
RethinkDB

Niharika Vithala, Deepan Sekar,

Aidan Pace, and Chang Xu

Content

• Introduction

• System Features

• Data Model

• ReQL

• Applications

Introduction

Niharika Vithala

What is a NoSQL Database

• Databases that do not necessarily use underlying tabular
model for storage and retrieval of data.

• Why did they come into existence?
• Due to big data applications which generate lot of semi-

structured data which often contain valuable information and
need to be analyzed and cannot be store in tabular format.

• Some popular examples of NoSql Databases are
Cassandra, MongoDB, redis.

Examples

Deciding Between SQL vs NoSQL

• How do we make the call about which database to choose for
our underlying application? Some criteria that can help us
decide can be as follows:

• We can use NoSql Database when there is huge amount of
data which has to be scaled across different nodes for
computation.

• When the incoming data to the database does not follow a
strict schema. For example, in a social network site where all
the data updates have single point of origin which it the user.
The application’s interface and performance take a higher
priority than robust data integrity. We could use a NoSql data
store to implement feature of storing different types of data.

When do we use SQL

• For example in a warehouse application that tracks the
arrival of goods into the warehouse, a relational database
would serve the need as there is a fixed underlying schema.

• It’s imperative to minimize mistakes. We can’t have products
disappearing or being moved to a location where different
products are already being stored.

• In its simplest form, we’re recording the transfer of items
from one physical area to another — or removing from
location A and placing in location B. That’s two updates for
the same action.

• We need a robust store with enforced data integrity and
transaction support. Only an SQL database will (currently)
satisfy those requirements.

What is RethinkDB

• RethinkDB is an open-source, scalable JSON database built
specifically for realtime web.

• RethinkDB is designed for utilizations in web and mobile apps,
multiplayer games, trading and market and embedded systems.
RethinkDB uses JSON format to store and transfer data.

• RethinkDB has been developed completely in C++.

• Instead of polling for changes from the database, the developer
can tell RethinkDB to continuously push updated query results to
applications in Real-time.

• This feature drastically reduces the amount of time take to build
real time applications.

System Features

Niharika Vithala

Push Architecture and Changefeeds

• RethinkDB uses push architecture wherein instead of continuously polling
database for changes, changes can automatically be pushed to the
application. This is very useful in applications like
• Collaborative web and mobile apps
• Streaming analytics apps
• Multiplayer games
• Realtime marketplaces
• Connected devices

• The change feeds architecture is designed to enable each client to open
multiple realtime feeds.

• Since modern web and mobile applications often have tens of thousands of
concurrent clients, RethinkDB’s feeds are designed to be extremely scalable.

• You should be able to open thousands of concurrent active feeds on a single
RethinkDB node, and scale to tens or hundreds of thousands of feeds across a
RethinkDB cluster.

Geospatial Queries

• RethinkDB supports spatial and geographic queries through
geometry object.

• In RethinkDB, geometry objects are implemented through a
geographic coordinate system, with points and shapes plotted
on the surface of a sphere in three-dimensional space.

• There are inbuild commands in ReQl that serve this purpose.
For example, to get the nearest point to given point.

• point = r.point(-122.422876,37.777128) # San Francisco

• r.table('geo').get_nearest(point, {:index => 'location'})

Data Model

Deepan Sekar

Data types

The typeOf command can be appended to any ReQL command to display what data type that command will returns. For instance (in JavaScript):
r.table('users').get(1).typeOf().run(conn, callback)

Basic data types

• Numbers
• Strings
• Booleans
• Null
• Objects
• Arrays

RethinkDB-specific data types

• Databases
• Tables
• Streams
• Selections
• Pseudo-types

• Binary Objects
• Times
• Geometric types
• Grouped data

Abstract data types

• A datum
• Sequence
• Maxval and Minval
• Functions

Geometry data types

• Points
• Lines
• Polygons

Note:
• Working with streams
• Sorting

https://www.rethinkdb.com/docs/data-types/

Dates and Times in RethinkDB

• Times are integrated with the official drivers

• Queries are timezone-aware

• Times work as indexes

• Time operations are pure ReQL

Note: Working with Time queries

https://www.rethinkdb.com/docs/dates-and-times/javascript

Binary Objects and Geospatial queries

• RethinkDB supports a native binary object type, letting
you use ReQL to store binary objects directly in the
database.

• Storing files and User Avatars in the Database.

• Accessing Geo Spatial Locations.

• The Coordinate System

https://www.rethinkdb.com/docs/storing-binary/javascript/
https://www.rethinkdb.com/docs/geo-support/javascript/

Modeling Relationships

There are two ways to model relationships between
documents in RethinkDB:

• By using embedded arrays.

• By linking documents stored in multiple tables (similar
to traditional relational database systems).

https://www.rethinkdb.com/docs/data-modeling/

Embedded Arrays

Advantages of using embedded arrays:
•Queries for accessing authors and posts tend to be simpler.
•The data is often co-located on disk. If you have a dataset that doesn’t fit into RAM, data is
loaded from disk faster.
•Any update to the authors document atomically updates both the author data and the posts
data.

Disadvantages of using embedded arrays:
•Deleting, adding or updating a post requires loading the entire posts array, modifying it,
and writing the entire document back to disk.
•Because of the previous limitation, it’s best to keep the size of the posts array to no more
than a few hundred documents.

Linking documents in multiple tables

Advantages of using multiple tables:

• Operations on authors and posts don’t require loading the data for every
post for a given author into memory.

• There is no limitation on the number of posts, so this approach is more
suitable for large amounts of data.

Disadvantages of using multiple tables:

• The queries linking the data between the authors and their posts tend to
be more complicated.

• With this approach you cannot atomically update both the author data
and the posts data.

ReQL

Aidan Pace

NoSQL With a Twist!

•Embeds into programming language

•Chainable

• Server executed

•Unstructured Data

Operates On JSON Documents

Results Are JSON Documents Too

While the results of most

queries are very obviously

going to be JSON documents,

this holds true for all

operations, including inserts,

deletions, and updates

Official

Drivers

Community Supported

Drivers

Chaining

• Examples

Insertion / Deletion

Delete or Replace?

•Delete() reserved for documents, tables,
and databases

•Replace() used for changing or remove fields
in an existing document

Plucking

Filtering

Branch Logic

Bobby.age

> 25 ?

Create

Table:

retired

Insert into

Retired:

Bobby

Update

Bobby.age

= 26

True

False

Table Joins

.zip()

Aggregate Functions

• Group

• Count

• Sum

• Avg

• Min

• Max

• Distinct

Map / Reduce

• Used to perform operations on large amounts of
documents

• Map will transform each element it affects to something
else depending on its function

• Reduce will perform an operation on each mapped
element and produce a single value from a sequence of
operations

Map / Reduce cont.

Changefeeds?

• Push model vs. pull model

• Allows subscriptions to elements with the changes()
function

• Will push results that have the form:

Examples

A Java Example

• Uses both changefeeds and GPS coordinates to monitor a
table for updates in geospatial range to ‘Bobby’

Changefeeds

N

Applications

Chang Xu

When Is RethinkDB A Good Choice?

• Applications could benefit from real-time data feeds

• Use cases include:
• Collaborative web and mobile apps

• Streaming analytics apps

• Multiplayer games

• Real-time marketplaces

• Connected devices

When Is RethinkDB NOT A Good Choice?

• ACID support or strong schema enforcement is required
• better off using a relational database like MySQL or PostgreSQL

• Deep, computationally-intensive analytics
• better off using a system like Hadoop or a column-oriented

store like Vertica

• High write availability is critical
• better off with a Dynamo-style system like Riak

Who Is Using RethinkDB?

• Technology startups, consulting studios

• Over 100,000 developers, hundreds of contributors

Jive Software

• A provider of business communication and collaboration
solutions

• Uses RethinkDB to power its reactive business messaging
app Chime

Jive Software

• Problem: requires real-time transaction and data
consistency

• Solution: found RethinkDB capable of achieving these
demands and easy to create powerful queries with the
ReQL

• Story available on YouTube

https://youtu.be/FyIdZLV4YVo?list=PLeOf6NJfdgGOxIXNjShlShNgshy4AXr91

Lendio

• Lendio helps small business owners find and secure loans
for their companies

• Uses RethinkDB to process data from their clients and
match loan recommendations

Lendio

• Problem: process real-time data from borrowers and
lenders, avoiding the overhead incurred by polling

• Solution: RethinkDB’s changefeeds automatically push
data to clients in real-time, and offers a compelling mix
of relational features and schema less flexibility

• Story available on YouTube

https://youtu.be/KYH8kn5sIEU?list=PLeOf6NJfdgGOxIXNjShlShNgshy4AXr91

NASA

• EVA (Extra-Vehicular Activity) office at NASA is working
on integrating spacesuit data that stored in old database
systems into a new database

• Uses RethinkDB as the new document based No-SQL
database system

NASA

• Problem: while spacesuit data is migrating from dozens
of very old databases to the new infrastructure, day to
day operations/activities must not be affected

• Solution: a strategy designed around RethinkDB’s
changefeeds allows system to be built with data sync

• Story available on RethinkDB Website and YouTube

https://youtu.be/YPUvv6dEDLc?list=PLeOf6NJfdgGOxIXNjShlShNgshy4AXr91

RethinkDB Seems to Have A Great Future

• But…

Sad News

Why RethinkDB Failed

Possible Causes

• Cruel competition

• Trivial market place

• Lack of business mode

• Run out of money

Future of RethinkDB

• RethinkDB will continue to be an open-source project

Slava Akhmechet

Cofounder of RethinkDB

Let It Go

• Let it go, let it go. Can’t think about it anymore…

Thank You

