Extensions

- existence dependent (weak) entity sets
 - assumption so far: entities exist autonomously and can be uniquely identified within an entity set by their key attributes (strong entity set)
 - in reality there are also weak entities that do not have sufficient attributes to form a key. These entities are
 + dependent in their existence from another, superior entity and
 + can be uniquely identified only in combination with the key of a superior entity
 - superior entity set is called identifying or owner entity set

- graphical notation:

- identifying relationship set
 - a weak entity set E_1 must be associated with an identifying entity set E_2 by an identifying relationship set, if the key of E_1 comprises the key of E_2 and if it contains one or more additional attributes of E_1
 - relationship from the weak entity set to the superior entity set has usually an $m:1$-cardinality and more seldom a $1:1$-cardinality

- graphical notation:
example:

- total participation of an entity set in a relationship
 - all entities of an entity set E_1 are associated with another entity set E_2 by a relationship set R
 - this holds, in particular, for weak entity sets
 - example:

- more precise characterization of cardinalities of relationship sets
 - (min, max)-notation
 - for each entity set participating in a relationship set
 - min expresses that each entity of this set is in relationship at least min times
 - max expresses that each entity of this set is in relationship at most max times
- special cases
 + $\textit{min} = 0$: an entity does not have to be in relationship (optional)
 + $\textit{max} = *$: an entity may be in relationship arbitrarily many times
- example: conceptual university schema with $(\textit{min}, \textit{max})$-notations
- **multivalued attributes**
 - optional attribute: minimal cardinality is equal to 0
 - simple attribute: cardinality is equal to 1
 - prescribed attribute: minimal cardinality is equal to 1
 - **multivalued attribute**: maximal cardinality is equal to n
 - example:

![Diagram of multivalued attributes]

- **composite** attributes
 - grouping of attributes of the same entity set or relationship set which are closely related
 - antonym: simple attribute
 - example:

![Diagram of composite attributes]
- derived attributes
 - attribute that can be derived from one or more attributes
 - antonym: base/stored attribute
 - graphical representation:
 - example:

```
  person
      /\  
    /   
  name  birth-date
     \  /
     age
```
Generalization

- goals
 - abstraction at the set level: better (i.e., more understandable and more concise) structuring of entity sets
 - abstraction at the instance level: similar entities are to be modeled by a common entity set

- „factoring“ (extracting) properties (attributes, relationships) of similar entity sets (sub-class, subtypes, categories) to a common superclass (supertype)

- properties that cannot be extracted remain with the respective subclass, i.e., the subclass is a specialization of the superclass

- inheritance as the key concept of generalization: a subclass inherits all properties of a superclass
entities of a subclass are implicitly considered as entities of the superclass, therefore **is-a** in the graphical representation

→ set of entities of the subclass is a subset of the set of entities of the superclass

- **two special cases**
 - **disjoint/overlapping specialization**: all subclasses of a superclass are pairwise disjoint/overlapping
 - **total specialization**: the superclass does not contain explicit elements, but is only given by the union of its subclasses (antonym: **partial specialization**)

![Diagram showing the relationships between entities such as students, employees, assistants, professors, research area, rank, and room.](image-url)
Aggregation

- goal: distinct entity sets which together form a structured superclass are associated with each other
- an aggregation is a special relationship set which associates each superior entity set with several subordinate entity sets
- part-of-relationship
- example: construction of a bicycle
4. Relational Data Model

4.1 Introduction

- commercial DBMSs like Oracle, Informix, SQL Server, Sybase, DB/2 are based on the relational model

- reasons for the success of the relational data model
 - flat tables (relations) as the simple underlying data structure
 - no nested complicated structures
 - set oriented processing of data in contrast to record oriented processing prevailing until then (hierarchical model, network model)
 - simple comprehensibility also for the unskilled user
 - good performance for standard database applications
 - existence of a mature, formal theory (in contrast to other data models), in particular with respect to the design of relational databases and with respect to an efficient processing of user queries