
CDA3101 – F13 – Quiz #3 – ANSWER KEY 14 Oct 2013

Q1: Let’s begin by expanding the high-level language statements into expressions with one
operator and an assignment:

int B[40], i, x ;

for i = 0 to 39 do:

 { B[i] = 2 * i + 19; x = 3 * B[i] ;

 if B[i] > 279 then STOP }

Now we can translate the expanded HLL expressions into MIPS and determine cost ([c]ycles):

addi $s1, $zero, -1 # i = -1; cost = 4c x 1 = 4
addi $t3, $zero, 3 # register t3 gets constant 3 4c x 1 = 4

Loop: addi $s1, $s1, 1 # i = i + 1; 4c x 41 = 164
 slti $t0, $s1, 39 # if 39 < i then goto Exit 4c x 41 = 164

bne $t0, $zero, Work 3c x 41 = 123
j Exit # STOP only happens once 1c x 1 = 1

Work: sll $t1, $s1, 1 # tmp1 = 2 * I; 1c x 40 = 40
 addi $t2, $t1, 19 # tmp2 = tmp1 + 19; 4c x 40 = 160
 sll $t4, $s1, 4 # offset [in $t5] = i [in $s1] x 4 1c x 40 = 40
 add $t4, $t4, $s0 # add base addr to offset 4c x 40 = 160
 sw $t2, 0($t4) # B[i]  tmp2; 3c x 40 = 120
 mult $t2, $t3 # 3 * tmp2; [constant 3 from t3, above] 7c x 40 = 280
 mflo $s2 # x  3 * tmp2; 1c x 40 = 40
 slti $t5, $t2, 279 # if 279 < tmp2 then goto Exit; 4c x 40 = 160
 beq $t5, $zero, Loop # goto Loop 3c x 40 = 120
Exit: TOTAL CYCLES 1,580

int B[40], i, x;
i = -1;

Loop: i = i + 1;
 if 39 < i then goto Exit;
 tmp1 = 2 * i;
 tmp2 = tmp1 + 19;
 B[i] = tmp2;
 x = 3 * tmp2;
 if 279 < tmp2 then goto Exit;
 goto Loop
Exit:

Observe that the last two statements are inelegant, but they work because we know the loop

will iterate to completion (40 times) since 3(39) + 19 < 279. (A more careful coding would use

the negative logic in the loop limit test earlier in the program.)

Q2: Since there are 40 multiplications in the MIPS realization of Q1, if we incur 3 cycles per

mult instead of 7, then we save 4 cycles x 40 iterations = 160 cycles. So the total number of

cycles becomes 1,580 – 160 = 1,420, for a total savings of 160/1580 = 10.1 percent.

Note: We could have coded the expression x = 3 * tmp2 in terms of two additions (add $t6, $t2,

$t2 ; add $t6, $t6, $t2), but that would be bad programming practice, for two reasons:

1. The cost of two additions would be 8 cycles (per the givens), versus 7 cycles for a

multiplication, so we would be designing a penalty into the program; and

2. The two additions would not benefit from the cost reduction for the multiplication, so

we are blocking any further optimization of the program.

Finally, observe that the statement tmp1 = 2 * i is coded with an sll (shift left logical) in MIPS,

instead of a mult. This is good practice, because the sll consumes one cycle (from the givens),

in contrast with the mult that consumes 7 cycles (initially, then 3 cycles after optimization).

