Example for Computing the Attribute Closure

Notation: For the set \{A, C, E\} we permit to write ACE (juxtaposition) to be able to omit braces. In particular, \{D\} is written as D.

Example: Let \(R(A, B, C, G, H, I)\) be a relation schema, and let \(F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CI \rightarrow G\}\) be a set of FDs.

Task: Compute \(AG^+\).

Solution: We use the algorithm AttrClosure and initialize \(AG^+\) with \(AG\).

In the loop we set \(Old_AG^+ := AG\) and check all FDs whether they can contribute to \(AG^+\).

First we take \(A \rightarrow B\) and check whether \(A \subseteq AG^+\) holds. This is the case. Therefore, we set \(AG^+ := AG^+ \cup B = ABG\) (due to transitivity).

Next, we take \(A \rightarrow C\). Using the same argument as before, we obtain \(AG^+ := AG^+ \cup C = ABCG\).

Next, we take \(CG \rightarrow H\). We find that \(CG \subseteq AG^+\) holds. We get \(AG^+ := AG^+ \cup H = ABCGH\).

Next we take \(CI \rightarrow G\). We find that \(CI \not\subseteq AG^+\) holds.

Since \(Old_AG^+ \neq AG^+\) holds, we perform a second loop. We set \(Old_AG^+\) to \(AG^+\), that is, \(Old_AG^+ := ABCGH\). We see soon that no FD from \(F\) can increase \(AG^+\). This means that \(Old_AG^+ = AG^+\) holds, the algorithm terminates, and we get \(AG^+ := ABCGH\).
Canonical cover

- In general, distinct equivalent sets of FDs exist. Two sets F and G of FDs are called **equivalent** iff $F^+ = G^+$ holds.

- Definition of equivalence is convincing, because the equality of the closures for F and G implies that the same FDs can be inferred from F and G.

- For a given set F of FDs there exists a unique closure F^+.

- draw backs of the closure F^+:
 - in general very many FDs in F^+ so that the handling with F^+ becomes difficult
 - large redundant set of FDs that has to be checked as consistency tests for database modifications

- goal: computation of a most possible small set of FDs which are equivalent to F
 - less effort for testing whether a new or updated tuple violates a FD
F_c is called **canonical cover** of a given set F of FDs, if holds:

- $F_c^+ = F^+$
- In F_c there are no FDs $A \rightarrow B$ where A or B contain *extraneous* attributes, i.e., they are reduced as much as possible.

We cannot omit any attribute on the **left** sides of any FD, otherwise we would change the semantics:

$$\forall a \in A : (F_c - \{A \rightarrow B\} \cup \{(A - \{a\}) \rightarrow B\})^+ \neq F_c^+$$

Example: schema `supplier(sname, saddr, product, price)` and FDs \{sname, product\} \rightarrow \{saddr\} and \{sname, product\} \rightarrow \{price\}. Can we omit one of the attributes on the left sides?

We cannot omit any attribute on the **right** sides of any FD, otherwise we would change the semantics:

$$\forall b \in B : (F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\})^+ \neq F_c^+$$

- Each left side of the FDs in F_c occurs only once, i.e.,

 if $A \rightarrow B$ and $A \rightarrow C$ hold, then in F_c only the FD $A \rightarrow B \cup C$ is used.
algorithm for computing the canonical cover

- **step 1:** For each FD $A \rightarrow B \in F$ perform a **left reduction**: check for all $a \in A$ whether the attribute a is extraneous, i.e., whether
 \[B \subseteq AttrClosure(F, A - \{a\}) \]
 holds. If this is the case, replace $A \rightarrow B$ by $(A - \{a\}) \rightarrow B$.

- **step 2:** For each remaining FD $A \rightarrow B \in F$ perform the **right reduction**: check for all $b \in B$, whether the attribute b is extraneous, i.e., whether
 \[b \in AttrClosure(F - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}, A) \]
 holds. If this is the case, replace $A \rightarrow B$ by $A \rightarrow (B - \{b\})$.

- **step 3:** Remove the FDs of the form $A \rightarrow \emptyset$ which perhaps have been produced in the previous step.

- **step 4:** By using the union rule replace all FDs of the form $A \rightarrow B_1, \ldots, A \rightarrow B_n$ by
 \[A \rightarrow B_1 \cup \ldots \cup B_n \]
example
- Given the set \(F = \{A \rightarrow B, B \rightarrow C, A \cup B \rightarrow C\} \).
- step 1: \(A \cup B \rightarrow C \) is replaced by \(A \rightarrow C \), because \(B \) on the left side is extraneous (\(C \) is already functionally dependent from \(A \) by the first two FDs).
- step 2: \(A \rightarrow C \) is replaced by \(A \rightarrow \emptyset \), because \(C \) on the right side is extraneous. This results from the fact that \(C \subseteq \text{AttrClosure} \{A \rightarrow B, B \rightarrow C, A \rightarrow \emptyset\}, A\).
- step 3: \(A \rightarrow \emptyset \) is removed. We obtain: \(F_c = \{A \rightarrow B, B \rightarrow C\} \).
- step 4: Nothing to be done.