
QUERYING VAGUE SPATIAL OBJECTS IN DATABASES WITH VASA

Alejandro Pauly and Markus Schneider

Computer and Information Sciences and Engineering Department
University of Florida
Gainesville, FL USA

apauly@cise.ufl.edu, mschneid@cise.ufl.edu

KEY WORDS: spatial vagueness, imprecision, uncertainty, VASA, query

ABSTRACT:

Recent years have been witness to the increasing efforts of scientists to design concepts and implementations that can adequately handle
the vagueness and imprecision that is widespread in spatial data. Plenty of spatial entities, especially those that occur naturally such as
mountains and biotopes, contain intrinsic vague attributes that make their representation as crisply bounded entities ineffective and far
from exact. Other examples of such spatial objects include population density, pollution clouds, oil pouches, and even lakes and rivers
whose water levels are not determinate but rather can change depending on the pluvial activity. In the context of spatial databases,
retrieval and handling of vague spatial objects through querying is critical in exploiting the functionality of the database. Thus, it is
important that query mechanisms are able to handle the vagueness that is included in the data models used to represent the objects
that are stored. In this paper we present a Vague Spatial Algebra (VASA) capable of handling spatial vagueness. VASA is defined on
the basis of exact models for crisp spatial objects and includes the definitions of vague spatial data types as well as the operations and
predicates needed to effectively manipulate instances of these data types. Using VASA as a basis, we introduce the appropriate concepts
for enabling database querying that can help exploit the power of the vague spatial data model.

1 INTRODUCTION

Many man-made spatial objects such as buildings, roads, pipelines
and political divisions have a clear boundary and extension. In
contrast to these crisp spatial objects, most naturally occurring
spatial objects have an inherent property of vagueness or inde-
terminacy of their extension or even of their existence. Point lo-
cations may not be exactly known, paths or trails might fade and
become uncertain at intervals. The boundary of regions might not
be certainly known or simply not be as sharp as that of a build-
ing or a highway. Examples are lakes (or rivers) whose extension
(or path) depends on pluvial activity, or the locations of oil fields
that in many cases can only be guessed. This inherent uncertainty
brings to light the necessity of more adequate models that are able
to cope with what we will refer to as vague spatial objects.

Existing implementations of Geographic Information Systems
(GIS) and Spatial Databases assume that all objects are crisply
bounded. With the exception of few domain specific solutions,
the problem of dealing with spatial vagueness has no widely
accepted practical solution. Instead, different conceptual ap-
proaches exist for which researchers have defined formal mod-
els that can deal with a closer approximation of reality where
not all objects have are crisp. For the treatment of vague spatial
objects, our Vague Spatial Algebra (VASA), which can be em-
bedded into databases, encompasses data types for vague points,
vague lines, and vague regions as well as for all operations and
predicates required to appropriately handle objects of these data
types. The central goal of the definition of VASA is to leverage
existing models for crisp spatial objects, resulting in robust defi-
nitions of vague concepts derived from proven crisp concepts.

In order to fully exploit the power of VASA in a database con-
text, users must be able to pose significant queries that will allow
retrieval of data that is useful for analysis. In this paper, we pro-
vide an overview of VASA and the capabilities it provides for
handling vague spatial objects. Based on these capabilities, we
describe how users can take full advantage of an implementation

of VASA by proposing meaningful queries on vague spatial ob-
jects. We use sample scenarios to explain how the queries can be
posed with a moderate extension of the standard database query
language SQL.

This paper starts in Section 2 by summarizing related work that
covers relevant concepts from crisp spatial models as well as
other concepts for handling spatial vagueness. In Section 3 we in-
troduce the VASA concepts for data types, operations, and predi-
cates. Section 4 shows how a simple extension to SQL will be of
great benefit when querying vague spatial data. Finally, in Sec-
tion 5 we derive conclusions and expose future work.

2 RELATED WORK

In Section 2.1 we provide an overview of the spatial concepts
that are necessary for later sections. Section 2.2 details the main
features of current approaches for dealing with spatial vagueness.

2.1 Crisp Spatial Concepts

Central to spatial data handling are the data types point, line, and
region. In their simple version, point objects are defined as sin-
gle points represented by a pair of coordinates. Simple line ob-
jects are connected and non self-intersecting curves. Objects of
type region as made up of a single areal component topologically
equivalent to a closed disk. Stronger application requirements
and failure to fulfill closure properties under the basic spatial set
operations resulted in the development of complex spatial data
types. Complex point objects are represented by a collection of
single points, each represented by a pair of coordinates. A com-
plex line object is made up of several disconnected block compo-
nents, each equivalent to a simple line. The concept of complex
regions allows for areal objects composed of several disconnected
areas called faces, each possibly with holes. Figure 1 illustrates
simple and complex points, lines, and regions.

Topological relationships between spatial objects have been the
focus of interdisciplinary research and have also been widely stud-
ied in the literature related to spatial databases. Relationships of



(a) (b) (c)

simple

Figure 1: Example complex point (a), complex line (b), and com-
plex region (c). The components inside the dashed squares repre-
sent simple versions of each type.

this type are purely qualitative and describe the relative position
of spatial objects towards each other. Topological relationships
remain unchanged under continuous transformations like transla-
tion, rotation and scaling. Such relationships are provided as so-
called topological predicates that are commonly used as part of
querying systems to test whether a topological relationship holds
between a given pair of spatial objects. We focus on the topo-
logical predicates defined through the 9-intersection model. This
model has been defined for simple region objects in (Egenhofer,
1989) and later extended to simple regions with holes in (Egen-
hofer et al., 1994). The complete set of topological relationships
for all type combinations of complex spatial objects is defined
in (Schneider and Behr, 2006) on the basis of the 9-intersection
model.

The 9-intersection model characterizes a topological relationship
between two spatial objects A and B by exploring the emptiness
of the point sets resulting from the 9 intersections between all the
combinations of the interior (◦), boundary (∂) and exterior (−)
from both objects. Each topological relationship can be repre-
sented by a 9-intersection matrix whose values are determined as
shown here:




A◦ ∩B◦ 6= ∅ A◦ ∩ ∂B 6= ∅ A◦ ∩B− 6= ∅
∂A ∩B◦ 6= ∅ ∂A ∩ ∂B 6= ∅ ∂A ∩B− 6= ∅
A− ∩B◦ 6= ∅ A− ∩ ∂B 6= ∅ A− ∩B− 6= ∅




Each valid 9-intersection matrix uniquely represents a single topo-
logical relationship. Following this model, the resulting relation-
ships turn out to be mutually exclusive (i.e. one and only one
topological relationship holds between each pair of spatial ob-
jects). The eight well known and commonly used predicates orig-
inally defined for simple regions include disjoint, overlap, meet,
equal, cover, contain, inside and coveredBy. The number of pred-
icates defined in (Schneider and Behr, 2006) for all complex type
combinations is larger (e.g., 33 between two complex regions, 82
between two complex lines). Hence, naming of each predicate is
not considered a good option. Instead, an alternative method of
clustering is used to provide an identifiable set of predicates.

2.2 Approaches for Handling Spatial Vagueness

In this section, we introduce the four main categories of approaches
for dealing with spatial vagueness and imprecision. The approaches
in these categories can be distinguished due to their ability to deal
with mainly two kinds of vagueness. The first kind is inherent to
the object and is commonly denoted as fuzziness. The second
is denoted as uncertainty and it commonly appears due to the
impossibility to determine values to represent the features of an
object (Schneider, 1999). Uncertainty can appear indirectly due
to imprecision and even due to inaccuracy of the collected data.

2.3 Extension of Exact Models into Three-Valued Logics

The most popular approaches to handling spatial vagueness that
utilize existing exact models for crisp spatial objects are the broad
boundaries approach (Clementini and Felice, 1996), the egg-yolk
approach (Cohn and Gotts, 1996), and the vague regions concept
(Erwig and Schneider, 1997). These models extend the common
assumption that boundaries of regions divide the plane into two
sets (the set that belongs to the region, and the set that does not)
with the notion of an intermediate set that is not known to cer-
tainly belong or not to the region. Thus we say that these mod-
els extend crisp models that operate on the Boolean logic (true,
false) into models that handle uncertainty with a three-valued
logic (true, false, maybe).

The regions with broad boundaries approach (Clementini and Di
Felice, 2001) leverages complex regions (i.e., composed of sev-
eral components, possibly with holes) to enable the handling of
spatial uncertainty. A region with a broad boundary is initially
defined as a complex region whose components are enclosed in a
zone considered its broad boundary. This zone is bounded by two
sharp line boundaries, where the inner line expresses the minimal
extension of the component, and the outer line expresses its maxi-
mal extension. The special case where both boundaries are equal,
represents a crisp component.

Similar to the broad boundary approach (see Figure 2(a)), the
egg-yolk model introduced in (Cohn and Gotts, 1996) leverages
the region connection calculus (RCC) method for topological re-
lationships between simple regions. The egg-yolk model effec-
tively models an uncertain region where the yolk certainly be-
longs to the region, and the zone surrounding the yolk represents
the uncertainty of the model. As a result, the egg-yolk approach
and the broad boundary approach enable the handling of what we
call concentric regions, where the part that certainly belongs to
the region is always surrounded by the uncertain part.

(a) (b)

broad boundary

egg yolk

kernel

boundary
(vague regions)

Figure 2: Examples of a broad boundary and egg-yolk region (a),
and two vague regions (a,b).

Both the egg-yolk and broad boundary approaches focus on es-
tablishing the topological relationships between regions with un-
certainty. The broad boundary approach recognizes 44 topologi-
cal relationships between broad boundary regions based on sim-
ple regions, and 56 between those based on complex regions. The
egg-yolk recognizes 46 topological relationships between regions
with uncertain boundaries.

Finally, the vague regions approach (Erwig and Schneider, 1997)
leverages simple regions. A vague region is represented by two
simple regions, one denoted as the kernel, the other as the bound-
ary. The kernel represents the area that certainly belongs the
region. The boundary represents the area that may or may not
belong to the region (see Figure 2(b)). Vague regions are closed
under well defined spatial set operations (i.e., geometric intersec-
tion, union, difference, complement). This is not the case in the
previous two approaches. The vague regions approach is the pre-
cursor to VASA, presented in Section 3.



2.4 Spatial Data Modeling with Rough Sets

Rough set theory was originally introduced by Pawlak in (Pawlak,
1982). A rough set is defined on the basis of a lower approxima-
tion and an upper approximation, which are both crisp sets. The
lower approximation indicates the elements that certainly belong
to the set, whereas the upper approximation also includes those
elements that may or may not belong to the set. At the core of
rough set theory, indiscernibility relations between attributes of
elements in the set are used to define the upper and lower approx-
imations. These relations can be used to manipulate the granular-
ity on which the approximations are established.

Worboys in (Worboys, 1998) was one of the first to propose a
rough set based alternative for dealing with spatial vagueness.
His proposal is geared towards providing a basis for integrating
and reasoning about multi-resolution spatial data, that is data that
was captured at different resolutions but needs to be handled to-
gether.

The authors in (Beaubouef and Petry, 2002) use rough sets as
the mathematical foundation to model uncertainty in topological
relationships between egg-yolk regions. In comparing the expres-
siveness of using the RCC model versus rough set theory, some
relationships become indistinguishable using rough sets, while
others can in fact be specified with higher precision. The authors
conclude that rough sets provide a valuable foundation for model-
ing uncertainty in spatial data and can leverage existing theories
such as the RCC theory for topological relationships. Further-
more, rough sets can provide higher granularity than models such
as the egg-yolk approach. This is due to the use of the indiscerni-
bility relationship. In contrast, exact model based approaches do
not handle such a measure for defining the partition between what
is certain and what is not, instead this is assumed to be a feature
of the existing data.

Another method for employing rough sets in handling uncertainty
is proposed in (Ahlqvist et al., 2000) where the authors pursue the
derivation of quality measures for the uncertainty or imprecision
in their data. Rough classification is used to assign data (areas)
to classes that ensure the mutual exclusivity of the lower approx-
imations of objects but allow upper approximations to overlap
through classes.

2.5 Fuzzy Set Theoretic Approaches to Spatial Data Han-
dling

Fuzzy set based approaches attempt to model inherently vague
spatial objects. These models have the ability to represent blend-
in type boundaries such as the boundaries of a pollution cloud or
the “boundary” between a mountain and a valley.

Much work has focused on the definition of data types designed
for the treatment of fuzzy spatial objects. Fuzzy regions presented
in (Altman, 1994) assign membership to some property for every
coordinate point within the (fuzzy) region. A formal definition of
fuzzy points, fuzzy lines and fuzzy regions is included in (Schnei-
der, 1999). A recent effort for the definition of a vague spatial
algebra based on fuzzy sets is presented in (Dilo et al., 2004).

In (Ahlqvist et al., 2003), the authors extend their rough classi-
fication concept from (Ahlqvist et al., 2000) to a classification
of fuzzy regions. That is, the lower approximation and the up-
per approximation of a region are each represented by a fuzzy
classification. According to the authors, this enables treatment of
indiscernibility or imprecision by the rough set classification and
fuzziness by the fuzzy classification.

2.6 Probabilistic Methods

Probabilistic approaches for handling spatial vagueness such as
that in (Finn, 1993), model spatial objects on the basis of the
probability of membership of an entity (i.e., point, area, object)
in a set. This results in an expected membership which is based
on the subjectively defined probability function. This can be con-
trasted to the membership values of fuzzy sets that are objective
in the sense that they can be computed formally or determined
empirically.

2.7 Querying with Vagueness

Literature provides some work that has been devoted to solving
the problem of querying with vagueness. As discussed in (Lee
and Kim, 1993) vagueness does not necessarily only appear in
the data being queried, but can also be part of the query itself.
Namely, one can pose a query to retrieve all ”small cars”. While
the car data is crisp and there is no vagueness on the data, the
query itself is vague due to the semantics of the term ”small”
which is an obvious example of a vague concept.

Work that focuses on querying vague data has largely sided with
fuzzy representations of data. In a spatial context, (Schneider,
2001) proposes classifications of membership values in order to
group sets of values together. For example, a classification could
assign the term ”mostly” to high membership values (e.g., 0.95-
0.98). Based on this classification queries can ask for ”mostly”
disjoint objects when using fuzzy topological predicates thus giv-
ing a degree of disjointness on the basis of the membership val-
ues. Most fuzzy oriented querying propositions have to deal with
classifying the membership values, thus they prove ineffective for
our purposes.

In the context of databases in general, the approaches in (Ichikawa
and Hirakawa, 1986, Motro, 1988, Palkoska and Kung, 1997,
Kung and Palkoska, 1998) all propose extensions to query lan-
guages on the basis of an operator that enables vague results
under different circumstances. For example, in (Ichikawa and
Hirakawa, 1986) the operator similar-to for QBE (Query-by-
Example) is proposed alongside relational extensions so that re-
lated results can be provided in the event where no exact results
match a query. In (Motro, 1988) the operator ∼ is used in a sim-
ilar way to the similar-to operator. All these approaches re-
quire additional information to be stored as extra relations and
functions about distance that allow the query processor to com-
pute close enough results. Although some of these approaches
are extended to deal with fuzzy data, the general idea promotes
the execution of vague queries over crisp data.

3 VASA

In this section we describe the concepts that compose our Vague
Spatial Algebra. The foundation of VASA are its data types which
we specify in Section 3.1. Spatial set operations and metric oper-
ations are introduced in Section 3.2. Finally, the concept of vague
topological predicates is briefly introduced in Section 3.3.

3.1 Vague Spatial Data Types

An important goal of VASA (and of all approaches to handling
spatial uncertainty that are based on exact models) is to leverage
existing definitions of crisp spatial concepts. In VASA, we en-
able a generic vague spatial type constructor v that, when applied
to any crisp spatial data type (i.e., point, line, region), renders
a formal syntactic definition of its corresponding vague spatial



data type. For any crisp spatial object x, we define its composi-
tion from three disjoint point sets, namely the interior (x◦), the
boundary (∂x) that surrounds the interior, and the exterior (x−)
(Schneider and Behr, 2006). We also assume a definition of the
geometric set operations union (⊕), intersection (⊗), difference
(ª), and complement(¯) between crisp spatial objects such as
that from (Güting and Schneider, 1995).

Definition 1 Let α ∈ {point, line, region}. A vague spatial data
type is given by a type constructor v as a pair of equal crisp spatial
data types α, i.e.,

v(α) = α× α

such that for w = (wk, wc) ∈ v(α), holds:

w◦k ∩ w◦c = ∅

We call w ∈ v(α) a (two-dimensional) vague spatial object
with kernel part wk and conjecture part wc. Further, we call
wo := ¯(wk ⊕ wc) the outside part of w. For α = point,
v(point) is called a vague point object and denoted as vpoint.
Correspondingly, for line and region we define v(line) resulting
in vline and v(region) resulting in vregion.

Syntactically, a vague spatial object is represented by a pair of
crisp spatial objects of the same type. Semantically, the first ob-
ject denotes the kernel part that represents what certainly belongs
to the object. The second object denotes the conjecture part that
represents what is not certain to belong to the object. We require
both underlying crisp objects to be disjoint from each other. More
specifically, the constraint described above requires the interiors
of the kernel part and the conjecture part to not intersect each
other. Figure 3 illustrates instances of a vague point, a vague line,
and a vague region as objects of the data types defined above.

(a) (b) (c)

Figure 3: A vague point object (a), a vague line (b) and a vague
region (c). Kernel parts are symbolized by dark gray points,
straight lines, and dark gray areas. Conjecture parts are sym-
bolized by light gray point, dashed lines, and light gray areas.

3.2 Vague Spatial Operations

We are interested in the definition of the vague spatial set opera-
tions that compute the union, intersection, and difference between
two vague spatial objects. Following from the generic definition
of vague spatial data types, we leverage crisp spatial set opera-
tions to reach a generic definition of vague spatial set operations.

We define the syntax of function h ∈ {intersection, union,
difference} as h : v(α) × v(α) → v(α). The complement op-
eration is defined as complement : v(α) → v(α). Semantically,
their generic (type independent) definition is reached by consider-
ing the individual relationships between kernel parts, conjecture
parts, and the outside part (i.e., everything that is not kernel part
or conjecture part) of the vague spatial objects involved in the
operations. The result of each operation is computed using one

of the tables in Table 1. For each operation the rows denote the
parts of one object and the columns the parts of another, and we
label them k, c, and o to denote the kernel part, conjecture part,
and outside part respectively. Each entry of the table denotes the
intersection of kernel parts, conjecture parts, and outside parts
of both objects, and the label in each entry specifies whether the
corresponding intersection belongs to the kernel part, conjecture
part, or outside part of the operation’s result object.

union k c o

k k k k
c k c c
o k c o

intersection k c o

k k c o
c c c o
o o o o

difference k c o

k o c k
c o c c
o o o o

complement k c o

o c k

Table 1: Components resulting from intersecting kernel parts,
conjecture parts, and outside parts of two vague spatial objects
with each other.

Each table from Table 1 can be used to generate an executable
specification of the given crisp spatial operations. For each table,
the specification will operate on the kernel parts and conjecture
parts to result in a definition of its corresponding vague spatial
operation. Following are such definitions as executable specifica-
tions of geometric set operations over crisp spatial objects:

Definition 2 Let u, w ∈ v(α), and let uk and wk denote their
kernel parts and uc and wc their conjecture parts. We define:

(i) u union w := (uk ⊕ wk, (uc ⊕ wc)ª
(uk ⊕ wk))

(ii) u intersection w := (uk ⊗ wk, (uc ⊗ wc)⊕
(uk ⊗ wc)⊕ (uc ⊗ wk))

(iii) u difference w := (uk ⊗ (¯(wk ⊕ wc)), (uc ⊗ wc)⊕
(uk ⊗ wc)⊕ (uc ⊗ (¯(wk ⊕ wc))))

(iv) complement u := (¯(uk ⊕ uc), uc)

We can formally prove the correspondence between executable
specifications and the tables in Table 1. For readability, we intro-
duce juxtaposition as an abbreviating notation for the intersection
of two crisp spatial objects and note that intersection has a higher
associativity than union and difference. To prove Definition 2(ii)
where z = u ⊗ w we first note that for p, q ∈ α that identity
p⊕q = pq⊕p(¯q)⊕(¯p)q holds. Thus, we can rewrite the con-
jecture part of the definition as (ucwc⊕uc(¯wc)⊕ (¯uc)wc)ª
(ukwk ⊕ uk(¯wk) ⊕ (¯uk)wk). Considering that ¯wc =
wk ⊕ wo we derive: (ucwc ⊕ uc(wk ⊕ wo)⊕ (uk ⊕ uo)wc)ª
(ukwk ⊕ uk(wc ⊕ wo) ⊕ (uc ⊕ uo)wk). Applying distributiv-
ity of ⊗ results in (ucwc ⊕ ucwk ⊕ ucwo ⊕ ukwc ⊕ uowc) ª
(ukwk ⊕ ukwc ⊕ ukwo ⊕ ucwk ⊕ uowk). In this term, only
ucwk and ukwc appear in both parts of the difference; all other
intersections to be subtracted have no effect at all since all inter-
sections are pairwise disjoint due to the definition of vague spatial
objects. We obtain ucwc ⊕ ucwo ⊕ uowc, which corresponds to
the condition required for kc. Due to space constraints we refer
the reader to (Pauly and Schneider, 2004) where the rest of the
proofs can be found.

3.3 Vague Topological Predicates

For the definition of topological predicates between vague spatial
objects (vague topological predicates), it is our goal to continue
leveraging existing definitions of crisp spatial concepts, in this



case topological predicates between crisp spatial objects. Topo-
logical predicates are used to describe purely qualitative relation-
ships such as overlap and disjoint that describe the relative po-
sition between two objects and are preserved under continuous
transformations.

For two vague spatial objects A ∈ v(α), and B ∈ v(β) and
the set Tαβ of all crisp topological predicates between objects
of types α and β (Schneider and Behr, 2006), the topological
relationship between A and B is determined by the 4-tuple of
crisp topological relationships (p, q, r, s) such that p, q, r, s ∈
Tαβ and:

p(Ak, Bk) ∧ q(Ak ⊕Ac, Bk) ∧
r(Ak, Bk ⊕Bc) ∧ s(Ak ⊕Ac, Bk ⊕Bc)

We define the set Vαβ of all vague topological predicates be-
tween objects of types v(α) and v(β). Due to inconsistencies
that can exist between elements within each tuple, not all pos-
sible combinations result in 4-tuples that represent valid vague
topological predicates in the set Vαβ . An example is the 4-tuple:
(overlap(Ak, Bk), disjoint(Ak, Bk⊕Bc), disjoint(Ak⊕Ac, Bk),
disjoint(Ak⊕Ac, Bk⊕Bc)). In this example overlap(Ak, Bk) ⇒
A◦k∩B◦

k 6= ∅ and disjoint(Ak, Bk⊕Bc) ⇒A◦k∩(Bk⊕Bc)
◦ =

∅. These two implications clearly contradict one another because
according to the definition of the spatial union operation it holds
that B◦

k ⊆ (Bk ⊕Bc)
◦ and by the transitivity of set containment

it is implied that A◦k ∩ (Bk⊕Bc)
◦ 6= ∅. This directly contradicts

disjoint(Ak, Bk ⊕Bc).

In (Pauly and Schneider, 2006), we present a method for iden-
tifying the complete set of vague topological predicates. At the
heart of the method, each 4-tuple is modeled as a binary spatial
constraint network (BSCN). The modeling is done by consider-
ing Ak, Bk, Ak ⊕Ac, and Bk ⊕Bc as variables in the network,
and p, q, r, and s as constraints over the variables. The implicit
containment relationship between Ak and Ak⊕Ac, and between
Bk and Bk ⊕Bc are also modeled as constraints. Each BSCN is
tested for path-consistency which is used to check, via constraint
propagation, that all original constraints are consistent.

For each type combination of vpoint, vline, and vregion, possibly
thousands of predicates are recognized (see Table 2). As a re-
sult a further step of predicate clustering is needed to make these
predicates accessible for querying.

vregion vline vline
vpoint 51 974 166
vline 974 471650 74916

vregion 166 74916 55880

Table 2: Number of identified 4-tuples on the basis of complex
spatial data types.

Sets of 4-tuples are created into clustered vague topological pred-
icates. Clusters can be defined by the user who specifies three
rules for each cluster; one rule is used to determine whether the
clustered predicate certainly holds between the objects, the sec-
ond to determine if the cluster certainly does not hold, and the
third to determine when the cluster maybe holds, but it is not pos-
sible to give a definite answer. This effectively symbolizes the
three-valued logic that is central to our definition of vague spatial
data types.

The specification of rules for each cluster can be performed at
two different levels; the first is the the crisp topological predicate

level, where the criteria is specified on the basis of the values
of p, q, r, s. For example, if p, q, r, s represent crisp topological
predicates between simple spatial objects, we can create a cluster
labeled Disjoint which simulates the semantics of the underly-
ing crisp topological predicate disjoint. Such a cluster can be
represented by the following three rules:

Disjoint(A, B) = true ⇔ disjoint(Ak ⊕Ac, Bk ⊕Bc)
⇔ s = disjoint

Disjoint(A, B) = false ⇔ ¬disjoint((Ak), (Bk))
⇔ p 6= disjoint

Disjoint(A, B) = maybe ⇔ ¬(Disjoint(A, B) = true ∨
Disjoint(A, B) = false)
⇔ ¬(s = disjoint ∨ p 6= disjoint)

Clustering rules can also be specified at the point set level. That
is, the rules are defined on the basis of the emptiness (or non-
emptiness) of the intersection between all combinations of inte-
rior (◦), boundary (∂) and exterior (−) of the crisp spatial objects
that make up the vague spatial objects for which the cluster is
defined. This type of specification allows for more general rules
that are independent of the set of topological predicates that oper-
ate on the underlying crisp spatial objects. For example, the rules
for the cluster Disjoint can be specified more generally as:

Disjoint(A, B) = true ⇔ ((Ak ⊕Ac)
◦ ∩ (Bk ⊕Bc)

◦ = ∅)
∧ ((Ak ⊕Ac)

◦ ∩ ∂(Bk ⊕Bc) = ∅)
∧ (∂(Ak ⊕Ac) ∩ (Bk ⊕Bc)

◦ = ∅)
∧ (∂(Ak ⊕Ac) ∩ ∂(Bk ⊕Bc) = ∅)

Disjoint(A, B) = false ⇔ ((Ak)◦ ∩ (Bk)◦ 6= ∅) ∨
((Ak)◦ ∩ ∂(Bk) 6= ∅) ∨
(∂(Ak) ∩ (Bk)◦ 6= ∅) ∨
(∂(Ak) ∩ ∂(Bk) 6= ∅)

Disjoint(A, B) = maybe ⇔ ¬(Disjoint(A, B) = true ∨
Disjoint(A, B) = false)

This rule implies that the vague spatial objects A and B are truly
disjoint if none of their components have intersections of interiors
or boundaries between each other.

4 QUERYING WITH VASA

Now that all the VASA concepts are in place, we are interested in
showing the practical use of VASA objects and their operations in
database queries. We propose two ways of enabling VASA within
a database query language; the first as presented in Section 4.1
works by adapting VASA to partially work with SQL, currently
the most popular database query language. The second proposal
presented in Section 4.2 extends SQL so that it has the necessary
operators to handle vague queries.

4.1 Crisp Queries of Vague Spatial Data

One of the advantages of being able to use VASA in conjunc-
tion with popular DBMSs is the availability of a database query
language such as SQL. We focus on querying with SQL as it rep-
resents the most popular and widely available database query lan-
guage. SQL queries can be used to retrieve data based on the eval-
uation of boolean expressions. This obviously represents a prob-
lem when dealing with vague spatial objects because their vague
topological predicates are based on a three-valued logic. On the
other hand the current definitions of numeric vague spatial oper-
ations do not suffer from this issue because the operations return
crisp values that are later interpreted by the user (e.g., the user



posing a query must know that min-length returns the length as-
sociated with the kernel part of a vague line object). Thus, these
concepts are already adapted to provide crisp results of vague
data.

In the case of vague topological predicates, the first step in or-
der to allow querying of vague spatial objects through SQL is to
adapt the results of the predicates to a form understandable by
the query language. The adaptation of the three-valued vague
topological predicates to boolean predicates can be done with the
following six transformation predicates that are defined for each
vague topological predicate P that can operate over vague spatial
objects A and B:

True P(A, B)= true ⇒P (A, B)= true
True P(A, B)= false⇒P (A, B)=maybe∨

P (A, B)= false
Maybe P(A, B)= true ⇒P (A, B)=maybe
Maybe P(A, B)= false⇒P (A, B)= true ∨

P (A, B)= false
False P(A, B)= true ⇒P (A, B)= false
False P(A, B)= false⇒P (A, B)= true ∨

P (A, B)=maybe

reef

kernel part 

of oil spill
conjecture part

of oil spill

Figure 4: A representation of an ecological scenario using vague
regions.

With this transformation in place, queries operating on vague spa-
tial objects can include references to vague topological predicates
and vague spatial operations. For example, for the purpose of
storing scenarios such as that in Figure 4, assume that we have a
table spills(id : INT , name : STRING , area : VREGION )
where the column representing oil spills is denoted by a vague re-
gion where the conjecture part represents the area where the spill
may extend to. We also have a table reefs(id : INT , name :
STRING , area : VREGION ) with a column representing
coral reefs as vague regions. We can pose an SQL query to re-
trieve all coral reefs that are in any danger of contamination from
an oil spill. We must find all reefs that are not certainly Disjoint
from the Exxon-Valdez oil spill.

SELECT r.name

FROM reefs r, spills s

WHERE s.name = "Exxon-Valdez"

and NOT True_Disjoint(r.area,s.area);

Vague topological predicates can also be used to optimize query
performance. Assume that, as illustrated in Figure 5, we have
data of terrorists routes represented by vague lines in the table
terrorists(id : INT , name : STRING , route : VLINE).
We want to retrieve the minimum length of the intersections of
all pairs of intersecting routes of terrorists. To do so, we choose
to compute the intersection of only those pairs that are certainly
not Disjoint and neglect the computation of the intersection of
those pairs that have been determined to not certainly intersect.

conjecture part

of X
kernel part

of X

conjecture part 

of Ykernel part

of Y

Figure 5: Scenario illustrating the use of vague lines to represent
routes of suspected terrorists X and Y .

SELECT a.name, b.name,

min-length(

intersection(a.route,b.route))

FROM terrorists a, terrorists b

WHERE False_Disjoint(a.route,b.route);

Other queries can include retrieval based not only on spatial data
but also based on common type data (i.e., numbers, characters)
stored alongside the spatial objects. Being able to relate both
data domains (spatial and non-spatial) in queries is one of the
main advantages of providing VASA as an algebra that can extend
current DBMSs which are well-proven to provide the necessary
services for dealing with data of common types. We can pro-
vide such queries based on Figure 6 where the data can be stored
in table animals(id : INT , name : STRING , roam area :
VREGION , mig route : VLINE , drink spot : VPOINT ).

kernel

conjecture

Figure 6: The vague spatial object representation of an animal’s
roaming areas, migration routes and drinking spots.

For example, we wish to retrieve all species of animals whose av-
erage weight is under 40 lbs., their last count was under 100 and
may have roaming areas completely contained within the roam-
ing areas of carnivore animals whose average weight is above 80
lbs. This information might be useful to recognize animal species
with low counts that could be extinct due to living amongst larger
predators. The extinction of the smaller species can be catas-
trophic even for the larger species that depends on the smaller for
nutrition. This retrieval uses data elements that are both spatial
and non-spatial:

SELECT s.name,

FROM animals s, animals l

WHERE s.avgsize<40

and l.avgsize>80

and s.count<100

and NOT False_Inside(

s.roam_area,l.roam_area);

Queries can also be posed to test elements from within single tu-
ples in the database. For example, we would like to retrieve all
animal species that do not have drinking spots that are certainly
lying inside their roaming areas. For any of these species environ-
mentalists must create artificial drinking spots where the animals
can hydrate.



SELECT s.name,

FROM animals s

WHERE NOT False_Disjoint(

s.drink_spot,s.roam_area);

4.2 A Vague Query Language Extension to Enable Vague
Queries on Vague Spatial Data

We analyze the approaches introduced in Section 2.7 and notice
that, in the context of VASA, we are not trying to solve the prob-
lem of dealing with vague queries, but we need to query vague
data. Thus, we propose to extend a common query language such
as SQL with the operator ∼. However, our data itself is vague
thus we do not need the extra relations and functions of distance
required by previous approaches. As a result, the semantics of
the operator ∼ is not the same as in the existing literature where
it allows for vague queries to be executed on crisp data. Instead,
we will allow for the execution of vague queries over vague data.

Boolean predicates in SQL and in fact in many programming
languages implicitly assume truth values unless otherwise noted,
which is commonly done with the negation operators NOT or !.
We propose ∼ to operate syntactically similar to ! but semanti-
cally, instead of negating the result, it opens the possibility for
uncertain results. For example, let us assume we have the table
tempzones(id : INT , name : STRING , shape : VREGION )
that contains information about different temperature zones, in-
cluding their representation as vague regions in the column named
shape. We pose the following query:

SELECT a.name, b.name

FROM tempzones a, tempzones b

WHERE Overlap(a.shape,b.shape);

This query will return only those regions that certainly overlap.
But instead we want to include in the result, all those that might
overlap as well, we pose the query again as:

SELECT a.name, b.name

FROM tempzones a, tempzones b

WHERE ~Overlap(a.shape,b.shape);

In this case, the interpretation of ∼ should allow the retrieval of
all temperatures that may or may not overlap in addition to those
that definitely overlap. For the use of numeric values in queries,
the query processor should be able to handle number ranges as
an atomic data type such that we can combine the minimum and
maximum area operations on vague regions into one operator and
pose the following query:

SELECT a.name

FROM tempzones a

WHERE a.shape.area()~300;

That is, the result of this query will include all temperature zones
whose area range includes 300. The inclusion of this operator and
the management of number ranges those not preclude the use of
exact operators that would allow to deal with crisp spatial regions.
Because crisp spatial objects represent simply a specific instance
of vague spatial data types, a query such as the following can still
be executed with the result set including all those temperature
zones that were modeled as vague regions with no conjecture,
thus representing crisp regions:

SELECT a.name

FROM tempzones a

WHERE a.shape.area()=300;

This extension of course, would require actual reimplementation
of the query language within the DBMS in order to enable han-
dling of numeric ranges and three-valued logic operations.

5 CONCLUSIONS AND FUTURE WORK

The conceptual design of VASA which we have presented in this
paper, shows the clear goal of leveraging existing crisp concepts.
There is more than one reason behind this goal. The first reason
is to take advantage of existing robust concepts for handling crisp
spatial objects. Second, at the conceptual level, the correctness of
the definitions for vague concepts largely rests on the correctness
of the defined crisp concepts; thus, we reduce the chance of errors
in our definitions. As an example, see Definition 2 where vague
spatial operations are defined as an executable specification on
the basis of crisp spatial operations. Third, the executable speci-
fication translates easily to the implementation level. Having an
existing correct implementation of crisp spatial data types, their
operations, and predicates, we can implement VASA by instanti-
ating existing crisp spatial data types and executing operations on
them.

In Section 2, we mentioned current approaches to handling spa-
tial vagueness and imprecision. VASA’s concepts feed from all
these and thrive in providing a complete type system that includes
a systematic approach to vague spatial operations, and most im-
portantly to vague topological predicates. The main advantages
of VASA include conceptual simplicity, robustness derived from
existing robust crisp concepts, and viability of implementation.
In contrast, VASA’s main disadvantage is its inability to effec-
tively deal with situations that would seems appropriate for fuzzy
set based systems. Nonetheless, we believe that future work can
be directed towards more general definitions based on exact mod-
els that would be more near to the capabilities of fuzzy set based
systems but that can take advantage of existing crisp concepts.

Based on these concepts, we have proposed ideas for database
querying of objects from VASA. While these ideas are simple,
they are able to fully exploit the capabilities of VASA and al-
low the user to pose significant queries that can handle spatial
vagueness. The proposed language extension and transformation
mechanisms further reassure the advantages of defining VASA on
the basis of existing exact spatial models. These advantages in-
clude robustness of formal concepts that can directly transfer into
an implementation that also benefits from simplicity.

Other future work related to VASA stems in at least two direc-
tions that are worth following; the first involves enabling simi-
lar querying ideas to systems that attempt to handle vagueness
with a higher precision, such as fuzzy set theory based systems
or even systems with finite multi-valued logics (i.e., more than
three values). The other direction involves the performance as-
pect of implementing indexes that can operate on vague spatial
objects and whether it is possible to extend current indexing con-
cepts for crisp spatial objects, thus following the general design
of VASA.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foun-
dation under grant number NSF-CAREER-IIS-0347574.



REFERENCES

Ahlqvist, O., Keukelaar, J. and Oukbir, K., 2000. Rough Clas-
sifcation and Accuracy Assessment. Int. Journal of Geographical
Information Sciences 14, pp. 475– 496.

Ahlqvist, O., Keukelaar, J. and Oukbir, K., 2003. Rough and
Fuzzy Geographical Data Integration. Int. Journal of Geographi-
cal Information Sciences 17, pp. 223–234.

Altman, D., 1994. Fuzzy Set Theoretic Approaches for Handling
Imprecision in Spatial Analysis. Int. Journal of Geographical In-
formation Systems 8(3), pp. 271–289.

Beaubouef, T. and Petry, F., 2002. A Rough Set Foundation for
Spatial Data Mining Involving Vague Regions . In: IEEE Int.
Conf. on Fuzzy Systems, IEEE Computer Society, pp. 767 – 772.

Burrough, P. A. and Frank, A. U. (eds), 1996. Geographic Objects
with Indeterminate Boundaries. Taylor & Francis.

Clementini, E. and Di Felice, P., 2001. A Spatial Model for Com-
plex Objects with a Broad Boundary Supporting Queries on Un-
certain Data. Data & Knowledge Engineering (DKE) pp. 285–
305.

Clementini, E. and Felice, P., 1996. An Algebraic Model for
Spatial Objects with Indeterminate Boundaries. in (Burrough and
Frank, 1996), pp. 153–169.

Cohn, A. G. and Gotts, N. M., 1996. The ‘Egg-Yolk’ Represen-
tation of Regions with Indeterminate Boundaries. in (Burrough
and Frank, 1996), pp. 171–187.

Dilo, A., de By, R. and Stein, A., 2004. Definition and Im-
plementation of Vague Objects. In: Int. Symp. on Spatial Data
Quality, pp. 139–145.

Egenhofer, M., Clementini, E. and Di Felice, P., 1994. Topo-
logical Relations between Regions with Holes. Int. Journal of
Geographical Information Systems 8, pp. 128–142.

Egenhofer, M. J., 1989. A Formal Definition of Binary Topolog-
ical Relationships. In: Int. Conf. on Foundations of Data Organi-
zation and Algorithms, Springer-Verlag, pp. 457–472.

Erwig, M. and Schneider, M., 1997. Vague Regions. In:
5thInt. Symp. on Advances in Spatial Databases, Springer-
Verlag, pp. 298–320.

Finn, J. T., 1993. Use of the Average Mutual Information Index
in Evaluating Classification Error and Consistency. Int. Journal
of Geographical Information Systems 7(4), pp. 349–366.

Güting, R. H. and Schneider, M., 1995. Realm-Based Spatial
Data Types: The ROSE Algebra. VLDB Journal 4, pp. 100–143.

Ichikawa, T. and Hirakawa, M., 1986. ARES: A Relational
Database with the Capability of Performing Flexible Interpre-
tation of Queries. IEEE Trans. on Software Engineering 12,
pp. 624–634.

Kung, J. and Palkoska, J., 1998. Vague Joins – An Extension
of the Vague Query System VQS. In: 9th Int. Workshop on
Database and Expert Systems Applications, pp. 997–1001.

Lee, D. and Kim, M., 1993. Accommodating Subjective Vague-
ness Through a Fuzzy Extension to the Relational Data Model.
Information Systems 18, pp. 363–374.

Motro, A., 1988. VAGUE: A User Interface to Relational
Databases that Permits Vague Queries. ACM Trans. on Infor-
mation Systems 6, pp. 187.214.

Palkoska, J. and Kung, J., 1997. VQS-A Vague Query System
Prototype. In: Int. Workshop on Database and Expert Systems
Applications, pp. 614–618.

Pauly, A. and Schneider, M., 2004. Vague Spatial Data Types,
Set Operations, and Predicates. In: East-European Conf. on Ad-
vances in Databases and Information Systems, pp. 379–392.

Pauly, A. and Schneider, M., 2006. Topological Reasoning for
Identifying a Complete Set of Topological Predicates between
Vague Spatial Objects. In: FLAIRS Conference, AAAI Press.

Pawlak, Z., 1982. Rough sets. International Journal of Computer
and Information Sciences pp. 341–356.

Schneider, M., 1999. Uncertainty Management for Spatial Data
in Databases: Fuzzy Spatial Data Types. In: Int. Symp. on Ad-
vances in Spatial Databases, Springer-Verlag, pp. 330–351.

Schneider, M., 2001. Fuzzy Topological Predicates, Their Prop-
erties, and Their Integration into Query Languages. In: ACM
Symp. on Geographic Information Systems (ACM GIS), pp. 9–
14.

Schneider, M. and Behr, T., 2006. Topological Relationships be-
tween Complex Spatial Objects. ACM Trans. on Database Sys-
tems (TODS) 31, pp. 39–81.

Worboys, M., 1998. Imprecision in Finite Resolution Spatial
Data. GeoInformatica 2(3), pp. 257–279.


