X2) must

have size at least N−
√
N

2 . If follows that X1 and X2

must have size at least f(n) = bn−
√

2bn2

3 c+n
2 c. The

cost of the cut induced by 〈X1, X2〉 in G will be
n
(
bn

2

4 c+ 1
)

+ k − n(bn
2

4 c+ 1) = k.

2.2 Hardness of β-vertex disruptor

Theorem 2: β-vertex disruptor in undirected graph
is NP-complete.

Proof: We present a polynomial-time reduction
from Vertex Cover (VC), an NP-hard problem [20]:

Instance: Given a graph G and a positive integer k.
Question: Does G have a VC of size at most k?

to a decision version of β-vertex disruptor when β = 0
Instance: Given a graph G and a positive integer k
Question: Does G have a β-vertex disruptor of size

at most k when β = 0?
Pairwise connectivity equals zeros if and only if the

complement set of the disruptor is an independent set
or in other words the disruptor must be a VC.

Theorem 3: Unless P = NP, β-vertex disruptor can-
not be approximated within a factor of 1.36.

Proof: We use the same reduction in Theorem 2.
Assume that we can approximate β-vertex disrup-
tor within a factor less than 1.36 when β = 0. In
[21], Dinur and Safra showed that approximating VC
within constant factor less than 1.36 is NP-hard. Since
we have an one-to-one mapping between the set of
vertex disruptors when β = 0 and the set of VCs, it
follows that we can approximate VC within a factor
less than 1.36 (contradiction).

3 APPROXIMATING β-EDGE DISRUPTOR
USING TREE DECOMPOSITION

In this section, we present an O(log
3
2 n) pseudo-

approximation algorithm for the β-edge disruptor
problem in the case when all edges have uniform cost
i.e. c(u, v) = 1 ∀(u, v) ∈ E(G). Formally, our algorithm
finds in a uniform directed graph G a β′-edge dis-
ruptor whose the cost is at most O(log

3
2 n)OPTβ−ED,

where β′

4 < β < β′ and OPTβ−ED is the cost of an
optimal β-edge disruptor.

As shown in Algorithm 1, the proposal algorithm
consists of two main steps. First, we constructs a
decomposition tree of G by recursively partitioning
the graph into two halves with directed c-balanced
cut. Second, we solve the problem on the obtained tree
using a dynamic programming algorithm and transfer
this solution to the original graph. These two main
steps are explained in the next two sections.

3.1 Balanced Tree-Decomposition

A tree decomposition of a graph is a recursive parti-
tioning of the node set into smaller and smaller pieces
until each piece contains only one single node. We
show the tree construction in Algorithm 1 (line 1 to

t0
level 1

level 2

0

t1 t
… …

t1 t2

level 3

… …
t4

l l 4

t3

… … … …
t5 t6

level 4

… …

Fig. 3. A part of a decomposition tree. F = {t2, t3, t5, t6}
is a G-partitionable. The corresponding partition
{V (t2), V (t3), V (t5), V (t6)} in G can be obtained by using
cuts at ancestors of nodes in F i.e. t0, t1, t4.

11). Our decomposition tree is a rooted binary tree
whose leaves represent nodes in G.

Definition 4: Given a directed graph G(V,E) and a
subset of vertices S ⊂ V . We denote the set of edges
outgoing from S by δ+(S); the set of edges incoming
to S by δ−(S). A cut (S, V \S) in G is defined as δ+(S).
A c-balanced cut is a cut (S, V \ S) s.t. min{|S|, |V \
S|} ≥ c|V |. The directed c-balanced cut problem is to
find the minimum c-balanced cut.

Note that a cut (S, V \ S) separate pairs (u, v) ∈
S × (V \ S) as paths from v to u cannot exist i.e. no
SCC can contain vertex in both S and V \ S.

The decomposition procedure is as follows. We start
with the tree T containing only one root node t0. We
associate the root node t0 with the vertex set V of
G i.e. V (t0) = V (G). For each node ti ∈ T whose
V (ti) contains more than one vertex and V (ti) has not
been partitioned, we partition the subgraph G[V (ti)]

induced by V (ti) in G using a c-balanced cut algo-
rithm. In detail, we use the directed c-balanced cut
algorithm presented in [22] that finds in polynomial
time a c′-balanced cut within a factor of O(

√
log n)

from the optimal c-balanced cut for c′ = αc and fixed
constant α. The constant c is chosen to be 1 −

√
β
β′ .

Create two child nodes ti1, ti2 of ti in T corresponding
to two sets of vertices of G[V (ti)] separated by the cut.
We associate with ti a cut cost cost(ti) equal to the
cost of the c-balanced cut.

We define the root node t0 to be on level 1. If a node
is on level l, all its children are defined to be on level
l+ 1. Note that collections of subsets of vertices in G
that correspond to nodes in a same level of T induces
a partition in G.

One important parameter of the decomposition tree
is the height i.e. the maximum level of nodes in T .
Using balanced cuts guarantees a small height of the
tree that in turn leads to a small approximation ratio.
When separating V (ti) using the balanced cut, the size
of the larger part is at most (1− c′)|V (ti)|. Hence, we
can prove by induction that if a node ti is on level
k, the size of the corresponding collection V (ti) is at
most |V | × (1− c′)k−1. It follows that the tree’s height
is at most O(− log1−c′ n) = O(log n).
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Algorithm 1. β-edge Disruptor

Input: Uniform edges’ weight directed graph G = (V,E)

and 0 ≤ β < β′ < 1

Output: A β′-edge disruptor of G.

/* Construct the decomposition tree */
1. c← 1−

√
β
β′ .

2. T (VT , ET )← ({t0}, φ), V (t0)← V (G), l(t0) = 1

3. while ∃ unvisited ti with |V (ti)| ≥ 2 do

4. Mark ti visited, create new child nodes ti1, ti2 of ti.

5. VT ← VT ∪ {ti1, ti2}
6. ET ← ET ∪ {(ti, ti1), (ti, ti2)}
7. Separate G[V (ti)]

using directed c-balanced cut.

8. Associate V (ti1), V (ti2) with two separated components.

9. cost(ti)← The cost of the balanced cut

/* Find the minimum cost G-partitionable */

10. Traverse T in post-order, for each ti ∈ T do

11. for p← 0 to β′
(n
2

)
12. if P(G[V (ti)]

) ≤ p then cost(ti, p)← 0

13. else cost(ti, p)← min{cost(ti1, p1)+
cost(ti2, p2) + cost(ti) | p1 + p2 = p}

14. Find F opt
β′ associating with T opt

β′ = min
p≤β′

(
n
2

){cost(t0, p)}
15. Return union of c-balanced cuts at ti ∈ A(F opt

β′ ).

3.2 Algorithm
In this section, we present the second main step which
uses the dynamic programming to search for the
right set of nodes in T that induces an cost-efficient
partition in G whose pairwise connectivity is at most
β′
(
n
2

)
. The details of this step are shown in Algorithm

1 (lines 12 to 18).
Denote a set F = {tu1

, tu2
, . . . , tuk} ⊂ VT

where VT is the set of vertices in T so that
V (tu1), V (tu2), . . . , V (tuk) is a partition of V (G) i.e.

V (G) =

k⊎
h=1

Vuh . We say such a subset F is G-

partitionable. Denote by A(ti) the set of ancestors of
ti in T and A(F ) =

⋃
ti∈F
A(ti). It is clear that a F is

G-partitionable if and only if F satisfies:
1) ∀ti, tj ∈ F : ti /∈ A(tj) and tj /∈ A(ti)
2) ∀ti ∈ VT , ti is a leaf: A(ti) ∩ F 6= φ

In case F is G-partitionable, we can separate
V (tu1

), V (tu2
), . . . , V (tuk) in G by performing the

cuts corresponding to ancestors of node in F dur-
ing the tree construction. For example in Fig-
ure 3, we show a decomposition tree with a G-
partitionable set {t2, t3, t5, t6}. The corresponding par-
tition {V (t2), V (t3), V (t5), V (t6)} in G can be ob-
tained by cutting V (t0), V (t1), V (t4) successively us-
ing balanced cuts in the tree construction. The cut
cost, hence, will be cost(t0) + cost(t1) + cost(t4).
In general, the total cost of all the cuts to sep-
arate V (tu1

), V (tu2
), . . . , V (tuk) will be cost(F ) =∑

tu∈A(F )

cost(tu). The pairwise connectivity of G is

then P(F ) =
∑
tu∈F

P(G[V (tu)]). We wish to find F so

that P(F ) ≤ β′
(
n
2

)
i.e. the union of cuts to separate

V (tu1
), V (tu2

), . . . , V (tuk) forms a β′-edge disruptor in
G. Because of the suboptimal structure in T , finding
such a G-partitionable subset F in VT with the min-
imum cost(F ) can be done in O(n3) using dynamic
programming.

Denote cost(ti, p) the minimum cut cost to make the
pairwise connectivity in G[V (ti)] equal to p using only
cuts corresponding to nodes in the subtree rooted at
ti. The minimum cost for a G-partitionable subset F
that induces a β′-edge disruptor of G is then
T opt
β′ = minp≤β′(n2)

{cost(t0, p)}, where t0 is the root
node in T .

We can easily derive the recursive formula:

cost(ti, p) =

 0 if P(G[V (ti)]) ≤ p
min
π≤p

cost(ti1, π) + cost(ti2, p− π) + cost(ti) if not

where ti1, ti2 are children of ti.
In the first case, when P(G[V (ti)]) ≤ p we cut no

edges in G[V (ti)] hence, cost(ti, p) = 0. Otherwise, we
try all possible combinations of pairwise connectivity
π in V (ti1) and p−π in V (ti2). The combination with
the smallest cut cost is then selected.

We now prove that T opt
β′ ≤ O(log

3
2 n)Opt

β-ED,
where Opt

β-ED denotes the cost of the optimal β-edge
disruptor in G.

Lemma 1: There exists a G-partitionable subset of T
that induces a β′-edge disruptor whose cost is at most
O
(

log
3
2 n
)

Opt
β-ED.

Proof: Let Dβ be an optimal β-edge disruptor in
G of size Opt

β-ED and Cβ = {C1, C2, ..., Ck} be the set
of SCCs, after removing Dβ from G.

We construct a G-partitionable subset XT as in the
Algorithm 2. We traverse tree T in preorder i.e. every
parent will be visited before its children. For each
node ti, we select ti into XT if there exists some
component Cj ∈ Cβ that |V (ti) ∩ Cj | ≥ (1 − c)|V (ti)|
and no ancestors of ti have been selected into XT .
We can verify that XT satisfies two mentioned con-
ditions of a G-partitionable subset. For each Cj ∈ Cβ ,
define

N(Cj) = {ti ∈ T : |V (ti) ∩ Cj | ≥ (1− c)|V (ti)|}.

Since V (ti), ti ∈ T are disjoint subsets. We have

P(XT ) ≤
∑
ti∈XT

(
|V (ti)|

2

)

=
1

2

∑
Cj∈Cβ

∑
ti∈N(Cj)

|V (ti)|2 −
n

2

≤ 1

2

∑
Cj∈Cβ

( ∑
ti∈N(Cj)

|V (ti)|
)2

− n

2

≤ 1

2

∑
Cj∈Cβ

(√
β′/β|Cj |

)2
− n

2

<
β′

β

1

2

( ∑
Cj∈Cβ

|Cj |2 − n
)
≤ β′

(
n

2

)
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Algorithm 2. Find a good G-partitionable subset of T

that induces a β′-edge disruptor in G

Initialization: XT ← φ; Preorder-Selection(t0).
Preorder-Selection(tu)

1: if (∃Cj ∈ Cβ : |V (tu) ∩ Cj | ≥ (1− c)|V (tu)|) then

2: XT ← XT ∪ {tu}
3: else let tu1, tu2 be children of tu,

4: Preorder-Selection(tu1)

5: Preorder-Selection(tu2)

6: end if

Finally we show that cost(XT ) ≤ O(log
3
2 n)Opt

β-ED.
Let denote by h(T ) the height of T and LiT the set of
nodes at the ith level in TG. We have:

cost(XT ) =

h(T)∑
i=1

∑
tu∈(LiT∩A(XT ))

cost(tu) (1)

If tu ∈ A(XT ) then tu is not selected to XT . Hence,
there exists Cj ∈ C so that |V (tu)∩Cj | < (1−c)|V (tu)|
(otherwise tu was selected into XT as it satisfied the
conditions in the line 3, Algorithm 2). To guarantee
c < 1− c, we need c < 1/2 i.e. β > β′

4 .
Since the edges in Dβ separate Cj from the other

SCCs, they also separates Cj ∩ V (tu) from V (tu) \ Cj
in G[V (tu)]. Denote by δ(tu, Dβ) the set of edges in
Dβ separating Cj ∩ V (tu) from V (tu) \ Cj in G[V (tu)].
Obviously, δ(tu, Dβ) is a directed c-balanced cut of
G[V (tu)]. Since, the cut we used in the tree construction
is only O(

√
log n) times the optimal c-balanced cut. We

have cost(tu) ≤ O(
√

log n)|δ(tu, Dβ)|.
Recall that if two nodes tu, tv are on a same level

then V (tu) and V (tv) are disjoint subsets. It follows
that δ(tu, Dβ) and δ(tv, Dβ) are also disjoint sets.
Therefore, the cut cost at the ith level∑

tu∈(LiT∩A(XT ))

cost(tu)

≤ O(
√

logn)
∑

tu∈(LiT∩A(XT ))

|δ(tu, Dβ)|

≤ O(
√

logn)|
⋃

tu∈(LiT∩A(XT ))

δ(tu, Dβ)|

= O(
√

logn)Opt
β-ED

Since the number of levels h(T ) = O(log n), by Eq. 1
we have cost(XT ) ≤ O(log

3
2 n)Opt

β-ED.
Since there exists a G-partitionable subset of T

that induces a β′-edge disruptor whose cost is no
more than O

(
log

3
2 n
)

Opt
β-ED as shown in Lemma 1

and the dynamic programming always finds the best
latent solution in T , the following theorem follows.

Theorem 4: Algorithm 1 achieves a pseudo-
approximation ratio of O(log

3
2 n) for the β-edges

disruptor problem.
Time complexity: Construction of the decomposition

tree takes O(n9.5). The major portion of time is for

solving an semidefinite programming with Ω(n3) con-
straints. Finding the optimal solution using Dynamic
Programming takes O(n5). Hence, the overall time
complexity is O(n9.5).
4 β-VERTEX DISRUPTOR

We present a polynomial time algorithm (Algo-
rithm 3) that finds a β′-vertex disruptor in the di-
rected graph G(V,E) whose the size is at most
O(log n log log n) times the optimal β-vertex disruptor
where 0 < β < β′2. The algorithm involves in two
phases. In the first phase, we split each vertex v ∈ V
into two vertices v+ and v− while putting an edge
from v− to v+ and show that removing v in G has
the same effects as removing edge (v+ → v−) in the
new graph. In the second phase, we try to decompose
the new graph into SCCs capping the sizes of the
largest component while minimizing the number of
removed edges. We relax the constraints on the size
of each component until the set of cut edges induces
a β′-vertex disruptor in the original graph G.

Given a directed graph G(V,E) for which we want
to find a small β′-vertex disruptor, we split each vertex
in G into two new vertices to obtain a new directed
graph G

′
(V

′
, E′) where

V ′ = { v−, v+ | v ∈ V }
E′ = {(v− → v+) | v ∈ V }

∪ {(u+ → v−) | (u→ v) ∈ E}

The new graph G′(V ′, E′) will have twice the number
of vertices in G i.e. |V ′| = 2|V | = 2n. An example for
the first phase is shown in Figure 4.

We set the costs of all edges in E′V = {(v− →
v+) | v ∈ V } to 1 and other edges in E′ to +∞ so that
only edges in E′V can be selected in an edge disruptor
set. In implementation, it is safe to set the costs of
edges not in E′V to O(n) noting that by paying a cost
of 2n we can effectively disconnect all edges in E′V .

Consider a directed edge disruptor set D′e ⊂ E′

that contains only edge in E′V . We have a one-to-one
correspondence between D′e to a set Dv = {v | (v− →
v+) ∈ D′e} in G(V,E) which is a vertex disruptor
set in G. Since G and G′ have different maximum
pairwise connectivity, (n−1)n

2 for G and (2n−1)2n
2 for

G′, the fractions of pairwise connectivity remaining
in G and G′ after removing Dv and D′e are, however,
not exactly equal to each other.

In the second phase of Algorithm 3, when sepa-
rating a graph into SCCs, the smaller the sizes of
SCCs, the smaller pairwise connectivity in the graph.
However, the smaller the maximum size of each SCC,
the more edges to be cut. We perform binary search to
find a right upper bound for size of each SCC in G′.
In the algorithm, the lower bound and upper bound
of the size of each SCC are denoted by β|V ′| and β|V ′|
respectively. At each step we try to find a minimum
capacity edge set in G′(V ′, E′) whose removal parti-
tions the graph into strongly connected components of
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Algorithm 3. β′-vertex disruptor

Input: Directed graph G = (V,E) and fixed 0 < β′ < 1.

Output: A β′-vertex disruptor of G

1. G′(V ′, E′)← (φ, φ)

2. ∀v ∈ V : V ′ ← V ′ ∪ {v+, v−}
3. ∀v ∈ V : E′ ← E′ ∪ {(v− → v+)}, c(v−, v+)← 1

4. ∀(u→ v) ∈ E : E′ ← E′ ∪ {u+ → v−}, c(u+, v−)←∞
5. β ← 0, β ← 1

6. DV ← V (G)

7. while (β − β > ε) do

8. β̃ ← bβ + β

2ε
c × ε

9. Find De ⊂ E′ to separate G′ into strongly connected

components of sizes at most β̃|V ′| using algorithm in [23]

10. Dv ← {v ∈ V (G) | (v+ → v−) ∈ De}
11. if P(G[V \Dv ]) ≤ β

(n
2

)
then

12. β = β̃

13. Remove nodes from Dv as long as P(G[V \Dv ]) ≤ β
(n
2

)
14. if |DV | > |Dv | then DV = Dv

15. else β = β̃

18.end while

19. Return DV

size at most β̃|V ′|, where β̃ = bβ + β

2ε c × ε. We round
the value of β̃ to the nearest multiple of ε so that
the number of steps for the binary search is bounded
by log 1

ε . The problem of finding a minimum capacity
edge set to decompose a graph of size n into strongly
connected components of size at most ρn is known
as ρ-separator problem. We use here the algorithm
presented in [23] that for a fixed ε > 0 finds a ρ-
separator in directed graph G whose value is at most
O
(

1
ε2 . log n log log n

)
times Opt(ρ−ε)-separator where

Opt(ρ−ε)-separator is the cost of the optimal (ρ − ε)-
separator. Finally, we derive the cut vertices in G from
the cut edges in G′ to obtain the β′-vertex disruptor.

Lemma 2: Algorithm 3 always terminates with a β′-
vertex disruptor.

Proof: We show that whenever β̃ ≤ β′ then the
corresponding Dv found in Algorithm 3 is a β′-vertex
disruptor in G. Consider the edge disruptor D′e in G′

induced by Dv . We first show the mapping between
SCCs in G[V \Dv ] and SCCs in G′[E′\D′e], the graph
obtained by removing D′e from G′. Partition the vertex
set V of G into: (1) Dv : the set of removed nodes
(2) Vsingle: the set of nodes that are not in any cycle
i.e. they are SCCs of size one (3)Vconnected: union
of remaining SCCs that sizes are at least two, say
Vconnected =

⊎l
i=1 Ci, |Ci| ≥ 2. Vertices in Vconnected

belong to at least one cycle in G.
We have following corresponding SCCs in

G′[E′\D′e]:
1) v ∈ Dv ↔ SCCs {v+} and {v−}. Since after re-

moving (v− → v+) v+ does not have incoming
edges and v− does not have outgoing edges.

2) v ∈ Vsingle ↔ SCCs {v+} and {v−}. Since v does
not lie on any cycle in G. Assume v+ belong

to some SCC of size at least 2 i.e. v+ lies on
some cycle in G′. Because the only incoming
edge to v+ is from v−. It follows that v− is
preceding v+ on that cycle. Let u−, u+ be the
successive vertices of v+ on that cycle. We have
u and v belong to a same SCC in G which yields
a contradiction. Similarly, v− cannot lie on any
cycle in G′.

3) SCC Ci ⊂ Vconnected ↔ SCC C ′i = {v−, v+ | v ∈
Ci}. This can be shown using a similar argument
to that in the case v ∈ Vsingle.

Since D′e is a β̃-separator, the sizes of SCCs in
G′[E′\D′e] are at most β̃ 2n. It follows that the sizes
of SCCs in G[V \Dv] are bounded by β̃n. Denote the
set of SCCs in G[V \Dv ] by C with the convention that
vertices in Dv become singleton SCC in G[V \Dv ]. Thus,
we have:

P(G[V \Dv ]) =
∑
Ci∈C

(
|Ci|
2

)
=

1

2

( ∑
Ci∈C

|Ci|2 − |V |
)

≤ 1

2

( ∑
Ci∈C

β̃|V |)|Ci| − |V |
)

=
1

2

(
β̃|V |2 − |V |

)
≤ β̃

(
|V |
2

)
< β′

(
|V |
2

)
This guarantees that the binary search always finds

a β′-vertex disruptor and completes the proof.
Theorem 5: Algorithm 3 always finds a β′-vertex

disruptor whose the size is at most O(log n log log n)
times the optimal β-vertex disruptor for β′2 > β > 0.

Proof: It follows from the Lemma 2 that Algorithm
3 terminates with a β′-vertex disruptor Dv . At some
step the capacity of Dv equals to the capacity of β̃-
separator D′e in G′ where β̃ is at least β′− ε according
to Lemma 2 and the binary search scheme. The cost
of the separator is at most O (log n log log n) times the
Opt(β̃−ε)-separator using the algorithm in [23].

Consider an optimal (β′2 − 9ε)-vertex disruptor D′v
of G and its corresponding edge disruptor D′e in G′.
Denote the cost of that optimal vertex disruptor by
Opt

(β′2−9ε)-VD. If there exists in G[V \Dv] a SCC Ci
so that |Ci| > (β′ − 2ε)n then P(G[V \Dv ]) >

1
2 ((β′ −

2ε)n − 2)((β′ − 2ε)n − 1) > (β′2 − 9ε)
(
n
2

)
when n >

20(β′+1)
ε . Hence, every SCC in G′[V \D′

v ]
have size at

most (β′−2ε)(2n) i.e. D′e is an (β′−2ε)-separator in G′.
It follows that Opt

(β′2−9ε)-VD ≥ Opt(β′−2ε)-separator
in G′.

Since β̃−ε ≥ β′−2ε, we have Opt(β̃−ε)-separator ≤
Opt(β′−2ε)-separator ≤ Opt

(β′2−9ε)-VD.
The size of the vertex disruptor |Dv| = |D′e| is

at most O (log n log log n) times Opt(β̃−ε)-separator.
Thus, the size of found β′-vertex disruptor Dv is at
most O(log n log log n) times the optimal (β′2 − 9ε)-
vertex disruptor. As we can choose arbitrary small ε,
setting β = β′2 − 9ε completes the proof.

Time complexity: Finding the separator costs O(n9)
[23]. Hence, the total time complexity is O(log 1

εn
9).
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Fig. 4. Conversion from the node version in a directed graph (a)
into the edge version in a directed graph (b)

However, in our experiments, the algorithm takes
much less than its worst-case running time.

4.1 Approximating edge disruptor is at least as
hard as approximating vertex disruptor

We show that an approximation algorithm for gen-
eral directed edge disruptor yields an approximation
algorithm for directed vertex disruptor with (almost)
the same approximation ratio.

Lemma 3: A β-edge disruptor set in the directed
graph G′ induces the same cost β-vertex disruptor set
in G.

Proof: We use Dv and D′e for vertex disruptor in
G and edge disruptor in G′.

Given P(G′[E′\D′e]) ≤ β
(
2n
2

)
we need to prove that:

P(G[V \Dv ]) ≤ β
(
n
2

)
where n = |V |.

Assume G[V \Dv] has l SCCs of size at least 2, say
Ci, i = 1 . . . l. The corresponding SCCs in G′[E′\D′e]
will be C ′i, i = 1 . . . l where |C ′i| = 2|Ci|.

Since (2k
2 )

(2n
2 )
− (k2)

(n2)
= k(n−k)

(n−1)n(2n−1) ≥ 0, for all 0 ≤ k ≤

n. We have P(G[V \Dv ])

(n2)
=

l∑
i=1

(|Ci|
2

)(
n
2

) ≤ l∑
i=1

(|C′
i|
2

)(
2n
2

) ≤ β
Lemma 4: A β-vertex disruptor set in G induces the

same cost (β+ε)-edge disruptor set in G′ for any ε > 0.
Proof: We use the same notations in the proof of

Lemma 3. Given P(G[V \Dv ]) ≤ β
(
n
2

)
we need to prove

that: P(G′[E′\D′e]) ≤ (β + ε)
(
2n
2

)
. We have:

P(G′[E′\D′e])(
2n
2

) =

l∑
i=1

|Ci|(n− |Ci|)
(n− 1)n(2n− 1)

+
P(G[V \Dv ])(

n
2

)
=
P(G[V \Dv ])(

n
2

) (
1− 1

2n− 1

)
+

∑l
i=1 |Ci|

n(2n− 1)

< β +
1

2n− 1
< β + ε (2)

when n ≥ b 1+ε2ε c+ 1.
Theorem 6: Given a factor f(n) polynomial time

approximation algorithm for β-edge disruptor, there
exists a factor (1 + ε)f(n) polynomial time approxi-
mation algorithm for β-vertex disruptor where ε > 0
is an arbitrary small constant.

Proof: Let G be a directed graph with uniform
vertex costs in which we wish to find a β-vertex
disruptor. Construct G′ as described at the beginning
of this Section.

Apply the given approximation algorithm to find
in G′ a β-edge disruptor, denoted by D′e, with the
cost at most f(n) ·Optβ−ED(G′), where Optβ−ED(G′)
is the cost of a minimum β-edge disruptor in G′. From

Lemma 3, D′e induces in G a β-vertex disruptor Dv of
the same cost. We shall prove that

Optβ−ED(G
′) ≤ Optβ−VD(G) + γ0,

where Optβ−VD(G) is the cost of a minimum β-vertex
disruptor in G and γ0 is some positive constant. It
follows that the cost of Dv will be at most

f(n) · (Optβ−VD(G) + λ0) ≤ (1 + ε)f(n)Optβ−VD(G)

Here, we assume that Optβ−VD(G) > γ0
ε otherwise

we can find Optβ−VD(G) in time O(n
γ0
ε +2).

From an optimal β-vertex disruptor of G, con-
struct its corresponding edge disruptor D∗e in G′.
If P(G′[E \D∗e ] ≤ β

(
2n
2

)
then Optβ−ED(G′) ≤

Optβ−VD(G) and we yield the proof. Thus, we con-
sider the case P(G′[E \D∗e ] > β

(
2n
2

)
.

Among SCCs of G′[E \D∗e ], there must be a SCC
of size at least β2n or else G′[E \D∗e ] ≤ β−1

(
β2n
2

)
≤

β
(
2n
2

)
(contradiction). Remove γ0 =

⌈
1
β

⌉
vertices from

that SCC. The pairwise connectivity in G′[E \D∗e ] will
decrease at least (β2n − 1

β ) 1
β = 2n − 1

β2 ≥ n for
sufficient large n. From Eq. 2 in Lemma 4, the pairwise
connectivity after removing vertices will be less than

(β +
1

2n− 1
)

(
2n

2

)
− n ≤ β

(
2n

2

)
.

Therefore, after removing at most γ0 vertices from
D∗e , we get a β-edge disruptor. Hence,

Optβ−ED(G′) ≤ Optβ−VD(G) + γ0.

5 EXPERIMENTAL STUDY

In this section, we discuss a set of experiments de-
signed to gain insight into the performance of the
pseudo-approximation in different settings. In the first
set of experiments, we compare the performance of
the pseudo-approximation algorithm (Algorithm 3)
to the performance of an optimal solution obtained
by solving an Integer programming formulation of
the problem. To this end, we generate two types of
networks: random networks, based on Erdos-Rényi
model, and power-law networks, based on Barabási-
Albert model. For each type of network, we generate
different instances of networks, with a number of
nodes ranging from 30 to 100. The edge densities of
the generated networks are around 10%. The exper-
iments were carried out on an an 8-core, 2.2 Ghz,
machine, and 64 GB memory.

The size of the disruptors found by Algorithm 3
and the optimal disruptors, respectively, are presented
in Tables 1 and 2. The results clearly show that
the pseudo-approximation algorithm produces near-
optimal solutions in all cases, with an optimal solution
in more than 50% of the cases,shown in boldfaced in
the table.

In particular, the results show that our algorithm
performs extremely well on power-law networks. It
misses the optimal solution in only one case, when
the number of vertices is 90. The results also show
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Fig. 5. Disruptors found by different methods in the Western States
Power Grid of the United States at different levels of disruption.

that, for a random network and a power-law network
of roughly the same size, the size of disruptor in
the power-law network is significantly smaller (ap-
proximately 50%) than that in the random network,
thereby indicating an extremely high degree of power-
law network vulnerability to attacks [24]. The running
time for solving the Integer programming increases
from few minutes to 10 hours for the largest test cases,
while in the longest run, the pseudo-approximation
algorithm takes only 29 seconds.

TABLE 1
Size of disruptor on Erdos-Rényi networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 43 78 122 177 241 316 400 495

Optimal 2 4 7 9 11 12 16 18
Approx 3 4 8 9 11 13 16 19

TABLE 2
Size of disruptor on Barabási–Albert networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 54 131 189 208 245 262 354 445

Optimal 1 3 5 6 6 5 7 9
Approx 1 3 5 6 6 5 10 9

In the second set of experiments, we study a net-
work of 4941 nodes and 6594 edges representing the
topology of the Western States Power Grid of the
United States. The network exhibits high clustering
with small path lengths, indicating a high vulnerabil-
ity to attacks [25]. Finding an optimal disruptor for
such a large network, using Integer Programming,
is clearly intractable. To overcome this shortcom-
ing, an approximation algorithm, which uses a row-
generation technique to reduce excessive amount of
constraints, was developed. Using this algorithm, the
experiments were run on a clusters of 20 nodes, where
each node is equipped with an 8-core, 2.2 Ghz, and
64 GB memory.

In this study, we compare the performance of the

node-centrality based schemes to the performance of
the proposed ‘pseudo-approximation algorithm. Of
particular focus is the ability of the scheme to ac-
curately assess the network vulnerability in term of
overall network connectivity. The methods used in
this comparative study include:

1) Degree Centrality: The algorithm sequentially re-
moves the node with the maximum degree until
the pairwise connectivity in the graph becomes
less than β

(
n
2

)
.

2) Betweenness Centrality: The algorithm repeatedly
removes the node with the maximum betwee-
ness centrality, until the pairwise connectivity in
the graph becomes less than β

(
n
2

)
. Recall that

the betweeness, Bt(v) for node v is expressed
as Bt(v) =

∑
s 6=v 6=t∈V

s 6=t

σst(v)
σst

where σst is the
number of shortest paths from s to t, and σst(v)
is the number of shortest paths from s to t that
pass through a node v.

3) Eigenvector Centrality: In this algorithm, nodes
are removed in descending order of their eigen-
vector centrality values, using a default damping
factor of 0.85 [26].

Figure 5 shows the vulnerability reported by dif-
ferent methods for various levels of disruption. The
results show that the network is surprisingly vulnera-
ble to targeted attacks. For example, reducing network
connectivity by 40%, only requires the destruction
of 0.16% of the stations. Reducing connectivity in
random and power-law networks by the same level,
however, requires, on average, the destruction of 13%
and 3% of the network nodes, respectively. The results
also show that the destruction of only 1% of stations
dramatically disrupt network operations and reduces
the power grid by 90%.

With regard to assessing overall network vulner-
ability, the results show that node-centrality based
methods perform poorly. None of these methods is
able to evaluate correctly the vulnerability of the
power grid. Their disruptor sizes are 6 to 20 times
larger than the corresponding ones produced by the
pseudo-approximation algorithm. This clearly limits
their usage in assessing the vulnerability of large-
scale, critical infrastructure such as the power grid.
It is also worth noting that, because of high clus-
tering property, nodes that lie within clusters in the
network, often have high betweenness values. Intu-
itively, it is, therefore, expected the the Betweenness
Centrality method would easily identify those nodes
as highly risk nodes. Surprisingly, the performance
of this method was worse than that of the Degree
Centrality method.

6 CONCLUSION

In this paper, a novel framework, based on network
pairwise connectivity, to assess network vulnerabil-
ity is proposed. The framework provides the basis
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to investigate network vulnerability as optimization
problem, referred to as the β-disruptor, whose objec-
tive is to determine the the minimum number of network
elements – nodes and vertices – that must be removed to
reduce the network pairwise connectivity to a specific level.
We present hardness results related to this problem,
including the NP-Completeness and inapproximabil-
ity, along with two pseudo-approximation algorithms
with provable performance bounds. The accuracy of
our framework compared with existing measurements
are validated through a series of experiments of both
simulated and real networks. The results show that
β-disruptor framework exhibits higher accuracy in
assessing network vulnerability than schemes based
on node centrality metrics.
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