Information and Database Management Systems I (CIS 4301)
(Fall 2016)

Instructor: Dr. Markus Schneider

TA: Yang Chen

Homework 4

Name: ____________________________
UFID: ____________________________
Email Address: ____________________

Pledge (Must be signed according to UF Honor Code)

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Signature

For scoring use only:

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Maximum</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Exercise 2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Exercise 3</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1 (Knowledge Questions) [21 points]

2. Please give the definition to the following concepts:

 First Normal Form (1NF)
 Second Normal Form (2NF)
 Third Normal Form (3NF)
 Boyce-Codd Normal Form (BCNF) [4 points]

3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which
 R is in 1NF but not in 2NF. [4 points]

4. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which
 R is in 2NF but not in 3NF. [4 points]

5. Multiple Choice Questions: [3 points each]
 i. Consider relation R(A,B,C,D) with FD's A → D, B → D, and D → BC. Which of the
 following is true about the decomposition of R into relations with schemas AB and BCD?
 Explain your answer.
 A. The decomposition is neither lossless nor dependency-preserving.
 B. The decomposition is lossless, but not dependency-preserving.
 C. The decomposition is dependency-preserving, but not lossless.
 D. The decomposition is both lossless and dependency-preserving.

 ii. Suppose we have a relation R(A, B, C, D, E) and the FD's A → DE, D → B, and E → C.
 If we project R (and therefore its FD's) onto schema ABC, what is true about the key(s)
 for ABC? Explain why.
 A. Only ABC is a key.
 B. Only A is a key.
 C. Only DE is a key.
 D. A, B, and C are each keys.
Exercise 2 (Functional Dependencies) [25 points]

1. Prove the following deductions using Armstrong’s Axioms or give a counter example to it. [6 points]

 (1) \{X → Y, XY → Z\} ⇒ \{X → Z\}
 (2) \{XY → Z, Y → W\} ⇒ \{XZ → W\}
 (3) \{X → Z, Y → W\} ⇒ \{XY → ZW\}

2. Consider the relation
 FacebookPost (postId, time, title, userId, userName, @userId)
 with the following FD’s:
 - postId → time;
 - userId → userName;
 - postId → title.

 Let A = (postId, userId), determine the closure of A, i.e. A+. [4 points]

3. Consider the relation R (CLASS, TEACHER, MEET_DAY, STUDENT, GRADE, BUILDING, MANAGER) with the meaning:
 • A CLASS has one TEACHER, but can meet on several days in each week.
 • A STUDENT can take multiple classes and gets a GRADE in each CLASS.
 • Each CLASS meeting happens at one BUILDING, different meetings can happen at different BUILDINGs.
 • Each BUILDING has only one MANAGER, but each manager can manage one or more BUILDINGs.

 Find all the non-trivial FDs (Functional Dependencies) that hold in R. [5 points]

 (1) Determine the closure F+ (don’t need to show trivial dependencies). [5 points]
 (2) Given a functional dependency X → Y (where X, Y ⊆ R), how to check whether X → Y ∈ F+ without computing F+. Write down the algorithm. [5 points]
Exercise 3 (Decomposition) [24 points]

Let R(A, B, C, D, E) be decomposed into relations with the following three sets of attributes: {A, B, C}, {B, C, D}, and {A, C, E}. Consider the following sets of functional dependencies:

(a) B → E and CE → A.
(b) AC → E and BC → D.
(c) A → D, D → E, and B → D.
(d) A → D, CD → E, and E → D.

1. For each set of FDs, use the chase test to tell whether the decomposition of R is lossless. For those that are not lossless, give an example of an instance of R that returns more than R when projected onto the decomposed relations and rejoined. [3 points each]

2. For each set of the FDs, are dependencies preserved by the decomposition? Explain why. [3 points each]
Exercise 4 (Functional Dependencies and Normal Forms) [30 points]

Consider the relation schema R(ABCDEF) with functional dependencies AC → B, BD → F, and F → CE.

1. Using Armstrong’s axioms (reflexivity, augmentation, transitivity), show that the given FD’s (functional dependencies) imply that ADF → BCE. For each step, indicate which axiom and other FD’s you’re using. [6 points]

2. List all candidate keys of R. [4 points]

3. Is R in 3NF? If yes, justify. If no, specify at least one FD that violates the definition. [4 points]

4. Suppose we project R onto S(ACDE). Give a minimal cover of FD’s that hold in S. [4 points]

5. Consider the decomposition of R into R₁(AB), R₂(BC), R₃(CD), R₄(DE), R₅(EF).
 i. Show that all these relations are in BCNF by proving a general assertion that any two-attribute relation is in BCNF. [6 points]
 ii. Show that this decomposition is not lossless by constructing an instance of R whose projection onto R₁ to R₅ and subsequent rejoining does not yield the original relation R. [6 points]