Computation of FDs

- Goal: Compute for a given set F of FDs all **logically implied** FDs.

- Let F^+ be the set of all FDs that can be logically implied from the FDs in F. F^+ is called the **closure** of F.

- Let R be a relation schema, F a set of FDs and $A, B, C \subseteq R$.

 The following **inference rules** are used to compute F^+ (**Armstrong’s axioms**):
 - **reflexivity rule**: Let $B \subseteq A$. Then always $A \rightarrow B$ (special case: $A \rightarrow A$) holds.
 - **augmentation rule**: If $A \rightarrow B$ holds, then also $A \cup C \rightarrow B \cup C$ holds.
 - **transitivity rule**: If $A \rightarrow B$ and $B \rightarrow C$ holds, then also $A \rightarrow C$ holds.

- It can be formally shown that these rules are **sound** and **complete**.
 - **soundness**: Inferred FDs hold for all relations of this schema.
 - **completeness**: All valid FDs in F^+ can be logically implied with these rules.
Although Armstrong’s axioms are complete, it is comfortable to add three further inference rules:

- **union rule**: If \(A \rightarrow B \) and \(A \rightarrow C \) holds, then also \(A \rightarrow B \cup C \) holds.
- **decomposition rule**: If \(A \rightarrow B \cup C \) holds, then also \(A \rightarrow B \) and \(A \rightarrow C \) holds.
- **pseudotransitivity rule**: If \(A \rightarrow B \) and \(B \cup C \rightarrow D \) holds, then also \(A \cup C \rightarrow D \) holds.

example:

- *supplier* relation with the schema *supplier*(sname, saddr, product, price)
- Valid FDs: \(\{\text{sname}\} \rightarrow \{\text{saddr}\} \), \(\{\text{sname}, \text{product}\} \rightarrow \{\text{price}\} \), \(\{\text{sname}\} \rightarrow \{\text{sname}\} \), \(\{\text{sname}, \text{product}\} \rightarrow \{\text{product}\} \)
- It is to be shown: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}\} \) is also satisfied.

 We have: \(\{\text{sname}\} \rightarrow \{\text{saddr}\} \).

 Due to the augmentation rule we obtain: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}, \text{product}\} \).

 Due to the decomposition rule we hence obtain: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}\} \).
computing the closure F^+

$F^+ = F$

repeat

 for each functional dependency f in F^+ do
 apply reflexivity and augmentation rules to F^+
 add the resulting functional dependencies to F^+
 od;

 for each pair of functional dependencies f_1 and f_2 in F^+ do
 if f_1 and f_2 can be combined using transitivity then
 add the resulting functional dependency to F^+
 fi
 od;

until F^+ does not change any further
Containment of a FD in a closure F^+

- question: Let F be a set of FDs and $A \rightarrow B$ a FD. Does $A \rightarrow B \in F^+$ hold?
- problem: explicit calculation of F^+ is too expensive
- instead: calculation of the **closure** A^+ of the attribute set A regarding the set F
 - A^+ consists of all attributes that are functionally determined by A.
 - If $B \subseteq A^+$ holds, then also $A \rightarrow B \in F^+$ holds.
- algorithm for inferring A^+

 algorithm AttrClosure(F, A)

 // input: a set F of FDs and a set A of attributes
 // output: the complete set A^+ of attributes for which holds: $A \rightarrow A^+$

 $A^+ := A$;
 repeat
 Old$A^+ = A^+$;
 foreach FD $B \rightarrow C \in F$ do
 if $B \subseteq A^+$ then $A^+ := A^+ \cup C$;
 until $A^+ = OldA^+$;
 return A^+
Example for Computing the Attribute Closure

Notation: For the set \{A, C, E\} we permit to write ACE (juxtaposition) to be able to omit braces. In particular, \{D\} is written as D.

Example: Let \(R(A, B, C, G, H, I) \) be a relation schema, and let \(F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CI \rightarrow G\} \) be a set of FDs.

Task: Compute \(AG^+ \).

Solution: We use the algorithm AttrClosure and initialize \(AG^+ \) with \(AG \).

In the loop we set \(Old_AG^+ := AG \) and check all FDs whether they can contribute to \(AG^+ \).

First we take \(A \rightarrow B \) and check whether \(A \subseteq AG^+ \) holds. This is the case. Therefore, we set \(AG^+ := AG^+ \cup B = ABG \) (due to transitivity).

Next, we take \(A \rightarrow C \). Using the same argument as before, we obtain \(AG^+ := AG^+ \cup C = ABCG \).

Next, we take \(CG \rightarrow H \). We find that \(CG \subseteq AG^+ \) holds. We get \(AG^+ := AG^+ \cup H = ABCGH \).

Next we take \(CI \rightarrow G \). We find that \(CI \not\subseteq AG^+ \) holds.

Since \(Old_AG^+ \neq AG^+ \) holds, we perform a second loop. We set \(Old_AG^+ \) to \(AG^+ \), that is, \(Old_AG^+ := ABCGH \). We see soon that no FD from \(F \) can increase \(AG^+ \). This means that \(Old_AG^+ = AG^+ \) holds, the algorithm terminates, and we get \(AG^+ := ABCGH \).