
COP2800 Homework #4 Assignment Spring 2013

YOUR NAME:___ DATE: ______________

LAST FOUR DIGITS OF YOUR UF-ID: ___ ___ ___ ___ Please Print Clearly (Block Letters)

YOUR PARTNER’S NAME:_____________________________________ DATE: ______________

LAST FOUR DIGITS OF PARTNER’S UF-ID: ___ ___ ___ ___ Please Print Clearly

Date Assigned: 22 March 2013 IN CLASS

Date Due: 05 April 2013 E-SUBMISSION of Parts II and III

In this homework assignment you may work in groups of two persons only. You may not copy

from others, and you may not copy code from the Internet, textbook, or other sources.

However, you may study with others or read your textbook to determine general solutions. Then

you must complete the problems as your own work, not copying others’ work.

Questions about this homework should be addressed to your TA first. You can find your TA’s email,

office hours, etc. at the class website: http://www.cise.ufl.edu/~wchapman/COP2800/officehours.html

This homework has three parts: (I) Vocabulary Questions, (II) Regular Program, (III) Advanced

Program. There is no penalty for guessing.

Part I. Vocabulary Questions [10 points total]

Vocabulary: (terms you need to know to discuss the subject intelligently) – Define the following

terms using 1-3 sentences (and a diagram, if needed): [2 points each]

a. Singly Linked List

b. Doubly Linked List

c. Array index(es)

d. Abstract class (in Java)

e. AbstractLinkedList (in Java)

 Part II. Regular Program [30 points total]

TASK: Create a Java Program that plays TicTacToe using array operations (this

assignment is the second half of the TicTacToe game begun in Assignment 3). Like Assignment

3, this one is designed to make you think, so most of the code is not provided. You have to do

more work here… but we allow you to work in groups of two, so that should make it easier for

you.

Use your text editor (Notepad++) to

generate a file called "Part1.txt". Include

this file in the ZIP file along with the code

for Parts II and III.

You must have in the upper right-hand

corner: (i) “COP2800-S13-HW4-PartI”,

(ii) your name, and (iii) last four digits of

your UFID.

http://www.cise.ufl.edu/~wchapman/COP2800/officehours.html

COP2800 Homework #4 Assignment Spring 2013

PROGRAMMING PROCEDURE:

(1) We will be using your Assignment 3 code as a starting point for this assignment. If your code did

not work properly, you may download a correct solution to Assignment 3 from this link:

http://www.cise.ufl.edu/~wchapman/COP2800/misc/Assignment3-solution.zip

(2) Make a public Java Class called IntelligentTicTacToe, with methods makeMove,

assessOffensiveOpps and assessDefensiveOpps.

Note: assessOffensiveOpps and assessDefensiveOpps are helper methods for makeMove.

(They implement a block of functionality that is called several times.)

makeMove: This method automatically chooses a best move for the current player using the

procedure described below, and makes this move on the game board by calling updateTTT. This

method should return boolean true if a move was made, or false if it is no longer possible to win

(a tie has occurred, or the opponent has won). updateTTT should not be called if this method

returns false.

makeMove should create two 2D integer arrays whose sizes are equal to the size of the game

board: defensiveOppsArray and offensiveOppsArray. The elements of these arrays store the

defensive and offensive strategic values of playing each position.

We observe that every position on a TicTacToe game board is an element of 2, 3, or 4 victory

paths. The center piece of odd-sized boards is an element of 4 paths: 2 diagonals, 1 row, and 1

column. Other diagonal positions are members of 3 paths: 1 diagonal, 1 row, and 1 column. All

other positions belong to only 2 paths: 1 row, and 1 column. A good defensive TicTacToe

strategy is to maximize the number of victory paths blocked by playing each position, with

consideration to how much progress the opponent has made along each path. Likewise, a good

offensive strategy is to maximize the number of unblocked potential victory paths advanced by

playing each position, with consideration to how much progress you have made along each path.

The details of determining the value of blocking or advancing each path will be handled by the

helper methods assessDefensiveOpps and assessOffensiveOpps, respectively. The responsibility

of makeMove is to loop over every position (i,j) in the game board, determine all the paths (i,j) is

a member of, call the helper methods on each path, sum the return values from the helper

methods, and store the result in the correct OppsArray variable (defensiveOppsArray or

offensiveOppsArray). Already played positions should have a value of 0 in the OppsArray

variables. Refer to the example on page 4 to see this algorithm expressed visually.

After building the OppsArray variables, makeMove should sum the two arrays to produce a third

2D array, sumOppsArray. It should then select a best move by selecting the maximum from

sumOppsArray, and call updateTTT to play that move. If there is a tie for the maximum,

makeMove should select the first occurrence in a top-bottom , left -right traversal of the board.

Victory is impossible if all moves have a value of 0.

public static boolean makeMove(){

 …code for the method goes here…

}

http://www.cise.ufl.edu/~wchapman/COP2800/misc/Assignment3-solution.zip

COP2800 Homework #4 Assignment Spring 2013

assessDefensiveOpps: This helper method determines the value of blocking a path, assuming the

current player is sym. The following rules should be used to assign a value to path.

Rule Description Return 4 x 4 Example (sym = ‘O’)

1 Path is empty. 1 * * * *, return 1

2 Path is already blocked. 0 * X * O, return 0

3
Path is not blocked, and contains N

opponents.
N+1 X X * *, return 3

4

Critical Move: path is not blocked,

contains N opponents, and

opponent will win on next move

N+11 X X X *, return 14

public static int assessDefensiveOpps(char[] path, char sym){

 …code for the method goes here…

}

assessOffensiveOpps: This helper method determines the value of advancing along a path,

assuming the current player is sym. The following rules should be used to assign a value to path.

Rule Description Return 4 x 4 Example (sym = ‘O’)

1 Path is empty. 1 * * * *, return 1

2 Path is blocked by opponent. 0 * X * O, return 0

3
Path is not blocked by opponent,

contains N of my symbols.
N+1 O O * *, return 3

4

Critical Move: path is not blocked,

contains N of my symbols, and I

will win by playing this path.

N+101 O O O *, return 104

public static int assessOffensiveOpps(char[] path, char sym){

 …code for the method goes here…

}

(3) Override the promptUserTTT method you inherited from UserTicTacToe, and make the

necessary modifications so that the computer plays as ‘O’, and the user plays as ‘X’. Your

method should also return immediately if a victory or tie occurs. (Hint: Copy+paste your old

promptUserTTT method into your new IntelligentTicTacToe class. You should only have to

make minimal modifications to satisfy this requirement.)

(4) Create a test class TestITTT that invokes your IntelligentTicTacToe.promptUserTTT method.

COP2800 Homework #4 Assignment Spring 2013

(5) You should verify that your program works correctly by printing out the defensiveOppsArray and

offensiveOppsArray variables for a variety of board states. We have created a web utility that will

allow you to see if your arrays are correct.

http://www.cise.ufl.edu/~wchapman/COP2800/misc/IntelligentTicTacToe/simulator.php

We have also printed the result of the computer playing against itself for board sizes 3x3 up to

9x9, with the corresponding values of the defensiveOppsArray and offensiveOppsArray variables.

These games can be viewed from the following link:

http://www.cise.ufl.edu/~wchapman/COP2800/misc/IntelligentTicTacToe

Part III. List-Based Assessment [30 points total]

Programming with Lists. The objective of this programming assignment portion is to augment

the functionality of the program you wrote in Part II, using a list representation to determine and

recall already-computed offensive and defensive moves.

(1) Modify your TicTacToe program from Assignment 4, Part II, to accept another input character

“C”, which will signify the end of a game, and will start a new game (with the same board size)

without terminating the program or clearing any of the ArrayLists that we discuss below.

(2) Write a new method convertTTTArrayToString that inputs the gameboard array and scans it in

row-major order (row 1 first, then row 2, and so forth). While the scanning is going on, your

method should concatenate the array rows to form a list. So, for a 3x3 TTT board, if row 1 reads

(X, *, X), row 2 = (O, O, *), and row 3 = (O, X, O), with quotes around characters omitted for

clarity, then the result of convertTTTArrayToString will be the string representation TTTstate =

“X * X O O * O X O”. Now, append the current player’s symbol (X or O) to the string, as

TTTstate = TTTstate + “ @ “ + current_player_symbol;

public static String convertTTTArrayToString(){

 …code for the method goes here…

}

http://www.cise.ufl.edu/~wchapman/COP2800/misc/IntelligentTicTacToe/simulator.php
http://www.cise.ufl.edu/~wchapman/COP2800/misc/IntelligentTicTacToe

COP2800 Homework #4 Assignment Spring 2013

(3) Create a helper class BoardState, which has 3 public nonstatic variables: TTTState,

defensiveOppsArray, and offensiveOppsArray. This class corresponds to 1 unit of your game

board’s memory. It holds the string representation of a game board, and the corresponding pre-

computed OppsArray variables. The class specification is as follows:

 public class BoardState{

 public String TTTState;

 public int[][] defensiveOppsArray;

 public int[][] offensiveOppsArray;

}

(4) Add a public static variable, memory, to your IntelligentTicTacToeArray class. This variable

will be an ArrayList<BoardState>, and will keep a record of all the previously encountered board

configurations, along with their computed OppsArrays.

public static ArrayList<BoardState> memory = new ArrayLi...;

(5) Make the following two changes to your makeMove method from Part II:

Before building the defensiveOppsArray and offensiveOppsArray for a game board, create a

TTTState of the current game board, iterate through the memory ArrayList and check to see

if any of it’s BoardState elements already have a TTTState that is equal to this value. If you

find a match, you can use the OppsArrays from the match. If you don’t, you will need to

compute the OppsArrays.

After computing the defensiveOppsArray and offensiveOppsArray for a game board, create

a new instance of BoardState. Store your computed OppsArrays into the corresponding

variables in this instance of BoardState. Also use convertTTTArrayToString to place the

TTTState representation of the game board in the TTTState variable. Add this instance of

BoardState to your memory ArrayList, so in the future, you will not need to recomputed

these OppsArrays.

Part IV. Extra Credit (text file like Part I, submit online) [10 points each]

EC-1. What is the complexity of the array-

based program in Part II in terms of number of

operations (array accesses, additions,

multiplications) as a function of board size N?

Justify your answer with a graph and/or

equations.

Please do this part electronically.

Use your text editor (Notepad++) to

generate a file called "Part4.txt". Include

this file in the ZIP file along with the code

for Parts II and III.

You must have in the upper right-hand

corner: (i) “COP2800-S13-HW4-PartIV”,

(ii) your name, and (iii) last four digits of

your UFID.

COP2800 Homework #4 Assignment Spring 2013

EC-2. What is the complexity of the list-based

program in Part III in terms of number of

operations (array accesses, additions,

multiplications) as a function of board size N?

Justify your answer with a graph and/or

equations.

EC-3. Why might you not want to use the approach in Part III (with the lists) for your main

technique to determine the OffensiveOppsArray and DefensiveOppsArray ? (Hint: The

complexity grows as 2
M

, where M is the number of possible moves…) Explain your answer

in detail with equations and some numerical examples.

Electronic Submission of Parts II and III. Put all files you created in Parts I through III in a

single ZIP file. Your ZIP file should contain all the files specified in Parts I through III. Submit

this ZIP file electronically per the instructions at:

http://www.cise.ufl.edu/~wchapman/COP2800/submit

Part V. Evaluation of Submitted Code

Grading: Code does not compile or run = 0 points.

 Code compiles but does not run = < 20 percent of points.

 Code runs but wrong results = 21 to 50 percent of points.

 Code runs with correct results but no documentation (e.g., green comments in Part II)

 = 51 to 70 percent of points.

 Code compiles and runs, correct results, documentation present

 = 71 to 100 percent of points.

