Example: conceptual university schema
Extensions

- existence dependent (**weak**) entity sets
 - assumption so far: entities exist autonomously and can be uniquely identified within an entity set by their key attributes (**strong** entity set)
 - in reality there are also **weak** entities that do not have sufficient attributes to form a key. These entities are
 + dependent in their existence from another, superior entity and
 + can be uniquely identified only in combination with the key of a superior entity
 - superior entity set is called **identifying** or **owner entity set**
 - graphical notation:

- identifying relationship set
 - a weak entity set E_1 must be associated with an identifying entity set E_2 by an **identifying relationship set**, if the key of E_1 comprises the key of E_2 and if it contains one or more additional attributes of E_1
 - relationship from the weak entity set to the superior entity set has usually an $m:1$-cardinality and more seldom a $1:1$-cardinality
 - graphical notation:
example:

- total participation of an entity set in a relationship
 - all entities of an entity set E_1 are associated with another entity set E_2 by a relationship set R
 - this holds, in particular, for weak entity sets
 - example:

more precise characterization of cardinalities of relationship sets
- (min, max)-notation
- for each entity set participating in a relationship set
 - min expresses that each entity of this set is in relationship at least min times
 - max expresses that each entity of this set is in relationship at most max times
- special cases
 + $min = 0$: an entity does not have to be in relationship (optional)
 + $max = *$: an entity may be in relationship arbitrarily many times
- example: conceptual university schema with (min, max)-notations
- multivalued attributes
 - optional attribute: minimal cardinality is equal to 0
 - simple attribute: cardinality is equal to 1
 - prescribed attribute: minimal cardinality is equal to 1
 - **multivalued attribute**: maximal cardinality is equal to n
 - example:

```
  person
    - (1,n) first-name
    - (0,n) last-name
    - (0,1) phone-no
    - (0,1) driving-licence-no
```

- composite attributes
 - grouping of attributes of the same entity set or relationship set which are closely related
 - antonym: simple attribute
 - example:

```
  person
    - name
    - birth-date
    - address
      - street
      - number
      - zipcode
      - city
```
derived attributes
- attribute that can be derived from one or more attributes
- antonym: base/stored attribute
- graphical representation:
- example:

 ![Graphical representation](image)