Observation: Structure of a research paper (in computer science) is always the same.

General structure
- <Title>
- <Affiliation>
- Abstract
- 1 Introduction
- 2 Related Work
- 3 … n <one or several chapters, “the meat of the paper”>
- <n+1> Conclusions and Future Work
- References

General rule: Write from the reader’s perspective and not from your perspective
Writing a Technical Document (II)

- **Title**
 - should be interesting, catchy, and concise
 - should summarize the whole paper in a few lines

- **Abstract**
 - should summarize the whole paper in a single paragraph
 - should indicate the problems covered
 - should describe the goals aimed at
 - should sketch the solutions proposed
Writing a Technical Document (III)

- Introduction
 - Purpose: summarize the paper, attract the reader to further read the paper
 - First paragraph: introduce the paper from a larger perspective, name application areas that are relevant for the paper
 - Second paragraph: narrow down to the problems covered by this paper
 - Third paragraph: describe the goals of the paper
 - Fourth paragraph: indicate the solutions
 - Fifth paragraph: description of the contents of the next sections
Related Work

- Result of a literature study
- Describe the state-of-the-art documented in the literature
- Define literature categories
- Classify the literature according to the categories
- For each literature category
 - For each reference
 - Summarize it briefly
 - Describe the strengths but especially the weaknesses of its concepts
 - Compare the strengths and weaknesses with those of your concepts
 - Show how your new concepts solve the weaknesses
Writing a Technical Document (V)

- “The meat of the paper”
 - Usually presented in one or more sections
 - Carefully explains the concepts and solutions of the problems
 - Determines the scientific quality of the paper
 - Impossible to describe general principles

- Conclusions and Future Work
 - Conclusions
 - summarize what the paper was about
 - say what the reader should have learned from the paper
 - Future work
 - gives an outlook to extensions of the paper
 - indicates open, related research problems
Writing a Technical Document (VI)

- References
 - are the result of a literature study
 - list the most important literature that is relevant for the topic of the paper
 - are all formatted according to certain style descriptions
 - number depends
 - on the kind of paper (e.g., journal article, conference paper)
 - on the number of available pages
Advanced Database Systems (I)

Data model

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints

- Examples of past and current data models
 - Relational model
 - Entity-Relationship data model (mainly for database design)
 - Object-based data models (object-oriented and object-relational)
 - Semi-structured data model (XML)
 - Other older models:
 - Network model
 - Hierarchical model
Advanced Database Systems (II)

Possible classification of advanced database systems (DBS) with respect to the underlying data model (in alphabetical order) provided by DB-Engines.com

<table>
<thead>
<tr>
<th>Content stores</th>
<th>Navigational DBMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document stores</td>
<td>Object oriented DBMS</td>
</tr>
<tr>
<td>Event Stores</td>
<td>RDF stores</td>
</tr>
<tr>
<td>Graph DBMS</td>
<td>Relational DBMS</td>
</tr>
<tr>
<td>Key-value stores</td>
<td>Search engines</td>
</tr>
<tr>
<td>Multivalue DBMS</td>
<td>Time Series DBMS</td>
</tr>
<tr>
<td>Native XML DBMS</td>
<td>Wide column stores</td>
</tr>
</tbody>
</table>

[Source: DB-Engines.com, accessed on August 28, 2016]
Calculating Ranked Popularity Scores for DBS (I)

- Ranking of database systems measured by their popularity.
- Measuring the popularity involves the following parameters:
 - Number of mentions of the system on websites:
 - Measured as number of results in search engine queries.
 - Search engines used: Google, Bing, Yandex.
 - In order to count only relevant results, the search string is “<system name> database”, e.g. "Oracle database".
 - General interest in the system:
 - Frequency of searches in Google Trends.
 - Frequency of technical discussions about the system:
 - Number of related questions and the number of interested users on the well-known IT-related Q&A sites Stack Overflow and DBA Stack Exchange.

[Source: DB-Engines.com, accessed on August 28, 2016]
Calculating Ranked Popularity Scores for DBS (II)

- Measuring the popularity involves the following parameters (continued)
 - Number of job offers, in which the system is mentioned
 - Number of offers on the leading job search engines *Indeed* and *Simply Hired*
 - Number of profiles in professional networks in which the system is mentioned
 - Use of *LinkedIn* and *Upwork* as the internationally most popular professional networks.
 - Relevance in social networks
 - Number of *Twitter* tweets in which the system is mentioned.

[Source: DB-Engines.com, accessed on August 28, 2016]
Calculating Ranked Popularity Scores for DBS (III)

- Measuring the popularity of database systems
 - Standardizing and averaging of the individual parameters
 - Mathematical transformations are performed in a way so that the distance of the individual systems is preserved
 - Meaning: When system A has twice as large a value in the DB-Engines Ranking as system B, then it is twice as popular when averaged over the individual evaluation criteria.
 - The popularity score is always a relative value and should be interpreted in comparison with other systems only.
 - The DB-Engines Ranking does not measure the number of installations of the systems, or their use within IT systems
 - One can assume that an increase of the popularity of a system (e.g. in discussions or job offers) precedes a corresponding broad use of the system by a certain time factor.
 - Thus, the DB-Engines Ranking can act as an early indicator.

[Source: DB-Engines.com, accessed on August 28, 2016]
Content Stores (I)

- Also called content repositories
- A content repository is a hierarchical content repository with support for structured and unstructured content (text, pictures, videos), full text search, versioning, transactions, and observations.
- They store data plus metadata
- Full implementation of the Content Repository for Java Technology API (JCR)
- Designed as a foundation of modern world-class web sites and other demanding content applications

[Source: DB-Engines.com, accessed on August 28, 2016]
Content Stores (II)

- 2 Systems in ranking

[Source: DB-Engines.com, accessed on August 28, 2016]
Document Stores (I)

- Also called document-oriented database systems
- Characterized by their schema-free organization of data
 - Records do not need to have a uniform structure, i.e., different records may have different columns.
 - The types of the values of individual columns can be different for each record.
 - Columns can have more than one value (arrays).
 - Records can have a nested structure.
- Document stores often use internal notations, which can be processed directly in applications, mostly JSON
- JSON (JavaScript Object Notation) is an open-standard format that uses human-readable text to transmit data objects consisting of attribute-value pairs.
- NoSQL databases: no or limited use of SQL, no table-based, relational database structure

[Source: DB-Engines.com, accessed on August 28, 2016]
Document Stores (II)

- 42 systems in ranking, only the first 15 systems are shown graphically

DB-Engines Ranking of Document Stores

[Graph showing the ranking of document stores over time]

[Source: DB-Engines.com, accessed on August 28, 2016]