Assignment 4, Part 2

Program Structure Hints

public boolean makeMove()

 makeMove doesn't receive any arguments,
but recall that since it extends TicTacToe, we
have access to:

- TicTacToeArray

- step

- winner

- player

And all the methods of TicTacToe, including:
updateTTT(char sym, int row, int col)

public boolean makeMove()

* First, create the two main arrays, and fill them
with zeros.

Of 0] 010 o 0 010
01 01 010 01 01 010
Of 01 010 o 0| 010
O 01 010 O O OO

defensiveOppsArray offensiveOppsArray

* Our goal is to populate these arrays, (one
element at a time) sum them together, and
select the max.

public boolean makeMove()

* Recall: the cells of defensiveOppsArray and
offensiveOppsArray correspond to the defensive and
offensive value of playing that position for the next
move.

* \We consider each cell (row,col) independently, which
means we need a double loop.

Inner Loop

X X X x>

| *| * | *" TicTacToeArray

* * * * >

Outer Loop

X

* * * >

public boolean makeMove()

* For each cell (inside the double loop):

1. If the cell is already played, skip it and continue
on to the next cell.

* * *
Skip these. Their values
in the OppsArrays 2 —=*n0)| *
should be left at 0. ol I Il

TicTacToeArray

public boolean makeMove()

* For each cell (still in the double loop):

2. If the cell is on left-leaning diagonal, do this:

* Copy the diagonal into a path array

« Call assessDefensiveOpps and assessOffensiveOpps
on the path.

» Add the return values to the OppsArrays.

Hint, might need a
loop to build the path.

TicTacToeArray

defensiveOppsArray
O\X\ ol % char[] path={* O, *, 0} Aol ol s
Lo | int v = assessDef...(path,"X'") 2| 2| 2
- %* Y 22 +v| O
S NGV, v o] o] o] o

public boolean makeMove()

* For each cell (still in the double loop):

3. If the cell is on right-leaning diagonal, do this:
* Copy the diagonal into a path array

« Call assessDefensiveOpps and assessOffensiveOpps
on the path.

» Add the return values to the OppsArrays.

Hint, might need a
loop to build the path.

TicTacToeArray

defensiveOppsArray
* | % 9/% Char[] path - { ’ Xa , X } . . - -
all 7' e J int v = assessDef...(path,"X") 2| 2| 2| 2
R I%IE T 51
@A *10 v ~ +v| o]l of o

public boolean makeMove()

* For each cell (still in the double loop):
4. Always do this:

« Copy the cell's row into a path array

« Call assessDefensiveOpps and assessOffensiveOpps
on the path.

» Add the return values to the OppsArrays.

Hint, might need a
loop to build the path.

TicTacToeArray

defensiveOppsArray
o %l @l s char[]path={* * *,0} N
all O R W / int v = assessDef...(path,"X'") 2| 2| 2| 2
| x| « | % .
| <l <lo] v -] o] 0] 0

public boolean makeMove()

* For each cell (still in the double loop):

5. Always do this:

* Copy the cell's column into a path array

« Call assessDefensiveOpps and assessOffensiveOpps
on the path.

» Add the return values to the OppsArrays.

Hint, might need a
loop to build the path.

TicTacToeArray
| x| o] x— challpath={*"" "}
*] O] x| * int v = assessDef...(path,"X')
| x| * *
o * | O \Y;

defensiveOppsArray

2 &2 & =

21 21 21 2

?

“ +v| 0| 0| O

public boolean makeMove()

 Now you should have fully populated
OppsArrays.

 Here would be a good place to print out your
OppsArrays to make sure they match the web

simulator.
- If you do this, be sure to comment it out before

submitting, or you'll lose points! makeMove
shouldn't print anything in your final submission.

public boolean makeMove()

 Walk over the two arrays. The best move is the (row,col)
value where the sum of defensiveOppsArray[row][col]
and offensiveOppsArray[row][col] is maximized.

- (Hint: requires a double loop, and some state variables to keep
track of the max value and coordinates).

* |f both arrays are full of zeros, then there is no best
move. Return false.

* Otherwise, call updateTTT to play the move and return
true. If two moves tie, play the 1st occurrence of the tie in
a row-major scan of the array.

- Hint: row major means your outer loop walks over the rows, the
iInner loop walks over the columns, as shown on slide 4.

public void int
assessDefensiveOpps(char[] path, char sym)

* Count the number of opponents in the path by
walking over the path array. (requires a loop)

- If at any point you encounter your own piece

(sym), then return O because the path is already
blocked.

 Now that you know how many opponents are
In the path, a simple if statement will
determine if this is a critical move.

e At this point, a simple one-line mathematical
expression should give you your return value.

public void int
assessOffensiveOpps(char[] path, char sym)

* Very similar to assessDefensiveOpps.

Assignment 4, Part 3

Using ArrayList to implement a memory

Goal

 Computing the defensiveOppsArray and
offensiveOppsArray takes time.

* Perhaps we can optimize our code by adding
the concept of memory to our program.

* If a board state has been encountered before
In a previous game, we don't need to
recompute the OppsArrays if we saved them
somewhere (ie. “memory”).

* The goal of Part 3 is to implement such a
memory.

ArrayList

* Recall that an ArrayList is an array that can
grow dynamically.

* \We add items to an ArrayList by calling the
add method.

* The type of data an ArrayList can hold is
specified in <>,

- Example:
ArrayList<String> al = new ArrayList<String>()
al.add(“hello”);
al.add(“world”);
System.out.println(al.get(1l)); //prints world

ArrayList for Memory

 How can an ArrayList be used to implement a
memory?

- Store all the previously encountered board states,
and their corresponding computed OppsArrays.

* First we need to create a data type.

public class BoardState({
public String TTTState;
public int[][] defensiveOppsArray;
public int[][] offensiveOppsArray;

}
e Now we can dO: new ArrayList<BoardState>()

Saving to Memory

* To store an item in memory, just create an
instance of BoardState and add it.

BoardState addMe = new BoardState();
addMe.offensiveOppsArray = offensiveOppsArray;

addMe.offensiveOppsArray = offensiveOppsArray;

» But wait, TTTState is a String, and the game
board is a charf][]. Why?

e Solution is to create a method that converts
the char[][] into a String array.

e Now we can do:

addMe.TTTState = convertTTTArrayToString();

Using the Memory

* To check for a board state in memory, just
walk over all the elements in the ArrayList and
compare their TTTState to the current board's
TTTState.

— This check should be done before building the
OppsArrays.

* If you do have to build the OppsArrays, make
sure to save them to memory immediately
after.

import java.util.ArrayList;

Exa m Ie = public class ArrayListDemo{
. public static void main(String[] args){

ArrayList<StringEncounter> al =
new ArrayList<StringEncounter>();
for(;;){

Th' //query the user to enter a string
IS prog ral Il System.out.print("Enter a string: ");
String x = UserInput.readString();

aSkS a user to System.out.println("");

//check memory to see if we've
enter a String //typed that before
) boolean found = false;
for(int i=0; i < al.size(); i++){

and keeps traCk StringEncounter test = al.get(i);

if(test.str.equals(x)){

Of hOW many System.out.println("You've typed that "

+test.count+" times.");
times they enter Y
each string.)

//if this was the first time we typed
//that string, add it to the list
if(!found){
System.out.println("Looks like the"+
" first time you've typed that.");
StringEncounter se = new StringEncounter();
se.str = x;
se.count = 1;
al.add(se); //add it to the memory

public class StringEncounter{ } .
public String str; System.out.println("");
public int count; }

} }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

