Information and Database Management Systems I (CIS 4301)
(Spring 2017)

Instructor: Dr. Markus Schneider

TA: Yang Peng

Exam 2 Part 1 Solutions

Name:
UFID:
Email Address:

Pledge (Must be signed according to UF Honor Code)

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Signature

For scoring use only:

<table>
<thead>
<tr>
<th>Question</th>
<th>Maximum</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Question 2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (Relational Algebra) [25 points]

Let \(R(A, B) \) be a relation with \(r > 0 \) tuples, and let \(S(B, C) \) be a relation with \(s > 0 \) tuples. We assume that \(A, B, \) and \(C \) have the same data type (that is, domain). We make no assumptions about keys. For each of the following Relational Algebra expressions, in terms of \(r \) and \(s \), determine the \textit{minimum} and \textit{maximum number of tuples} that can be found in the result relation of the evaluated expression (“Minimum: …”, “Maximum: …”). Answers have to be provided in mathematical notation in terms of \(r \) and \(s \). Answers that are exclusively textual will not be accepted. Comment precisely on necessary conditions or assumptions for each number determined.

1. \(R \cup \rho_{T(A,B)}(S) \) [5 points]

 [Comment: The term \(\rho_{T(A,B)}(S) \) renames \(S \) into \(T \) and the attributes \(B \) and \(C \) of \(S \) into \(A \) and \(B \) to make both operand schemas of the union operator compatible.]

 Minimum: \(\max(r, s) \) (if one relation is a subset of or equal to the other relation)
 Maximum: \(r + s \) (if the relations are disjoint)

 A term that covers both the minimum number and the maximum number of tuples and precisely yields the result is \(r + s - |R \cap S| \).

2. \((R \bowtie R) \bowtie R\) [4 points]

 Minimum: \(r \) (the expression yields \(R \))
 Maximum: \(r \) (the expression yields \(R \))

3. \(\pi_{A,C}(R \bowtie S) \) [6 points]

 Minimum: \(0 \) (if \(\pi_B(R) \cap \pi_B(S) = \emptyset \))
 Maximum: \(r \cdot s \) (if \(\pi_B(R) = \pi_B(S) \) and \(|\pi_B(R)| = |\pi_B(S)| = 1 \))

4. \(\sigma_{A>B}(R) \cup \sigma_{A>B}(R) \) [4 points]

 Minimum: \(0 \) (if the \(A \) value is equal to the \(B \) value in each tuple of \(R \))
 Maximum: \(r \) (if the \(A \) value is unequal to the \(B \) value in each tuple of \(R \))

5. \(\pi_B(R) - (\pi_B(R) - \pi_B(S)) \) [6 points]

 Minimum: \(0 \) (if \(\pi_B(R) \cap \pi_B(S) = \emptyset \))
 Maximum: \(\min(r, s) \) (if \(|\pi_B(R)| = r, |\pi_B(S)| = s \), and \(\pi_B(R) \subseteq \pi_B(S) \) or \(\pi_B(R) \supseteq \pi_B(S) \))
Question 2 (Relational Algebra) [25 points]

Consider the following database schema:

- **Employee** (personName: string, street: string, city: string)
- **Work** (personName: string, companyName: string, salary: integer)
- **Company** (companyName: string, city: string)
- **IsManagedBy** (personName: string, managerName: string)

Give an expression in the relational algebra to express each of the following queries.

1. Find the names of all managers who work for Google. [3 points]
 \[\pi_{\text{personName}} (\sigma_{\text{companyName} = 'Google'} \land \text{Work.personName} = \text{IsManagedBy.managerName} (\text{Work} \bowtie \text{IsManagedBy})) \]

2. Find the names of all employees who live in the same city as their managers. [5 points]
 \[\pi_{\text{personName}} ((\text{Employee} \bowtie \text{IsManagedBy}) \bowtie \text{managerName} = \text{employee2.personName} \land \text{Employee.city} = \text{employee2.city} (\rho_{\text{employee2}} (\text{Employee}))) \]

3. Find the highest salary among employees who work for Google. [5 points]
 \[\rho_{\text{Work2}} (\text{Work}) \]
 \[\pi_{\text{Work.salary}} (\sigma_{\text{Work.companyName} = 'Google'} (\text{Work})) - \pi_{\text{Work.salary}} (\sigma_{\text{Work.companyName} = 'Google'} \land \text{Work2.companyName} = 'Google' \land \text{Work.salary} < \text{Work2.salary} (\text{Work} \bowtie \text{Work2})) \]

4. Assume a person may work for more than one company. Find the names of all employees who work for all the companies ‘Jim Green’ works for [6 points]
 \[\pi_{\text{personName}} (\text{Work} \div (\pi_{\text{companyName}} (\sigma_{\text{personName} = 'Jim Green'} (\text{Work})))) \]

5. Find the names of all employees who earn more than every employee of Google. [6 points]
 \[\rho_{\text{Work2}} (\text{Work}) \]
 \[\pi_{\text{personName}} (\text{Work}) - \pi_{\text{Work.personName}} (\sigma_{\text{Work.salary} < \text{Work2.salary} \land \text{Work2.companyName} = 'Google'} (\text{Work} \bowtie \text{Work2})) \]