
Hazelcast

Abhinav Prashant

Shweta Amla

Yagna Namburi

Venkata Rama Krishn Pandi

Ryan Wolf



Contents

1
• Introduction

2
• Architecture/Data Model

3
• Features

4.
• Query Mechanisms

5
• Market Comparison



Introduction

Hazelcast is a leading 

Open Source In-Memory Data Grid

Written in JAVA

Startup founded in 2008

by- Talip Ozturk, Fuad Malikov



Data Grid

• Ability to access, modify 
and transfer humongous 
data

• Security concerns

• Data access using 
middleware applications



CAP Theorem

• Also called Brewer’s theorem

• Distributed systems simultaneously cannot 
provide:

o Consistency

o Availability

o Partition tolerance

• Hazelcast chooses availability over consistency



In-Memory Database

• Lies in main-memory for data storage

• Faster as compared to disk-optimized database

• Improved response time - critical applications



Hazelcast - In-memory data Grid

• Data stored in RAM of Servers

• Redundancy - multiple copies of data exists on different servers

• Scalability - servers can be dynamically added or removed

• Peer to peer communication – No Master Slave

• Data persistence done using Relational or other NoSQL database



Hazelcast Topology

Hazelcast can be deployed in Two ways:

• Embedded

• Client-Server



Embedded Deployment

• Applications requiring 
o High performance

o Lots of task execution

• Members include 
o Application 

o Hazelcast data and Services

• Low-latency data access



Client-Server Deployment

• Centralized - accessed by 
applications through clients

• Server members -independently 
created and scaled

• Predictable and reliable Hazelcast
performance

• Scalability handled independently.



Contents

1
• Introduction

2
• Architecture/Data Model

3
• Features

4.
• Query Mechanisms

5
• Market Comparison



Architecture



Cluster Management

• Cluster auto detects new node

• Discovery mechanisms available:
o Multicast

o TCP

o EC2 Cloud

• Oldest node is the cluster leader

• Oldest node listens to join requests



Data Partitioning

Why?

Fast data operations across cluster

• Number of partitions fixed across cluster

• Partitions are equally divided across active nodes

• Partition table is used to keep track of partitions

• Leader node periodically send updated partition table to peer nodes



Hazelcast Partition

2 Nodes 4 NodesSingle Node



Data Model

• Data stored as Key-Value pairs

• To store key, hashing is used to find the partition:
Keys are serialized 

Byte array hashed using hashing algorithms

Hash result is mod by number of partitions

hash(key) mod partition count



In Memory Format

• By default, data stored in serialized format

• Option to store data as objects in de-serialized format



Indexing

• Applied to frequently queried fields

• Implemented using Maps of map

• Two types:
Ordered

Unordered

• Costly for write intensive application

• Backup data not indexed



Implementing Indexing

Two methods:

a. Using API

b. Using Hazelcast config file



Eviction

• Unless explicitly deleted, entries remain in the memory

• Eviction prevents the JVM from running out of memory 

• Hazelcast supports two eviction policies 
o LFU (least frequently used)

o LRU (least recently used)



Eviction Contd.

• Eviction can be triggered based on:
○ Heap used (percentage or absolute value) 

○ Maximum entry count (in an entire member or partition)

• Eviction percentage parameter - fraction of entry set to be 
removed 

• Eviction can also be triggered based on the following parameters:
○ Time to live

○ Maximum idle time



Contents

1
• Introduction

2
• Architecture/Data Model

3
• Features

4.
• Query Mechanism

5
• Market Comparison



Key Features

• Distributed Computing

• High Density Memory Store

• Database Caching/Persistence

• Distributed Messaging

• Web Session Clustering

• Distributed Caching

• Distributed Data Structures



Distributed Computing

• In-memory computations over 

distributed datasets 

• Asynchronous task execution



High Density Memory Store

• High Density Memory Store

• Jcache provider

• Hazelcast High Density caching



Database Caching/Persistence

• Caching solution for
o NoSQL databases

o RDBMS databases

• Performs hit/miss mechanism

• Improves performance



Distributed Messaging

• Publish and subscribe are cluster wide

• Ordered messaging



Web Session Clustering

• Maintains session for user

• Balances load across sessions at failover



Distributed Support

• Hibernate Second Level Cache
o Stale data problem!!!! Hazelcast to the rescue

• Spring Support
o hazelcast-all.jar or hazelcast-spring.jar



Distributed Caching



Get in Distributed Cache Map



Put in Distributed Map



Put in Distributed Map



Failover in Distributed Cache



Failover in Distributed Cache



Failover in Distributed Cache



Failover in Distributed Cache



Distributed Data Structures

• Map 

• Queue

• Multimap

• Set

• List



Contents

1
• Introduction

2
• Architecture/Data Model

3
• Features

4
• Query Mechanisms

5
• Market Comparison



Query Mechanisms

• Queries are distributed

• Predicate filters accordingly

• Merge all results

• Fast and Concurrent



Criteria API

Predicate Class provides operators like: 

Equal, notEqual, greaterThan, greaterEqual

Example



Querying with SQL

• SqlPredicate takes regular Where clause

• And/Or: <expression> AND <expression>

• Equality: =,!=,<,<=,>,>=

• Between:<attribute> [NOT] Between <values1> AND <values2>

• Indexing



Aggregators 

• Supplier

• Average

• Sum



• Minimum

• Maximum

• Count

Aggregator’s Contd.



MapReduce 

Summary of main steps:
1. Read the source data. 

2. Map the data to one or multiple key-value pairs. 

3. Reduce all pairs with the same key. 





Contents

1
• Introduction

2
• Architecture/Data Model

3
• Features

4.
• Query Language

5
• Market Comparison



Hazelcast as NoSQL Database

Young, but popular
• Speed

• Memory

• Caching



Hazelcast as In-Memory Store

• Popular for:
• Licensing

• Support

• Languages

• Competition:
• Oracle Coherence, 

• VmWare Gemfire

• Terracotta

• Persistence
• Mapping

• No Single Point of Failure

• Avoids Garbage Collection delays



Hazelcast vs Redis

• Architecture
• Language

• Threading

• Scaling 
• Adding/Removing Nodes

• Failover
• Node Relationship

• Clustering
• Type

• Addresses

• Discovery

• Persistence

• Querying



Hazelcast vs Oracle Coherence

• Per-core pricing model
• Cost
• Flexibility

• Aging Technology
• Features
• 10 year old Java

• De-prioritization of Coherence
• 12c
• Support and Attention

• Complex Deployment
• Time and Consulting



Hazelcast vs Couchbase

• Consistency
• Backups and Replicas

• Serialization
• Data types



Hazelcast vs Apache Cassandra

• Why is Cassandra used?
• Time

• Data 

• License

• Querying

• Flexible

• But…



Industry use of Hazelcast



References

http://docs.hazelcast.org/docs/3.5/manual/html/

https://hazelcast.org/getting-started/

https://hazelcast.org/features/

https://hazelcast.com/use-cases/caching/

http://www.slideshare.net/tmatyashovsky/distributed-applications-
using-hazelcast

http://docs.hazelcast.org/docs/3.5/manual/html/
https://hazelcast.org/getting-started/
https://hazelcast.org/features/
https://hazelcast.com/use-cases/caching/
http://www.slideshare.net/tmatyashovsky/distributed-applications-using-hazelcast

