
Group 2
Archana Nagarajan, Krishna Ramesh, Raghav

Ravishankar, Satish Parasaram

ADVANCED DATABASES CIS 6930
Dr. Markus Schneider

Drawbacks of RDBMS

● Vertical Scaling.
● ACID doesn’t always hold good for Big Data.
● Sharding becomes very difficult.
● High Availability is complicated.

Master Slave

Replication Lag

Why No SQL ?

● Non- Relational.
● Mostly Open Source.
● Easy Scalability and High Efficiency.
● No need to develop a detailed database model.
● Stores large volumes of data.
● Capable of performing agile operations.
● Object oriented programming.

Definition of Cassandra

Cassandra is a

● Distributed
● High Performance
● Extremely scalable
● Fault tolerant
● Post relational database solution

History

Bigtable,
2006

Dynamo,
2007

OpenSource,
2008

● Facebook released Cassandra as an open-source project on

Google Code in July 2008.

● In March 2009 it became an Apache Incubator project.

● On February 17, 2010 it graduated to a top-level project.

How Big is Cassandra Today?

Key Features of Cassandra

● Distributed and Decentralized.
● Linear Scalability.
● Fault Tolerance.
● Handles huge amounts of data.
● Horizontal Scaling.
● Replication.
● Extremely Fast.

Distributed Architecture: Node

● Reads and Writes Data.
● Data Storage.
● Has an array of commands.

Node

Distributed Architecture : Ring

Node
1

Node
2

Node
5

Node
4

Node
3

41 - 60

Client

● Clustering System.
● Token Ranges : -2^63 to 2^63-1.
● Partitioner.

Distributed Architecture: Ring

Node
1

Node
2

Node
5

Node
4

Node
3

41 - 60

● Co-ordinator.
● Four States : Joining , Leaving , Up and Down.
● Peer to Peer.
● V nodes.

Data: 30

Data: 30

Distributed Architecture:Gossip

Node
1

Node
2

Node
5

Node
4

Node
3

Node
1

Node
2

Node
5

Node
4

Node
3

Node
1

Node
2

Node
5

Node
4

Node
3

Fig 1
Fig 2

Fig 3

Information is thus, sent to

all the nodes in the cluster.

Distributed Architecture: Gossip

Node 1

Endpoint state

Generation = 5

Version = 22

Application State:

Status = Normal

Dc = dc - west

Rack = rack1

Schema = c2a2b

Load = 100.0

Severity = 0.75

Distributed Architecture: Gossip

Node 2

EP: 127.0.0.1

HB: 100:20

LOAD: 86

EP: 127.0.0.2

HB: 175:40

LOAD: 68

EP: 127.0.0.1

HB: 100: 15

LOAD: 86

EP: 127.0.0.2

HB: 175: 50

LOAD: 68

SYN

End:Gen:Ver

127.0.0.1 : 100 : 20

127.0.0.2 : 175 : 40

ACK

End : Gen : Ver

127.0.0.1 : 100:15

127.0.0.2 : 175:50

Node 1 Node 2

Digest

Distributed Architecture: Snitch

● Determines each node's rack and data center.
● The topology of the cluster.
● Configured in Cassandra.yaml.

There are mainly 2 groups of snitches. They are as follows:

1) Cloud Based Snitches.
2) Regular Snitches.

Characteristic Features of Cassandra

Replication Factor

Client

Create KEYSPACE socialdata

With REPLICATION = {

‘class’ : ‘SimpleStrategy’,

‘replication_factor’ : ‘1’

}

• Similar to MySQL Sharding

• Point of Failure, Data loss

• Node reboot, network failure,

Power loss, natural calamities

Update patches

• What about RF=2?

• Simple Strategy

Node1

Node 2

Node 3Node 4

Node 5

41 - 60

Client

• Data replicated to 3

nearby nodes

• Node can be down

• Is RF=3 better than RF=2?

• Odd values of RF better

• RF = 3 used in production

Replication Factor

Node1

Node 2

Node 3Node 4

Node 5

41 - 60

Client

New Coordinator

• Node 3, Node 5 are down

• Coordinator is down

• All nodes equally likely to

be coordinator

• New coordinator randomly

selected

• Data fetched from Node 4X

X

Replication Factor

Network Topology Strategy

Replication Factor

Create KEYSPACE socialdata

With REPLICATION = {

‘class’ = ‘NetworkTopologyStrategy’, ‘DC-East’ : ‘2’,

‘DC-West’ : ‘3’ }

DC-East DC-West

Coordinator

Remote Coordinator

• Can lose a node

• Can lose an entire DC and be online

• Remote Coordinator

• High Availability

• cassandra.yaml

Consistency Levels
CL = 1

Coordinator chooses the closest node

to respond, acknowledge

CL = QUORUM,

51% of replicas to respond back

RF = 2, RF = 3

49% of nodes can be down

CL = ALL, Strong consistency

If any node down, no data

Digest, Checksum

Consistency Levels in Writes

and Reads

CL = ALL WRITE,

CL = ONE READ

RF=3, CL = WRITE QUORUM, READ

QUORUM, ATLEAST ONE OVERLAP

RF=3, CL=QUORUM ACROSS DCs leads

to latency

Consistency Levels across data centers
Create KEYSPACE socialdata

With REPLICATION = {

‘class’ = ‘NetworkTopologyStrategy’, ‘DC-East’ : ‘3’,

‘DC-West’ : ‘2’ }

DC-East DC-West

Coordinator

Remote Coordinator

CL = LOCAL_QUORUM,

QUORUM = latency of 100ms for

response

Handoff

Hinted Handoff

Node1

Node 2Node 5

Node 4 Node 3

41 - 60

• During Inserts, Updates,

Deletes, RF=3

• Node 2 is down

• Inconsistency handled

• Hints are stored on the

Coordinator, Node 5

• Node 2 is back up and

Resyncs its data

• cassandra.yaml

hinted_handoff default

set to 3 hours

X
Hints

Read Repair

RF=3, CL = ALL

Pk,91, Sep 1 2016 5PM

Pk,95, Sep 1 2016 6PM

Pk,95, Sep 1 2016 6PM

• Select operation

• Digest and checksum dint

match

• Request for timestamp

• Update nodes with latest

value based on timestamp

Cassandra Write Path

UID3451 Ryan WI 1473323778

Commit Log

Writes to disk

Incoming Insert data

UID5121 Charles TX 1473323770

UID1348 Robert TX 1473323772

UID3451 Ryan WI 1473323778

UID9632 Michael FL 1473323775

Memtable - Partition Key 58

Memory

Disk
SSTable – Sorted String Table

Flush

ID1 UID5121 Charles TX 1473323770

ID2 UID1348 Robert TX 1473323772

ID3 UID3451 Ryan WI 1473323778

ID4 UID9632 Michael FL 1473323775

1

2

3

Cassandra Write Path

Memory

Disk

UID2101 Kevin FL 1473323780

UID2109 Richard FL 1473323782

UID3451 Ryan NY 1473323788

UID2191 Steven CA 1473323785

Memtable – Partition Key 58

SSTable 1

ID1 UID5121 Charles TX 1473323770

ID2 UID1348 Robert TX 1473323772

ID3 UID3451 Ryan WI 1473323778

ID4 UID9632 Michael FL 1473323775

Flushed

ID5 UID2101 Kevin FL 1473323780

ID6 UID2109 Richard FL 1473323782

ID7 UID3451 Ryan NY 1473323788

ID8 UID2191 Steven CA 1473323785

SSTable 2

• Updates

• Deletes

• Tombstones

• gc_grace_seconds

SSTable 1

Cassandra Read Path

58

SSTable 2

SSTable 3

Reference : http://www.datastax.com

Cassandra Read Path - SSTable

Summary Index

Partition Index

Reference : http://www.datastax.com

Cassandra Read Path - SSTable

Key Cache

Reference : http://www.datastax.com

Cassandra Read Path - SSTable

Bloom Filter

92

36
58

• Determines probabilistically if a value is not

in a SSTable

• Gives false positives but zero false

negatives

• Eliminates need to search across multiple

SSTables

SSTable 1 SSTable 3 SSTable 2

Compaction
SSTable 1 SSTable 2

SSTable 3

Reference : http://www.datastax.com

Compaction
SSTable 1 SSTable 2

SSTable 3

Reference : http://www.datastax.com

• min_sstable_size 50Mb

• min_threshold 4 – Minimum number of SSTables required for
compaction
• max_threshold 32 – Maximum number of SSTables allowed for
compaction

• tombstone_compaction_interval – 86400secs

Compaction Strategy

CAP Theorem

Availability

Partition
Tolerance

Consistency

CassandraMySQL

Data Model

Column Oriented DBs

• The storage of data is column value wise
• Column values are mapped back to the row-keys

Column Families

• Resembles a table in RDBMS
• Each column family can have more than one column
• Number of columns can vary for different rows

Column Families

Data Model in Cassandra

• Hybrid between key-value store and column oriented databases
• Column family - analog of a RDBMS table
• Row - identified uniquely by a key, has values as columns, all

rows need not have same number of columns

Data Model in Cassandra (..contd)

•Keyspace - analog of a RDBMS schema, outermost container of
data.
•Number of column families in Keyspace is fixed.
•Most basic attributes of a Keyspace are - Replication factor,
Replica placement strategy

Data Distribution

• Rows are partitioned through a partition key which is the first
component of a primary key

• Two ways to partition:
• Random
• Ordered

CQL (Cassandra Query Language)

• Way to interact with Cassandra
• Syntax is very similar to that of SQL, but far less capable
• No joins, no subqueries

Queries

• Create Keyspace - CREATE KEYSPACE “users” WITH CREATE KEYSPACE
“KeySpace Name” WITH replication = {'class': ‘Strategy name’,
'replication_factor' : ‘No.Of replicas’};

• Consistency - CONSISTENCY QUORUM

• Capture - CAPTURE ‘dest_file.txt’

• Source - SOURCE ‘myfile.txt’

• Copy - COPY airplanes (name, mach, year, manufacturer) TO 'temp.csv'

Monitoring Cassandra Cluster

• Java Management Extension(JMX) can be used to monitor
Cassandra cluster

• Several JMX compliant tools are available

Applications

When to use Cassandra

● Highly scalable.

● Reliable cross-datacenter replication

● Excellent choice for real-time Analytics workload. Faster write operations

● Higher insertion rates

● Can be integrated with Hadoop, Hive and Apache Spark for Batch

Processing

● Tunable Consistency and CAP parameters.

Throughput comparison

Throughput for workload Read/Write Throughput for workload Read/Scan/Write

Tradeoffs

Read latency for workload Read/Write Write latency for workload Read/Write

• Transactions are not supported (ACID or otherwise)

• Eventual consistency isn’t sufficient always. Eg : Trading stocks.

• No support for ad-hoc queries

• Cannot perform complex queries

Drawbacks of Cassandra

Connecting applications to Cassandra : Drivers

• Drivers help connect the applications to Cassandra database

• Driver languages :

o Python

o Java

o C

o C++

o Ruby

o And many more.

• (Refer http://www.planetcassandra.org/apache-cassandra-client-drivers/)

• API’s are similar for all the languages

http://www.planetcassandra.org/apache-cassandra-client-drivers/
http://www.planetcassandra.org/apache-cassandra-client-drivers/

Setup

• Create a cluster object

• Use the cluster to obtain a session

• Session manages all the connections to the cluster

#connect to the cluster and the keyspace “sample”

from cassandra.cluster import Cluster

cluster= Cluster()

session=cluster.connect(‘sample’)

Session object listens to the changes in the cluster and the driver reacts

to the same

NetFlix - Challenges faced :

• Single datacenter meant single point of failure

• Users grew exponentially

• And every 2 weeks , the site was down for maintenance

What was required ?

• More reliable and fault tolerant data storage

• High availability of member information, streaming quality video data

in a more robust fashion

• Flexibility of streaming the video data from multiple devices

What Cassandra offered ?

• Created better business agility for Netflix.

• No downtime as there are no schemas.

• No fear of data loss because replication means no single point of

failure .

• Open-source model provided Netflix the flexibility to implement their

own backup, recovery system and replication strategy

Instagram : Shift from Redis to Cassandra

• Memory limitations!!

• Cut the costs to the point where they were paying around a quarter of

what they were paying before.

• Primarily used for fraud detection, newsfeed and inbox

Facebook : Why Cassandra

• Operational Requirement : Performance, Reliability, Efficiency, High

Scalability, Fault Tolerance.

• Cross datacenter replication

• Designed to address the storage needs of inbox search problem.

• Provided high write throughput

• Exploited the timestamp property provided by Cassandra

Facebook : Shift from Cassandra to HBase

• Eventual consistency model not suitable for the new messenger.

• Hbase – simpler consistency model

• High scalability and performance, auto load balancing.

• Hadoop – widely used by Facebook and HDFS being the distributed

file system for both Hadoop and Hbase.

