- **unique** expresses that this attribute is a candidate key. If a candidate key is formed by several attributes $A_1, ..., A_n$, this is specified by the integrity constraint `unique(A_1, ..., A_n).

Creation of a relation schema

- in SQL no relations but tables (duplicates allowed)
- creation of a schema with the aid of the clause

  ```
  create table R(A_1 D_1, A_2 D_2, ..., A_n D_n,
                  [< integrity constraint_1 >, ..., < integrity constraint_k >])
  ```

 R relation name, A_i name of an attribute in the schema of relation R, D_i domain of A_i

- in BNF notation:

  ```
  create table <relation name>(<relation comp> [, <relation comp>]*)
  ```

 `<relation comp> ::= <column definition> | <integrity constraint>

 `<column definition> ::= <attribute name> <type> [<default value> | not null | unique]

 `<default value> ::= [default <literal> | null]

 The exact treatment of integrity constraints is discussed later.
integrity constraints

primary key \((A_{j1}, \ldots, A_{jm})\)

The attributes \(A_{j1}, \ldots, A_{jm}\) form the primary key of \(R\).

delete example: university schema (with incomplete integrity constraints)

```sql
create table students
  (reg-id int not null,
   name varchar(30) not null,
   sem int,
   primary key (reg-id))

create table professors
  (pers-id int not null,
   name varchar(30) not null,
   room int unique,
   rank char(2),
   primary key (pers-id))
```
create table assistants

 (pers-id \hspace{1em} \textbf{int not null},
 name \hspace{1em} \textbf{varchar}(30) \hspace{0.5em} \textbf{not null},
 room \hspace{1em} \textbf{int} \hspace{0.5em} \textbf{unique},
 boss \hspace{1em} \textbf{int},
 \textbf{primary key} \hspace{0.5em} \text{(pers-id)},
 \textbf{foreign key} \hspace{0.5em} \text{(boss)} \hspace{0.5em} \textbf{references} \hspace{0.5em} \text{professors(pers-id))}

create table lectures

(id \hspace{1em} \textbf{int not null},
 title \hspace{1em} \textbf{varchar}(30),
 credits \hspace{1em} \textbf{int},
 held_by \hspace{1em} \textbf{int},
 \textbf{primary key} \hspace{0.5em} \text{(id)},
 \textbf{foreign key} \hspace{0.5em} \text{(held_by)} \hspace{0.5em} \textbf{references} \hspace{0.5em} \text{professors(pers-id))}

create table attends

(reg-id \hspace{1em} \textbf{int not null},
 id \hspace{1em} \textbf{int not null},
 \textbf{primary key} \hspace{0.5em} \text{(reg-id, id)},
 \textbf{foreign key} \hspace{0.5em} \text{(reg-id)} \hspace{0.5em} \textbf{references} \hspace{0.5em} \text{students(reg-id),
 foreign key} \hspace{0.5em} \text{(id)} \hspace{0.5em} \textbf{references} \hspace{0.5em} \text{lectures(id))}
create table is_precondition_of
 (predecessor int not null,
 successor int not null,
 primary key (predecessor, successor),
 foreign key (predecessor) references lectures(id),
 foreign key (successor) references lectures(id))

create table tests
 (reg-id int not null,
 id int not null,
 pers-id int not null,
 grade numeric(2,1),
 primary key (reg-id, id, pers-id),
 foreign key (reg-id) references students(reg-id),
 foreign key (id) references lectures(id),
 foreign key (pers-id) references professors(pers-id))
Change of a relation schema

- adding a new attribute (a new column) by the clause
 - `alter table <relation name> add <column definition>`
 - value `not null` is only allowed if a default value is specified

- deleting an attribute (a column) from a relation by the clause
 `alter table <relation name> drop <column definition>`

Deletion of a relation schema

- `drop table <relation name>`
- deletion of schema and relation instance

Deletion of a relation

- `delete from <relation name>`
- only the relation instance but not the schema is deleted
Creation of an index

- The goal of indexes is to improve query response time.
- An index relates to one or several attributes.
- A measure for the efficiency is in general the number of page accesses to the hard disc.

- **create [unique] index** `<index name>` **on** `<relation name>`
 `(〈attribute name〉 [〈order〉] [, 〈attribute name〉 [〈order〉]]*)` [cluster]
 - `<order> ::= Asc|Desc`
 - **unique**: for all indexed attribute names two tuples with the same values forbidden
 ⇒ attribute fulfil key condition
- **cluster**: The tuples of the relation are actually inserted into the index structure and not only links to the tuples.
 ⇒ only one cluster index per relation
- example: **create unique index** room_index **on** professors (room)

Deletion of an index

- **drop index** `<index name>`