Canonical cover

- In general, distinct equivalent sets of FDs exist. Two sets F and G of FDs are called \textbf{equivalent} iff $F^+ = G^+$ holds.

- Definition of equivalence is convincing, because the equality of the closures for F and G implies that the same FDs can be inferred from F and G.

- For a given set F of FDs there exists a unique closure F^+.

-
 drawbacks of the closure F^+:
 - in general very many FDs in F^+ so that the handling with F^+ becomes difficult
 - large redundant set of FDs that has to be checked as consistency tests for database modifications

- goal: computation of a most possible small set of FDs which are equivalent to F
 \rightarrow less effort for testing whether a new or updated tuple violates a FD
- F_c is called **canonical cover** of a given set F of FDs, if holds:
 - $F_c^+ = F^+$
 - In F_c there are no FDs $A \rightarrow B$ where A or B contain *extraneous* attributes, i.e., they are reduced as much as possible.

 We cannot omit any attribute on the **left** sides of any FD, otherwise we would change the semantics:

 \[\forall a \in A : (F_c - \{A \rightarrow B\} \cup \{(A - \{a\}) \rightarrow B\})^+ \neq F_c^+ \]

 Example: schema $\text{supplier}(\text{sname, saddr, product, price})$ and FDs $\{\text{sname, product}\} \rightarrow \{\text{saddr}\}$ and $\{\text{sname, product}\} \rightarrow \{\text{price}\}$. Can we omit one of the attributes on the left sides?

 We cannot omit any attribute on the **right** sides of any FD, otherwise we would change the semantics:

 \[\forall b \in B : (F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\})^+ \neq F_c^+ \]

 - Each left side of the FDs in F_c occurs only once, i.e.,

 if $A \rightarrow B$ and $A \rightarrow C$ hold, then in F_c only the FD $A \rightarrow B \cup C$ is used.
algorithm for computing the canonical cover

- **step 1:** For each FD \(A \rightarrow B \in F \) perform a **left reduction**: check for all \(a \in A \) whether the attribute \(a \) is extraneous, i.e., whether
 \[
 B \subseteq \text{AttrClosure}(F, A \setminus \{a\})
 \]
 holds. If this is the case, replace \(A \rightarrow B \) by \((A \setminus \{a\}) \rightarrow B\).

- **step 2:** For each remaining FD \(A \rightarrow B \in F \) perform the **right reduction**: check for all \(b \in B \), whether the attribute \(b \) is extraneous, i.e., whether
 \[
 b \in \text{AttrClosure}(F \setminus \{A \rightarrow B\} \cup \{A \rightarrow (B \setminus \{b\})\}, A)
 \]
 holds. If this is the case, replace \(A \rightarrow B \) by \(A \rightarrow (B \setminus \{b\})\).

- **step 3:** Remove the FDs of the form \(A \rightarrow \emptyset \) which perhaps have been produced in the previous step.

- **step 4:** By using the union rule replace all FDs of the form \(A \rightarrow B_1, \ldots, A \rightarrow B_n \) by
 \[
 A \rightarrow B_1 \cup \ldots \cup B_n
 \]
example
- Given the set $F = \{A \rightarrow B, B \rightarrow C, A \cup B \rightarrow C\}$.
- step 1: $A \cup B \rightarrow C$ is replaced by $A \rightarrow C$, because B on the left side is extraneous (C is already functionally dependent from A by the first two FDs).
- step 2: $A \rightarrow C$ is replaced by $A \rightarrow \emptyset$, because C on the right side is extraneous. This results from the fact that $C \subseteq AttrClosure(\{A \rightarrow B, B \rightarrow C, A \rightarrow \emptyset\}, A)$.
- step 3: $A \rightarrow \emptyset$ is removed. We obtain: $F_c = \{A \rightarrow B, B \rightarrow C\}$.
- step 4: Nothing to be done.