Example for Computing the Attribute Closure

Notation: For the set \{A, C, E\} we permit to write \(ACE\) (juxtaposition) to be able to omit braces. In particular, \(\{D\}\) is written as \(D\).

Example: Let \(R(A, B, C, G, H, I)\) be a relation schema, and let \(F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CI \rightarrow G\}\) be a set of FDs.

Task: Compute \(AG^+\).

Solution: We use the algorithm *AttrClosure* and initialize \(AG^+\) with \(AG\).

In the loop we set \(Old_AG^+ := AG\) and check all FDs whether they can contribute to \(AG^+\).

First we take \(A \rightarrow B\) and check whether \(A \subseteq AG^+\) holds. This is the case. Therefore, we set \(AG^+ := AG^+ \cup B = ABG\) (due to transitivity).

Next, we take \(A \rightarrow C\). Using the same argument as before, we obtain \(AG^+ := AG^+ \cup C = ABCG\).

Next, we take \(CG \rightarrow H\). We find that \(CG \subseteq AG^+\) holds. We get \(AG^+ := AG^+ \cup H = ABCGH\).

Next we take \(CI \rightarrow G\). We find that \(CI \not\subseteq AG^+\) holds.

Since \(Old_AG^+ \neq AG^+\) holds, we perform a second loop. We set \(Old_AG^+\) to \(AG^+\), that is, \(Old_AG^+ := ABCGH\). We see soon that no FD from \(F\) can increase \(AG^+\). This means that \(Old_AG^+ = AG^+\) holds, the algorithm terminates, and we get \(AG^+ := ABCGH\).
Canonical cover

- In general, distinct equivalent sets of FDs exist. Two sets \(F \) and \(G \) of FDs are called **equivalent** iff \(F^+ = G^+ \) holds.

- Definition of equivalence is convincing, because the equality of the closures for \(F \) and \(G \) implies that the same FDs can be inferred from \(F \) and \(G \).

- For a given set \(F \) of FDs there exists a unique closure \(F^+ \).

- **drawbacks of the closure** \(F^+ $$:
 - in general very many FDs in \(F^+ \) so that the handling with \(F^+ \) becomes difficult
 - large redundant set of FDs that has to be checked as consistency tests for database modifications

- **goal**: computation of a most possible small set of FDs which are equivalent to \(F $$
 \rightarrow$$ less effort for testing whether a new or updated tuple violates a FD
F_c is called **canonical cover** of a given set F of FDs, if holds:

- $F_c^+ = F^+$
- In F_c there are no FDs $A \rightarrow B$ where A or B contain *extraneous* attributes, i.e., they are reduced as much as possible.

We cannot omit any attribute on the **left** sides of any FD, otherwise we would change the semantics:

$$\forall a \in A : (F_c - \{A \rightarrow B\} \cup \{(A - \{a\}) \rightarrow B\})^+ \neq F_c^+$$

Example: schema `supplier(sname, saddr, product, price)` and FDs `{sname, product} \rightarrow \{saddr\}` and `{sname, product} \rightarrow \{price\}`. Can we omit one of the attributes on the left sides?

We cannot omit any attribute on the **right** sides of any FD, otherwise we would change the semantics:

$$\forall b \in B : (F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\})^+ \neq F_c^+$$

- Each left side of the FDs in F_c occurs only once, i.e.,

 if $A \rightarrow B$ and $A \rightarrow C$ hold, then in F_c only the FD $A \rightarrow B \cup C$ is used.
algorithm for computing the canonical cover

- **step 1:** For each FD $A \rightarrow B \in F$ perform a left reduction: check for all $a \in A$ whether the attribute a is extraneous, i.e., whether

 \[B \subseteq \text{AttrClosure}(F, A \setminus \{a\}) \]

 holds. If this is the case, replace $A \rightarrow B$ by $(A \setminus \{a\}) \rightarrow B$.

- **step 2:** For each remaining FD $A \rightarrow B \in F$ perform the right reduction: check for all $b \in B$, whether the attribute b is extraneous, i.e., whether

 \[b \in \text{AttrClosure}(F \setminus \{A \rightarrow B\} \cup \{A \rightarrow (B \setminus \{b\})\}, A) \]

 holds. If this is the case, replace $A \rightarrow B$ by $A \rightarrow (B \setminus \{b\})$.

- **step 3:** Remove the FDs of the form $A \rightarrow \emptyset$ which perhaps have been produced in the previous step.

- **step 4:** By using the union rule replace all FDs of the form $A \rightarrow B_1, \ldots, A \rightarrow B_n$ by

 \[A \rightarrow B_1 \cup \ldots \cup B_n \]
example
- Given the set \(F = \{A \rightarrow B, B \rightarrow C, A \cup B \rightarrow C\}. \)
- step 1: \(A \cup B \rightarrow C \) is replaced by \(A \rightarrow C \), because \(B \) on the left side is extraneous (\(C \) is already functionally dependent from \(A \) by the first two FDs).
- step 2: \(A \rightarrow C \) is replaced by \(A \rightarrow \emptyset \), because \(C \) on the right side is extraneous. This results from the fact that \(C \subseteq \text{AttrClosure}(\{A \rightarrow B, B \rightarrow C, A \rightarrow \emptyset\}, A) \).
- step 3: \(A \rightarrow \emptyset \) is removed. We obtain: \(F_c = \{A \rightarrow B, B \rightarrow C\}. \)
- step 4: Nothing to be done.
Decomposition of a relation schema

- **Normalization**: In order to eliminate anomalies (redundancies, update, insertion and deletion anomalies), the relation schema R is decomposed into n relation schemas $R_1, ..., R_n$.

- two fundamental correctness criteria for such a decomposition:
 - **losslessness (lossless join decomposition)**: An arbitrary instance $r(R)$ must be reconstructable from the instances $r_1(R_1), ..., r_n(R_n)$.
 - **dependency preservation**: All FDs which hold for schema R must be transferable to the schemas $R_1, ..., R_n$ and must be efficiently checkable.

- **losslessness**
 - It is sufficient to confine oneself to the decomposition of R into two relation schemas R_1 and R_2.
 - Of course, we must require: $R = R_1 \cup R_2$.
 - A decomposition of R into R_1 and R_2 is **lossless** if for all relations $r(R)$ holds:
 \[r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r). \]
 - That is, reconstruction must be possible by natural join.
criteria for the losslessness of a decomposition

Let R be a relation schema and F_R the set of FDs. A decomposition of R in R_1 and R_2 is lossless, if

$$(R_1 \cap R_2) \rightarrow R_1 \in F_R^+ \quad \text{or} \quad (R_1 \cap R_2) \rightarrow R_2 \in F_R^+$$

i.e., $R_1 \cap R_2$ is a superkey for R_1 or R_2

Alternative formulation: Let $R = A \cup B \cup C$, $R_1 = A \cup B$ and $R_2 = A \cup C$ with pair-wise disjoint attribute sets A, B, C. Then:

$B \subseteq \text{AttrClosure}(F_R, A) \quad \text{or} \quad C \subseteq \text{AttrClosure}(F_R, A)$

must hold.

sufficient, but not necessary condition for losslessness

In a relation schema R, $X \subseteq R$ is called a superkey, if $X \rightarrow R$ holds.

example for a lossy decomposition:

- The decomposition of the relation R(sname, saddr, product, price) in the two relations supplier(sname, saddr, product) and offer(product, price) is not lossless, since in general $R \neq \text{supplier} \bowtie \text{offer}$ holds.

- reasons:
 - Product does not functionally determine the price.
 - Product does not functionally determine supplier’s name and address.
Lossless Join Decomposition

- Assume we decompose a relation R into relations with sets of attributes S_1, S_2, \ldots, S_k.
- This decomposition is lossless if R can be reconstructed, that is, it holds that
 $$ \pi_{S_1}(R) \Join \pi_{S_2}(R) \Join \ldots \Join \pi_{S_k}(R) = R $$
- Note that this means that $S_i \cap S_{i+1} \neq \emptyset$ for all $1 \leq i < k$. Otherwise, we cannot compute a natural join.
- Example of a lossy decomposition

\[
\begin{array}{|c|c|c|}
\hline
A & B & C \\
\hline
1 & 2 & 3 \\
4 & 2 & 5 \\
\hline
\end{array}
\quad R_1 = \pi_{A,B}(R) =
\begin{array}{|c|c|}
\hline
A & B \\
\hline
1 & 2 \\
4 & 2 \\
\hline
\end{array}
\quad R_2 = \pi_{B,C}(R) =
\begin{array}{|c|c|}
\hline
B & C \\
\hline
2 & 3 \\
2 & 5 \\
\hline
\end{array}
\]\n
\[
R_1 \Join R_2 =
\begin{array}{|c|c|c|}
\hline
A & B & C \\
\hline
1 & 2 & 3 \\
1 & 2 & 5 \\
4 & 2 & 3 \\
4 & 2 & 5 \\
\hline
\end{array} \neq R
\]

The tuples $(1, 2, 5)$ and $(4, 2, 3)$ are “too much”. The deeper reason is that neither $B \rightarrow A$ nor $B \rightarrow C$ holds.