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SYNONYMS

Data types for uncertain, indeterminate, or imprecise spatial objects.

DEFINITION

Naturally occurring phenomena in space often (if not always) cannot be precisely defined because
of the intrinsic uncertainty of their features. The location of animal refuges might not be precisely
known, and the path of rivers might be uncertain due to water volume fluctuations and changing
land characteristics. The extension of lakes can also change and thus have uncertain areas. All
these are examples ofvague spatial objects. The animal refuge locations can be modeled as a
vague pointobject where the precisely known locations are called thekernel pointobject and the
assumed locations are denoted as theconjecture pointobject. The river paths can be modeled
as vague lineobjects. Some segments or parts of the path, calledkernel lineobjects, can be
definitely identified since they are always part of the river.Other paths can only be assumed,
and these are denoted asconjecture lineobjects. Knowledge about the extension of lakes can be
modeled similarly withvague regionsformed bykernelandconjectureparts. Figure 1 illustrates
the examples above. Dark shaded areas, straight lines, and black points indicate kernel parts; areas
with light gray interiors, dashed lines, and hollow points refer to conjecture parts.

river

refuges lake

Figure 1: Examples of a (complex) vague point object representing the animal refuges, a (complex)
vague line object as a river, and a (complex) vague region object representing a lake.

As another example, consider a homeland security scenario in which secret services (should)
have knowledge of the whereabouts of terrorists. For each terrorist, some of their refuges are
precisely known, some are not and only conjectures. These locations can be modeled as avague
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point object where the precisely known locations are representedby the kernel part of the object
and the assumed locations are denoted as its conjecture part. Secret services are also interested in
the routes a terrorist takes to move from one refuge to another. These routes can be modeled as
vague lineobjects. Some routes, represented by the kernel part of the object, have been identified.
Other routes can only be assumed to be taken by a terrorist; they are denoted as the conjecture part
of the object. Knowledge about areas of terrorist activities is also important for secret services.
From some areas it is well known that a terrorist operates in them. These areas are denoted as the
kernel parts. From other areas it can only be assumed that they are the target of terrorist activity,
and they are denoted as the conjecture parts. Figure 1 gives some examples. Grey shaded areas,
straight lines, and gray points indicate kernel parts; areas with white interiors, dashed lines, and
white points refer to conjecture parts.

The definition of vague points, vague lines, and vague regions leverages the data typespoint
for crisp points,line for crisp lines, andregion for crisp regions. All crisp spatial data types
α ∈ {point, line, region} are assumed to have a complex inner structure as it has been defined in
[4]. In particular, this means that apoint object includes a finite number of single points, aline
object is assembled from a finite number of curves, and aregionobject consists of a finite number
of disjoint faces possibly containing a finite number of disjoint holes. Further, these types must be
closed under the geometric set operationsunion (⊕ : α ×α → α), intersection(⊗ : α ×α → α),
difference(	 : α ×α → α), andcomplement(∼: α →α). Each typeα together with the operations
⊕ and⊗ forms a boolean algebra. The identity of⊗ is denoted by1, which corresponds to IR2.
The identity of⊕ is presented by0, which corresponds to the empty spatial object (empty point
set).

A vague spatial object is defined by a pair of twodisjoint or meetingcrisp complex spatial
objects [5]. The extension of a crisp spatial data type to a corresponding vague type is given by a
type constructorv as follows:

v(α) = α ×α ∀α ∈ {point, line, region}

This means that forα = region the typev(region) = region× region, which is also named
vregionis defined. Accordingly,v(line) = line× line andv(point) = point×pointdefinevlineand
vpoint respectively. For a vague spatial objectA = (Ak,Ac) ∈ v(α), the first crisp spatial object
Ak, called thekernel part, describes the determinate component ofA, that is, the component that
definitely and always belongs to the vague object. The secondcrisp spatial objectAc, called the
conjecture part, describes the vague component ofA, that is, the component for which it cannot
be said with any certainty whether it or subparts of it belongto the vague object or not.Maybethe
conjecture part or subparts of it belong to the vague object,maybethis is not the case. Since the
kernel part and the conjecture part of thesamevague spatial object may not share interior points a
restriction is imposed to assure that the interior point sets1 do not intersect, formally:

∀α ∈ {point, line, region}
∀A = (Ak,Ac) ∈ v(α) : A◦

k ∩A◦
c = /0

Hence,Ak can be regarded as a lower (minimal, guaranteed) approximation of A and(Ak⊕Ac)
can be considered as an upper (maximally possible, speculative) approximation ofA.

1x◦ is used to denote the interior point set of crisp spatial object x
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HISTORICAL BACKGROUND

Spatial vagueness has to be seen in contrast to spatial uncertainty resulting from either a lack of
knowledge about the position and shape of an object (positionaluncertainty) or the inability of
measuring such an object precisely (measurementuncertainty). Much literature has been pub-
lished on dealing with positional and measurement uncertainty; it mainly proposes probabilistic
models. Spatial vagueness is an intrinsic feature of a spatial object for which it cannot be said
whether certain components belong to the spatial object or not. The design goal for dealing with
spatial vagueness in VASA is to base the definition of vague spatial data types and their operations
on already existing definitions of exact spatial objects. This so-called exact model approach is
also followed in the definition of broad-boundary regions [1] and the egg-yolk approach [2] as it
is detailed in [this same chapter]. A generalization of the ideas from the broad-boundary approach
can be found in the original definition ofvague regions[3]. This definition proposes a data type
for vague regions that is closed under the union, intersection, difference, and complement opera-
tions. The components of VASA are based on the original vagueregions concept which which is
generalized in order to deal with vague points and vague lines.

SCIENTIFIC FUNDAMENTALS

One of the major objectives of exact model based design is to make use of the formalisms intro-
duced by the underlying models upon which the design is based. This allows the new design to
relay the major responsibilities of robustness and correctness to the underlying model. A side ef-
fect of this type of design is the centralization of the mathematical definitions that form the core of
both the underlying model and the new model. The result is a modular design that enables more
robust and less error prone specifications.

In the next section the proper definitions of vague sptial operations are formalized. Further
details, specifically in what relates to topological predicates between vague spatial objects can be
found in [6, 7].

Vague Spatial Operations

The three vague geometric set operationsunion, intersection, anddifference have all the same
signaturev(α)×v(α)→ v(α). In addition, the operationcomplement is defined with the signature
v(α) → v(α). All of these operations are defined in a type-independent and thus generic manner.
In order to define them for two vague spatial objectsu andw, it is helpful to consider meaningful
relationships between the kernel part, the conjecture part, and the outside part ofu andw. For
each operation a table is given where a column/row labeled byk, c, or o denotes the kernel part,
conjecture part, or outside part ofu/w. Each entry of the table denotes a possible combination, i.e.,
intersection, of kernel parts, conjecture parts, and outside parts of both objects, and the label in
each entry specifies whether the corresponding intersection belongs to the kernel part, conjecture
part, or outside part of the operation’s result object.

Theunion(Table 1) of a kernel part with any other part is a kernel part since the union of two
vague spatial objects asks for membership in either object and since membership is already assured
by the given kernel part. Likewise, the union of two conjecture parts or the union of a conjecture
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union k c o
k k k k
c k c c
o k c o

intersection k c o
k k c o
c c c o
o o o o

difference k c o
k o c k
c o c c
o o o o

complement k c o
o c k

Table 1: Components resulting from intersecting kernel parts, conjecture parts, and outside parts
of two vague spatial objects with each other for the four vague geometric set operations.

part with the outside should be a conjecture part, and only the parts which belong to the outside of
both objects contribute to the outside of the union.

The outside of theintersection(Table 1) is given by either region’s outside because intersection
requires membership in both regions. The kernel part of the intersection only contains components
which definitely belong to the kernel parts of both objects, and intersections of conjecture parts
with each other or with kernel parts make up the conjecture part of the intersection.

Obviously, thecomplement(Table 1) of the kernel part should be the outside, and vice versa.
With respect to the conjecture part, anything inside the vague part of an object might or might not
belong to the object. Hence, it cannot be said with certaintythat the complement of the vague part
is the outside. Neither can be said that the complement belongs to the kernel part. Thus, the only
reasonable conclusion is to define the complement of the conjecture part to be the conjecture part
itself.

The definition ofdifference(Table 1) betweenu andw can be derived from the definition of
complement since it is equal to the intersection ofu with the complement ofv. That is, removing
a kernel part means intersection with the outside which always leads to outside, and removing
anything from the outside leaves the outside part unaffected. Similarly, removing a conjecture part
means intersection with the conjecture part and thus results in a conjecture part for kernel parts and
conjecture parts, and removing the outside ofw (i.e., nothing) does not affect any part ofu.

Motivated by the intended semantics for the four operationsdescribed above, the formal defi-
nitions are provided. An interesting aspect is that these definitions can be based solely on already
known crisp geometric set operations on well-understood exact spatial objects. Hence,executable
specificationscan be defined for the vague geometric set operations. This means, once having the
implementation of a crisp spatial algebra available, it candirectly executethe vague geometric set
operations without being forced to design and implement newalgorithms for them.

Let u,w∈ v(α), and letuk andwk denote their kernel parts anduc andwc their conjecture parts:

u union w := (uk⊕wk,(uc⊕wc)	 (wk⊕wk))
u intersection w := (uk⊗wk,(uc⊗wc)⊕ (uk⊗wc)⊕ (uc⊗wk))

u difference w := (uk⊗ (∼wk),(uc⊗wc)⊕ (uk⊗wc)⊕ (uc⊗ (∼wk)))
complement u := (∼uk,uc)

Spatial operations that result in unique numeric values canbe applied to vague spatial objects
generally by transforming the result into ranges of values.That is, the operations are specified as
executions of their crisp versions returning a lower bound result and an upper bound result. These
values depend on whether the conjecture parts are considered in the computation or not.

To compute the minimum distance between two vague spatial objects, define the operations
vague-min-mindistance: v(α)× v(β ) → real and vague-max-mindistance: v(α)× v(β ) → real
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are defined. Both operations can be applied to pairs of vague spatial objects of possibly distinct
types (that is,(α = β ∨ α 6= β ) andα,β ∈ {point, line, region}). The first operation considers all
kernel and conjecture parts, thus returning the minimum possible distance between both objects.
The second operation, only considers kernel parts, thus returning the maximum possible minimum
distance between both objects that is, the maximum value that the minimum distance will actually
be. An illustration of the maximum minimum distance and minimum minimum distance between
two vague regions is shown in Figure 2. Formally, letmindistance: α ×β → real be the minimum
distance operation defined for crisp spatial objects:

vague-min-mindistance(u,w) := mindistance((uk⊕uc),(wk⊕wc))
vague-max-mindistance(u,w) := mindistance(uk,(wk)

u

w

maximum minimum 

distance

minimum minimum 

distance

Figure 2: An example illustrating the maximum and minimum minimum distances between two
vague spatial regions. The dark shaded areas conform the kernel parts of the objects and the light
shaded areas represent the conjecture parts.

Unary numeric operations are used to express properties of avague spatial object. The oper-
ationsmin-length: vline→ real andmax-length: vline→ real are defined to compute the range
of the length of a vague line object. The operationsmin-area: vregion→ real andmax-area:
vregion→ real are used to compute the area of a vague region. Inversely to the distance operation,
the minimum length (area) of a vague line (region) is computed by taking into consideration all
parts, including the conjecture part of the object. The maximum length (area) is computed by only
considering the kernel part of the object. Formally, letlength: line→ real andarea: region→ real
refer to the operations that compute the length and area of a crisp line and region respectively. Also
considera∈ vlineandb∈ vregion:

min-length(a) := length(ak)
max-length(a) := length(ak⊕ac)

min-area(b) := area(bk)
max-area(b) := area(bk⊕bc)

The definitions provided above serve as a sample of the operations that can be defined for vague
spatial objects as an executable specification of operations on the underlying crisp spatial objects.
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KEY APPLICATIONS

Generally, because many GIS applications largely deal withnaturally occurring spatial phenomena
that often contain implicit uncertain features, they will all benefit from data models that include
considerations for dealing with spatial vagueness. Experts from a wide range of domains such as
biology and agriculture can begin to take into account the inexact data that can make a difference
in their decision making process. The following three applications are just examples of the wide
range of domains that can benefit from dealing with vague spatial data.

• Ecology: Ecologists require an abundance of data related to the distribution and interactions
of living organisms in their environment. The vast majorityof these data suffers from inde-
terminacy stemming not only from its implicit nature but also from the inability to process
exact observations. As a result many of the data is inferred or approximated from actual
observations and thus must be treated as uncertain.

• Military: Military operations are often designed on the basis of intelligence collected on-site
or remotely via technological media. It is also often the case that the intelligence is vague
because only pieces of information can be collected or because the sources are not trustful
(amongst other reasons).

• Soil Sciences: Soil variability is often a problem that must be taken into account when
treating soil related data. Fine grained modeling of soil data turns out to be very costly,
due to its high variability and inhomogeneity. As a result, in many applications within soil
studies, it is enough to approximate the composition of soilto vague models in order to
generate the necessary information.

FUTURE DIRECTIONS

As new data models are generated, the main element upon whichtheir popularity depends is the
availability of appropriate data sets. VASA provides a datamodel appropriate for dealing with un-
certainty of spatial data. To motivate its future use, it is necessary to collect data in the appropriate
format so that it can be fully exploited by the data model.
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