

Assignment 4, Part 2

Program Structure Hints

public boolean makeMove()

● makeMove doesn't receive any arguments,
but recall that since it extends TicTacToe, we
have access to:
– TicTacToeArray

– step

– winner

– player

And all the methods of TicTacToe, including:

updateTTT(char sym, int row, int col)

public boolean makeMove()
● First, create the two main arrays, and fill them

with zeros.

● Our goal is to populate these arrays, (one
element at a time) sum them together, and
select the max.

defensiveOppsArray

 0 0 0 0

0 0 0 0
0 0 0
0 0 0 0

0

offensiveOppsArray

 0 0 0 0

0 0 0 0
0 0 0
0 0 0 0

0

public boolean makeMove()
● Recall: the cells of defensiveOppsArray and

offensiveOppsArray correspond to the defensive and
offensive value of playing that position for the next
move.

● We consider each cell (row,col) independently, which
means we need a double loop.

TicTacToeArray

 * * * *
* * * *
* * *
* * * *

*

O
ut

er
 L

oo
p

Inner Loop

public boolean makeMove()
● For each cell (inside the double loop):

1. If the cell is already played, skip it and continue
on to the next cell.

TicTacToeArray

 X * * *
* * O *
* * *
* X * *

*

Skip these. Their values
in the OppsArrays
should be left at 0.

public boolean makeMove()
● For each cell (still in the double loop):

2. If the cell is on left-leaning diagonal, do this:
● Copy the diagonal into a path array
● Call assessDefensiveOpps and assessOffensiveOpps

on the path.
● Add the return values to the OppsArrays.

defensiveOppsArray

 ? ? ? ?
? ? ? ?
? ? 0
0 0 0 0

+v

TicTacToeArray

 * X O X
* O * *
* X *
* * * O

*

char[] path = { *, O, * , O }

int v = assessDef...(path,'X')

v
...

Hint, might need a
loop to build the path.

public boolean makeMove()
● For each cell (still in the double loop):

3. If the cell is on right-leaning diagonal, do this:
● Copy the diagonal into a path array
● Call assessDefensiveOpps and assessOffensiveOpps

on the path.
● Add the return values to the OppsArrays.

defensiveOppsArray

 ? ? ? ?
? ? ? ?
? ? ?
+v 0 0 0

?

TicTacToeArray

 * X O X
* O * *
* X *
* * * O

*

char[] path = { *, X, * , X }

int v = assessDef...(path,'X')

v
...

Hint, might need a
loop to build the path.

public boolean makeMove()
● For each cell (still in the double loop):

4. Always do this:
● Copy the cell's row into a path array
● Call assessDefensiveOpps and assessOffensiveOpps

on the path.
● Add the return values to the OppsArrays.

defensiveOppsArray

 ? ? ? ?
? ? ? ?
? ? ?
+v 0 0 0

?

TicTacToeArray

 * X O X
* O * *
* X *
* * * O

*

char[] path = { *, *, * , O }

int v = assessDef...(path,'X')

v
...

Hint, might need a
loop to build the path.

public boolean makeMove()
● For each cell (still in the double loop):

5. Always do this:
● Copy the cell's column into a path array
● Call assessDefensiveOpps and assessOffensiveOpps

on the path.
● Add the return values to the OppsArrays.

defensiveOppsArray

 ? ? ? ?
? ? ? ?
? ? ?
+v 0 0 0

?

TicTacToeArray

 * X O X
* O * *
* X *
* * * O

*

char[] path = { *, *, * ,* }

int v = assessDef...(path,'X')

v
...

Hint, might need a
loop to build the path.

public boolean makeMove()
● Now you should have fully populated

OppsArrays.
● Here would be a good place to print out your

OppsArrays to make sure they match the web
simulator.
– If you do this, be sure to comment it out before

submitting, or you'll lose points! makeMove
shouldn't print anything in your final submission.

public boolean makeMove()
● Walk over the two arrays. The best move is the (row,col)

value where the sum of defensiveOppsArray[row][col]
and offensiveOppsArray[row][col] is maximized.
– (Hint: requires a double loop, and some state variables to keep

track of the max value and coordinates).

● If both arrays are full of zeros, then there is no best
move. Return false.

● Otherwise, call updateTTT to play the move and return
true. If two moves tie, play the 1st occurrence of the tie in
a row-major scan of the array.
– Hint: row major means your outer loop walks over the rows, the

inner loop walks over the columns, as shown on slide 4.

public void int
assessDefensiveOpps(char[] path, char sym)

● Count the number of opponents in the path by
walking over the path array. (requires a loop)
– If at any point you encounter your own piece

(sym), then return 0 because the path is already
blocked.

● Now that you know how many opponents are
in the path, a simple if statement will
determine if this is a critical move.

● At this point, a simple one-line mathematical
expression should give you your return value.

public void int
assessOffensiveOpps(char[] path, char sym)

● Very similar to assessDefensiveOpps.

Assignment 4, Part 3

Using ArrayList to implement a memory

Goal
● Computing the defensiveOppsArray and
offensiveOppsArray takes time.

● Perhaps we can optimize our code by adding
the concept of memory to our program.

● If a board state has been encountered before
in a previous game, we don't need to
recompute the OppsArrays if we saved them
somewhere (ie. “memory”).

● The goal of Part 3 is to implement such a
memory.

ArrayList
● Recall that an ArrayList is an array that can

grow dynamically.
● We add items to an ArrayList by calling the

add method.
● The type of data an ArrayList can hold is

specified in <>.
– Example:
ArrayList<String> al = new ArrayList<String>()

al.add(“hello”);

al.add(“world”);

System.out.println(al.get(1)); //prints world

ArrayList for Memory
● How can an ArrayList be used to implement a

memory?
– Store all the previously encountered board states,

and their corresponding computed OppsArrays.

● First we need to create a data type.
public class BoardState{

 public String TTTState;

 public int[][] defensiveOppsArray;

 public int[][] offensiveOppsArray;

}

● Now we can do: new ArrayList<BoardState>()

Saving to Memory
● To store an item in memory, just create an

instance of BoardState and add it.
BoardState addMe = new BoardState();

addMe.offensiveOppsArray = offensiveOppsArray;

addMe.offensiveOppsArray = offensiveOppsArray;

● But wait, TTTState is a String, and the game
board is a char[][]. Why?

● Solution is to create a method that converts
the char[][] into a String array.

● Now we can do:
addMe.TTTState = convertTTTArrayToString();

Using the Memory
● To check for a board state in memory, just

walk over all the elements in the ArrayList and
compare their TTTState to the current board's
TTTState.
– This check should be done before building the

OppsArrays.

● If you do have to build the OppsArrays, make
sure to save them to memory immediately
after.

import java.util.ArrayList;

public class ArrayListDemo{
 public static void main(String[] args){
 ArrayList<StringEncounter> al =
 new ArrayList<StringEncounter>();
 for(;;){
 //query the user to enter a string
 System.out.print("Enter a string: ");
 String x = UserInput.readString();
 System.out.println("");
 //check memory to see if we've
 //typed that before
 boolean found = false;
 for(int i=0; i < al.size(); i++){
 StringEncounter test = al.get(i);
 if(test.str.equals(x)){
 System.out.println("You've typed that "
 +test.count+" times.");
 test.count++;
 found = true;
 }
 }
 //if this was the first time we typed
 //that string, add it to the list
 if(!found){
 System.out.println("Looks like the"+
 " first time you've typed that.");
 StringEncounter se = new StringEncounter();
 se.str = x;
 se.count = 1;
 al.add(se); //add it to the memory
 }
 System.out.println("");
 }
 }
}

public class StringEncounter{
 public String str;
 public int count;
}

Example:

This program
asks a user to
enter a string,
and keeps track
of how many
times they enter
each string.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

