```
CDA3101 - F13 - Quiz #3 Mon 14 Oct 2013
Given: int B[40], i, x ;
for i=0 to 39 do:
{B[i]=2*i+19;x=3*B[i];
if B[i] > 279 then STOP }
Q1 (15 pts): Write the above code in MIPS, and fully comment your code.
Q2 (5 pts): Initially, assume the following CPIs:
add, sub \(=4\) cycles \(\mathbf{m u l}=7\) cycles branch \(=3\) cycles
Iw, sw \(=3\) cycles \(\mathbf{s l t}=4\) cycles all others \(=1\) cycle
Now, if CPI for mul = 3, how many cycles total?
\(\mathbf{2 0}\) pts total - You have \(\mathbf{2 0}\) minutes to complete
```

Q1: Let's begin by expanding the high-level language statements into expressions with one operator and an assignment:
int $\mathrm{B}[40]$, $\mathrm{i}, \mathrm{x}$;
for $\mathrm{i}=\mathbf{0}$ to $\mathbf{3 9}$ do:
$\{B[i]=2 * i+19 ; x=3 * B[i] ;$
if $\mathrm{B}[\mathrm{i}]>\mathbf{2 7 9}$ then STOP $\}$


Now we can translate the expanded HLL expressions into MIPS and determine cost ([c]ycles):

|  | addi | \$s1, \$zero, -1 | \# i = -1; cost = | $4 \mathrm{c} \times 1=4$ |
| :---: | :---: | :---: | :---: | :---: |
|  | addi | \$t3, \$zero, 3 | \# register t3 gets constant 3 | $4 \mathrm{c} \times 1=4$ |
| Loop: | addi | \$s1, \$s1, 1 | \# i = i + 1; | $4 \mathrm{c} \times 41=164$ |
|  | slti | \$t0, \$s1, 39 | \# if 39 < i then goto Exit | $4 \mathrm{c} \times 41=164$ |
|  | bne | \$t0, \$zero, Work |  | $3 \mathrm{c} \times 41=123$ |
|  | j | Exit | \# STOP only happens once | $1 \mathrm{c} \times 1=1$ |
| Work: | sll | \$t1, \$s1, 1 | \# tmp1 = 2 * ; | $1 \mathrm{c} \times 40=40$ |
|  | addi | \$t2, \$t1, 19 | \# tmp2 = tmp1 + 19; | $4 \mathrm{c} \times 40=160$ |
|  | sll | \$t4, \$s1, 4 | \# offset [in \$t5] = i [in \$s1] 4 | $1 \mathrm{c} \times 40=40$ |
|  | add | \$t4, \$t4, \$s0 | \# add base addr to offset | $4 \mathrm{c} \times 40=160$ |
|  | sw | \$t2, 0(\$+4) | \# B $[\mathrm{i}] \leqslant$ tmp2; | $3 \mathrm{c} \times 40=120$ |
|  | mult | \$t2, \$t3 | \# 3 * tmp2; [constant 3 from t3, above] | $7 \mathrm{c} \times 40=280$ |
|  | mflo | \$s2 | $\# \mathrm{x} \leqslant 3 *$ tmp2; | $1 \mathrm{c} \times 40=40$ |
|  | slti | \$t5, \$t2, 279 | \# if 279 < tmp2 then goto Exit; | $4 \mathrm{c} \times 40=160$ |
|  | beq | \$t5, \$zero, Loop | \# goto Loop | $3 \mathrm{c} \times 40 \pm 120$ |
| Exit: |  |  | TOTAL CYCLES | 1,580 |

Observe that the last two statements are inelegant, but they work because we know the loop will iterate to completion ( 40 times) since $3(39)+19<279$. (A more careful coding would use the negative logic in the loop limit test earlier in the program.)

Q2: Since there are 40 multiplications in the MIPS realization of Q1, if we incur 3 cycles per mult instead of 7 , then we save 4 cycles $\times 40$ iterations $=160$ cycles. So the total number of cycles becomes 1,580-160=1,420, for a total savings of 160/1580 = 10.1 percent.

Note: We could have coded the expression $\mathbf{x}=3$ * tmp2 in terms of two additions (add \$t6, \$t2, \$t2 ; add \$t6, \$t6, \$t2), but that would be bad programming practice, for two reasons:

1. The cost of two additions would be 8 cycles (per the givens), versus 7 cycles for a multiplication, so we would be designing a penalty into the program; and
2. The two additions would not benefit from the cost reduction for the multiplication, so we are blocking any further optimization of the program.

Finally, observe that the statement $\mathbf{t m p 1 = 2 *} \mathbf{i}$ is coded with an sll (shift left logical) in MIPS, instead of a mult. This is good practice, because the sll consumes one cycle (from the givens), in contrast with the mult that consumes 7 cycles (initially, then 3 cycles after optimization).

