
Group13: Siddhant Deshmukh, Sudeep Rege, 
Sharmila Prakash, Dhanusha Varik



mongoDB (humongous) 



Introduction

• What is MongoDB?

• Why MongoDB?

• MongoDB Terminology

• Why Not MongoDB?



What is MongoDB?
DOCUMENT 
STORE



Why MongoDB?



Popularity of MongoDB



MongoDB Terminology



MongoDB is not all good...

It does not support

• Joins

• Transactions across multiple collections

• Data size in mongoDB is higher document 

store field names

Atomic transactions supported at single 

document level

REASON???



Document Stores

• Data Model

• Storage Model

• Collections

• Capped Collections



Data Model Design

• Embedded data Models

• Normalized data Models



Embedded Data Model



Normalized Data Model



How is the data stored?

BSON

• Lightweight

• Traversable 

• Efficient





Sample JSON Data



MongoDB Object Id format



MongoDB Collections

• MongoDB stores documents in collections



Capped Collections



• Circular buffers

FRONT A[2]

REAR A[0]

Capped Collections



Humongous data: 2 main 
needs/issues?

1. Data backup 

2. Scaling



Replication and Sharding in 
mongoDB

SHARDING

REPLICATION



Replication

Replica set

• 1 primary node

• 1+ secondary nodes

• Optional Arbiter node

Minimum replica set configuration



Replication

Replica set

• 1 primary node

• 1+ secondary nodes

• Optional Arbiter node

Replica set with 1 primary and 2 secondaries



Replication

Data synchronization
• oplog: capped collection

Write acknowledgement
• primary only (default)
• custom

Read concern
• local (default)
• majority



Replication

Automatic failover

• Heartbeats

• Elections
• Priorities

• Rollbacks



Replication

Replica set secondary members

• Priority 0 - can’t be primary. Use: standbys
• Hidden
• Delayed 



Replication
Replica set secondary members

• Priority 0 - can’t be primary. Use: standbys
• Hidden - priority 0 + invisible to client
• Delayed



Replication
Replica set secondary members

• Priority 0 - can’t be primary. Use: standbys
• Hidden - Priority 0 + invisible to client
• Delayed - Hidden. Historical snapshot. Use: error 

recovery



Sharding

• Horizontal portioning

• Distributes data over 

multiple servers/shards

• Done at Collection level



Sharding

Sharded cluster

• Shard

• “mongos” query 

router

• Config server



Sharding

• Shard key - used to partition collection

• Range based partitioning

• Hash based partitioning



Sharding

• Shard key - indexed field

• Range based partitioning

• Hash based partitioning



Sharding

Data balancing

• Splitting

• Balancing



Querying in MongoDB

• Uses mongo shell for querying data

• DB and Collections created automatically when first 

referenced

• show dbs                           list of dbs

• show collections                             collections in db



CRUD operations

• To insert document in a database:

e.g. db.gryffindor.insert({
name: "Harry Potter",
age: 11

})

db.collection.insert(document)

Collection

Document



CRUD operations

• To search in collection:

• Filter => Boolean expression 

e.g {‘age’ : 14}  or {‘age’ : { $lt : 18}}

• $lt, $gt, $in, $nin, $all  etc..

• Projection => Fields to display

e.g. db.gryffindor.find( { name: "Harry Potter" } )

db.collection.find(<filter>,<projection>)



CRUD operations

• To update a document :

• Applies update operation to matches

• $set, $unset, $inc,  $dec, $rename

e.g. db.gryffindor.update( { name: "Harry Potter" },

{ age: 19 } )

db.collection.update(<filter>,<upd_oper>)

Update operation

filter



CRUD operations

• To delete a document:

• To delete all documents in collection:

e.g. db.gryffindor.remove({age: { $gt: 18 }})

db.collection.remove(<filter>)

db.collection.drop()

filter



Document Relationships 

• 1-to-many relationships allowed

• Embedding or Referencing

• Embed one document inside 

another

• Link two docs by using their ids



Document Relationships

id : 14

id : 14

Embedding Referencing

{ "_id" : “896”,
"name" : “The Goblet of Fire”, 
“author" : 

{
“name” : “J.K. Rowling”,
“age”   : 51

}   
} 

db.collection.find(“author.name” : “J.K. Rowling”)

{ “id” : “886”,
“name” : “The Goblet Of Fire”,
“author_id” : “896” }

{ “id” : “896”,
“name” : “J. K. Rowling”,
“age” : 51 }



Advanced features

• Geospatial queries :

• Objects with GeoJSON format

• $near, $geoWithin, $geoIntersects

• Text search:

• Using text indexes

• $text => Full-text search

• Indexing:

• On single, compound, embedded, arrayed obj



Aggregation in MongoDB

• 3 ways to aggregate !!

• group(), count(), distinct() etc…

• Simple grouping of documents

• Map/Reduce framework

• Runs inside MongoDB

• Outputs to document or collection



MapReduce in MongoDB

• Two functions: Map and Reduce

• Map => emits a key-value pair from processed document    

• Reduce => Reduce all key-value pairs to single object



Aggregation pipeline

• Multi-stage pipeline 

• Faster than MapReduce

• More flexible

• Support for sharded 

clusters



Aggregation framework

• You can

• reshape document structure

• filter documents 

• remove embedded documents

• even ( kind of ) create joins on 

docs

All in aggregate!



Where is MongoDB used?





Schema design - Real world use 
case

• Message Inbox

• History

• Multiple Identities



Message Inbox

Design Goals :

• Efficiently send new messages to recipients

• Efficiently read inbox



Considerations

• Each “inbox” document is an array of messages

• Append a message onto “inbox” of recipient

• Bucket inboxes 

• Can shard on recipient, so inbox reads hit one shard

• 1 or 2 documents to read the whole inbox





History



Design Goals

• Need to retain a limited amount of history 

• e.g.   Hours, Days, Weeks

• Need to query efficiently by

• match

• ranges



Considerations

• TTL



Multiple Identities

Design Goals :

• Ability to look up by a number of different 

identities 

• Username

• Email address

• FB Handle

• LinkedIn URL



Approaches

• Identifiers in a single document

• Separate Identifiers from Content



Single Document by User







Document per Identity





Real World Use Cases





Reasons  

Their arguments center around a few core themes:

• Product Maturity

• Design Decisions 

• Wrong Trade-Offs



Less Suited Applications

• Complex transactions such as 

banking systems and accounting.

• Traditional relational data 

warehouses

• Problem requiring SQL



Best Suited Applications

• Archiving and Event Logging

• Content Management System

• Gaming

• Mobile

• Real time stats/Analytics



To mongoDB or not to 
mongoDB?


