
Identifying Topological Predicates
for Vague Spatial Objects

Alejandro Pauly & Markus Schneider∗
University of Florida, Department of Computer & Information Science & Engineering

Gainesville, FL 32611, USA

{apauly, mschneid}@cise.ufl.edu

ABSTRACT
Many geographical applications deal with spatial objects
that cannot be adequately described by determinate, crisp
concepts because of their intrinsically indeterminate and
vague nature. GIS and spatial database systems are cur-
rently unable to handle this kind of data. Based on recent
work on vague spatial data types, which are part of a formal
data model called VASA (Vague Spatial Algebra) and which
leverage exact models of crisp spatial data types, this paper
introduces a general mechanism for identifying topological
predicates for vague spatial objects by means of topologi-
cal predicates for crisp spatial objects. We illustrate this
mechanism by deducing these predicates for vague points.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS

General Terms
Design

Keywords
Vague spatial data type, VASA, three-valued logic, cancel-
lation rule, clustering rule, query language

1. INTRODUCTION
Current spatial data models and their implementations in

GIS and spatial database systems are based on the illusory
premise that all spatial objects can be adequately repre-
sented as exclusively crisp and exactly determined entities.
That is, they implicitly assume that the positions of points,
the locations and routes of lines, and the extent and hence

∗This work was partially supported by the National Sci-
ence Foundation under grant number NSF-CAREER-IIS-
0347574.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

the boundary of regions are precisely determined and uni-
versally recognized. Examples are man-made spatial objects
(e.g., monuments, highways, buildings) and immaterial spa-
tial objects (e.g., countries, districts, land parcels with their
political, administrative, and cadastral boundaries). We de-
note these entities as crisp spatial objects.

On the other hand, for many geographic applications this
premise is unfounded and inappropriate since the feature
of spatial vagueness is inherent to their data. Positions of
points turn out to be not exactly known, the locations and
routes of lines are unclear, and regions do not have sharp
boundaries, or their boundaries cannot be sharply deter-
mined. Examples are social or natural phenomena like ter-
rorists’ refuges and escape routes, population density, un-
employment rate, soil quality, vegetation, and oil fields. We
denote these entities as vague spatial objects.

Whereas topological predicates have been largely investi-
gated for crisp spatial objects, this is not the case for vague
spatial objects. The goal of this paper is to develop a general
mechanism for identifying topological predicates for vague
spatial objects instead of several individual procedures for
each single type combination. These vague topological pred-
icates are part of a formal data model called VASA (Vague
Spatial Algebra) and are based on recent work on so-called
vague spatial data types [5] introducing vague points, vague
lines, and vague regions. This paper shows how vague topo-
logical predicates can be deduced from well explored crisp
topological predicates.

Section 2 presents related work. Section 3 introduces
vague spatial data types. Our general mechanism for identi-
fying vague topological predicates is explained in Section 4.
In Section 5 we demonstrate this mechanism for predicates
between vague points. Section 6 shows how these predicates
can be used for querying. Finally, Section 7 draws some
conclusions and addresses future work.

2. RELATED WORK
Spatial vagueness is an intrinsic feature of a spatial object

for which we cannot be sure whether certain components
belong to the object or not. Models based on fuzzy sets,
rough sets, and exact spatial objects have been proposed so
far as general design methods for them. A discussion of their
differences can be found in [7]. Vague spatial data types [5]
belong to the latter models.

The basis of the latter model category are crisp spatial
data types like point, line, and region (see [6] for a sur-
vey). Much research on spatial databases has been devoted
to topological predicates (like overlap, disjoint) on crisp spa-

tial data types. Our definition of vague topological predi-
cates rests on topological predicates that are defined on crisp
complex spatial objects and not on simple spatial objects as
in the other approaches. Complexity means here that point
objects are finite collections of points, line objects are finite
collections of disjoint curves, and region objects are finite
collection of disjoint faces possibly with holes.

Topological predicates for simplified vague regions have
already been studied in [3, 4]. These approaches suffer from
two drawbacks. First, the crisp regions used are only sim-
ple (i.e., single-component, hole-free) regions. Second, the
vague regions defined are too restrictive in the sense that
they are regions with “broad boundaries”. That is, one crisp
simple region, whose area definitely belongs to the vague re-
gion, is located inside another larger crisp simple region.
Their geometric difference is considered to be the broad,
vague boundary.

3. VAGUE SPATIAL DATA TYPES
For our definition of vague spatial data types, we consider

a homeland security scenario as an illustrating example. Se-
cret services (should) have knowledge of the whereabouts of
terrorists. Some of a terrorist’s refuges are precisely known,
some are not and only conjectures. We can model these lo-
cations as a vague point object where the precisely known
locations are given by a kernel point object and the assumed
locations are described by a conjecture point object. Secret
services are also interested in the routes a terrorist takes
to move from one refuge to another. These routes can be
modeled as vague line objects. Some routes, summarized in
a kernel line object, have been definitely identified. Other
routes, specified as a conjecture line object, can only be as-
sumed to be taken by a terrorist. Knowledge about areas
of terroristic activities is also important for secret services.
From some areas, described as a kernel region object, it is
well known that a terrorist operates in them. From other ar-
eas, given by a conjecture region object, we can only assume
that they are a target of terroristic activity. Figure 1 gives
some illustrations. Grey shaded areas, straight lines, and
grey points indicate kernel parts; areas with white interiors,
dashed lines, and white points refer to conjecture parts.

For the definition of vague points, vague lines, and vague
regions we leverage the well known data types point for crisp
points, line for crisp lines, and region for crisp regions [6].
These types are closed under the geometric set operations
⊕ (union), ⊗ (intersection), ª (difference), and ∼(comple-
ment). The use of an exact model for constructing vague
spatial data types leads to the benefit that existing defini-
tions, techniques, data structures and algorithms need not
be redeveloped but can simply be used or in the worst case
slightly modified or extended as necessary.

(c)(a) (b)

Figure 1: Examples of a vague point object (a), a
vague line object (b), and a vague region object (c).

A vague spatial object is described by a pair of two disjoint
or meeting crisp complex spatial objects. Hence, a generic
definition applies to all vague spatial data types. That is,
the extension of a crisp spatial data type to a corresponding
vague type is given by a type constructor v as follows:

v(α) = α× α ∀α ∈ {point, line, region}
with the additional constraint that

∀α ∈ {point, line, region} ∀w = (wk, wc) ∈ v(α) :
disjoint(wk, wc) ∨ meet(wk, wc)

This means that for α = point we obtain v(point) = point×
point, which we also name vpoint. Accordingly, the data
types vline and vregion are defined. For a vague spatial ob-
ject w = (wk, wc) ∈ v(α), the first crisp spatial object wk,
called the kernel part, describes the component that defi-
nitely and always belongs to the vague object. The second
crisp spatial object wc, called the conjecture part, describes
the vague component of w, for which we cannot say with any
certainty whether it or subparts of it belong to the vague
object or not. Maybe the conjecture part or subparts of it
belong to the vague object, maybe this is not the case.

4. THE GENERAL MECHANISM
Topological predicates provide information about the rel-

ative position of spatial objects towards each other. Since
vague spatial objects include a conjecture part, our well
known binary logic with true and false as its only values
turns out to be inappropriate. The result type of vague
topological predicates is thus a new vague data type named
vbool = {true, false,maybe} (= {t, m, f}); it is the basis of a
three-valued logic. The definition of the vague logical connec-
tors and, or, and not reflecting the influence of the maybe
value on logical operations is given in Table 1.

and t m f
t t m f

m m m f
f f f f

or t m f
t t t t

m t m m
f t m f

not t m f
f m t

Table 1: Vague logical operators.

Our first goal is to find a mechanism that in a systematic,
consistent, and correct way identifies the topological predi-
cates for all combinations of vague spatial data types. This
avoids designing a number of different derivation methods
for different type combinations. Our second goal is to make
use of well known definitions of topological predicates on
crisp spatial objects. Our third goal is to benefit from great
advantages with respect to implementation. Vague topolog-
ical predicates can later make use of preexisting implemen-
tations of crisp topological predicates and be implemented
on top of them as executable specifications.

Our approach illustrated in Figure 2 aims at a charac-
terization of topological predicates on vague spatial objects
by means of conjunctions of topological predicates on com-
plex crisp spatial objects. For α, β ∈ {point, line, region}
let Tα,β be the type-combination specific set of topological
predicates. The work in [1], e.g., identifies five (33) topolog-
ical predicates between two complex points (regions). Given
a vague spatial object A = (Ak, Ac), we get access to the
crisp spatial objects Ak, Ac, and Ak⊕Ac. Correspondingly,

a vague spatial object B = (Bk, Bc) enables the access to the
crisp spatial objects Bk, Bc, and Bk ⊕Bc. The idea now is
to determine the uniquely defined topological predicate for
the nine pairs (Ak, Bk), (Ak, Bc), (Ak, Bk ⊕ Bc), (Ac, Bk),
(Ac, Bc), (Ac, Bk ⊕ Bc), (Ak ⊕ Ac, Bk), (Ak ⊕ Ac, Bc), and
(Ak⊕Ac, Bk⊕Bc). If Tα,β contains n predicates, we obtain
the large amount of n9 possible combinations (9-tuples) of
topological predicates for the nine pairs. However, many
combinations turn out to be invalid for definitional or topo-
logical reasons.

We employ so-called cancellation rules (Figure 2) to iso-
late and exclude all invalid predicate combinations. These
are based on two principles. First, we consider all predi-
cate combinations that are invalid due to a violation of the
definition of vague spatial data types. An example are all
combinations for which inside(Ak, Bk) and contains(Ac, Bk)
hold, since then inside(Ak, Ac) follows. Second, we take
into account those predicate combinations that are invalid
due to a contradiction of the predicates involved in the
nine relationships. An example are all combinations for
which overlap(Ak, Bk) and disjoint(Ak⊕Ac, Bk) hold. From
disjoint(Ak⊕Ac, Bk) we can conclude disjoint(Ak, Bk) which
is a direct contradiction to overlap(Ak, Bk) due to the mu-
tual exclusion of all topological predicates in Tα,β . Since the
cancellation rules identify all invalid 9-tuples, all remaining
9-tuples are topologically possible and satisfy the definition
of vague spatial data types. Each valid 9-tuple represents a
nameless, numbered vague topological predicate.

The large number of vague topological predicates and
their fine-grained semantics can overwhelm the user. We
therefore propagate an additional evaluation step which rests
on the observation that the same predicate name can be as-
sociated with several 9-tuples, i.e., with different but topo-
logically related spatial configurations. This leads to a group-
ing of vague topological predicates into so-called clustered
vague topological predicates. We define clustering rules (Fig-
ure 2) as type-combination specific evaluation criteria to ex-
press whether each valid 9-tuple makes a clustered predicate
true, maybe, or false. Clustered predicates are predefined,
and different meaningful sets of clustered predicates are con-
ceivable. The clustering rules have the task to define the se-
mantics of each clustered vague topological predicate. The
rules for each individual clustered predicate but also for all
clustered predicates together must be sound, i.e., mutually
exclusive, complete, and cover all valid 9-tuples.

It seems to be natural to take the topological predicates
defined on complex crisp spatial data types as a founda-
tion and to define their vague counterparts on the basis of

VSDT

constructor

{point, line,

region}

{vpoint, vline,

vregion}
 validation of

permutations

cancellation rules

pre-existing model of

crisp topological

predicates

vague

topological

predicates

clustering

of vague

topological

predicates

clustering rules

pre-existing model

of crisp topological

predicates

clustered vague

topological

predicates

general mechanism for identifying vague

topological predicates

Figure 2: Overview of the general mechanism

all valid 9-tuples. For example, in Section 5 we deploy the
topological predicates Tpoint,point = {disjoint , contains, in-
side, overlap, equal} between two complex crisp point ob-
jects. According to our strategy, we obtain the five clustered
vague topological predicates Tvpoint,vpoint = {Disjoint , Con-
tains, Inside, Overlap, Equal}, which are indicated by a
capital letter and specify their output values in our three-
valued logic depending on the clustering rules.

5. PREDICATES FOR VAGUE POINTS
In this section, we illustrate the general mechanism of Sec-

tion 4 by identifying the vague topological predicates and
their clustered versions for two vpoint objects. Section 5.1
presents a set of cancellation rules that extract invalid 9-
tuples on the basis of the predefined semantics of the under-
lying five crisp topological predicates in Tpoint,point [1]. This
means we need to explore a total of 59 = 1953125 9-tuples.
Section 5.2 introduces possible clustering rules for grouping
the valid 9-tuples into the clustered predicates.

5.1 Cancellation Rules
According to Section 4 we distinguish cancellation rules

checking the violation of the vpoint type definition (Sec-
tion 5.1.1) and cancellation rules searching for contradic-
tions of the predicates involved in the nine relationships
(Section 5.1.2). We assume two vpoint objects A and B.
To make the notation more compact, all rules are param-
eterized. We introduce the parameters x, y, i, j ∈ {k, c}
with x 6= y and i 6= j. We also specify parameters v ∈
{Ak, Ac, Ak ⊕ Ac} and w ∈ {Bk, Bc, Bk ⊕ Bc}. Due to a
lack of space, we omit all proofs for the rules.

5.1.1 Cancellation by Definition
The following rules are defined on the premise that the

kernel part and the conjecture part of a vpoint object may
only satisfy the topological relationships disjoint or meet
(Section 3). The idea of the first two (symmetric) rules is
to invalidate combinations where containment of the inte-
rior in one predicate and intersection of the interiors in the
other predicate would force the interiors of the individual
components of the same object to intersect.

Rule 1 ∀ p ∈ {equal , contains} ∀ q ∈ {equal , overlap, inside,
contains} : ¬(p(Ax, w) ∧ q(Ay, w))

Rule 2 ∀ p ∈ {equal , inside} ∀ q ∈ {equal , overlap, inside,
contains} : ¬(p(v, Bi) ∧ q(v, Bj))

The next two (symmetric) cancellation-by-definition rules
invalidate 9-tuples on the basis that, if a component Ax is
inside the union of the components of B but not exclusively
inside some component Bi, the other component Ay must
not contain the other component Bj . If Bj ’s interior was
inside Ay’s interior, Ax’s interior would also intersect Ay’s
interior, since Ax’s interior intersects Bj ’s interior.

Rule 3 ∀ p ∈ {overlap, contains} ∀ q ∈ {equal , contains} ∀ r
∈ {inside, equal} : ¬(p(Ax, Bi) ∧ q(Ay, Bj) ∧ r(Ax, Bk ⊕
Bc))

Rule 4 ∀ p ∈ {overlap, inside} ∀ q ∈ {equal , inside} ∀ r ∈
{contains, equal} : ¬(p(Ax, Bi) ∧ q(Ay, Bj) ∧ r(Ak ⊕
Ac, Bi))

In case of two vague point objects, the cancellation-by-
definition rules are able to invalidate 1919875 combinations.
They leave 33250 valid combinations up to this point.

5.1.2 Cancellation by Contradiction
Cancellation-by-contradiction rules invalidate 9-tuples on

the basis of contradictory relationships contained in them.
The following two (symmetric) rules are based on the set-
theoretic observation that, if two sets X and Y are disjoint,
then each subset of X (Y) is disjoint from Y (X) too.

Rule 5 ∀ p ∈ {equal , contains, overlap, inside} :
¬(p(Ax, w) ∧ disjoint(Ak ⊕Ac, w))

Rule 6 ∀ p ∈ {equal , contains, overlap, inside} :
¬(p(v, Bi) ∧ disjoint(v, Bk ⊕Bc))

The next two (symmetric) cancellation-by-contradiction
rules are also based on a set-theoretic fact: If a set X con-
tains a set Y , then each superset of X also contains Y .

Rule 7 ∀ p ∈ {equal , contains} ∀ q ∈ {disjoint , overlap,
inside} : ¬(p(Ax, w) ∧ q(Ak ⊕Ac, w))

Rule 8 ∀ p ∈ {equal , inside} ∀ q ∈ {disjoint , overlap,
contains} : ¬(p(v, Bi) ∧ q(v, Bk ⊕Bc))

The next two (symmetric) rules follow the same idea of
containment as the previous two rules but reverse the roles
by making sure that, if both components of a vpoint object
are contained inside a component of another vpoint object,
then their union is also contained.

Rule 9 ∀ r ∈ {disjoint , overlap, contains} : ¬(inside(Ax, w)
∧ inside(Ay, w) ∧ r(Ak ⊕Ac, w))

Rule 10 ∀ r ∈ {disjoint , overlap, inside} : ¬(contains(v, Bi)
∧ contains(v, Bi) ∧ r(v, Bk ⊕Bc))

The following two (symmetric) rules ensure that, if each
component of A is disjoint from each component or the union
of components of B, the union of components of A is also
disjoint from (components of) B. These rules can be consid-
ered the opposite of the situations described in the rules 5
and 6.

Rule 11 ∀ r ∈ {contains, equal , overlap, inside} :
¬(disjoint(Ax, w) ∧ disjoint(Ay, w) ∧ r(Ak ⊕Ac, w))

Rule 12 ∀ r ∈ {contains, equal , overlap, inside} :
¬(disjoint(v, Bi) ∧ disjoint(v, Bj) ∧ r(v, Bk ⊕Bc))

The next two (symmetric) cancellation rules rest on the
set-theoretic statement that the non-disjointedness of two
sets is maintained if one of the sets is replaced by a superset.

Rule 13 ∀ p ∈ {overlap, contains} ∀ q ∈ {inside, equal} :
¬(p(Ax, w) ∧ q(Ak ⊕Ac, w))

Rule 14 ∀ p ∈ {overlap, inside} ∀ q ∈ {contains, equal} :
¬(p(v, Bi) ∧ q(v, Bk ⊕Bc))

The next two (symmetric) rules assure that, if a compo-
nent of an object does not contain a component of a second
object but the union of the components of the first object
contains the component, then the other component of the
first object must not be disjoint from the second object.

Rule 15 ∀ p ∈ {overlap, disjoint , inside} ∀ r ∈ {equal ,
contains} : ¬(p(Ax, w) ∧ disjoint(Ay, w) ∧ r(Ak⊕Ac, w))

Rule 16 ∀ p ∈ {overlap, disjoint , contains} ∀ r ∈ {equal ,
inside} : ¬(p(v, Bi) ∧ disjoint(v, Bj) ∧ r(v, Bk ⊕Bc))

The last two (symmetric) cancellation-by-contradiction
rules deal with the special case that, if an object A is equal
to (some component of) another object B but one compo-
nent of A is disjoint from (some component of) B, the other
component of A cannot be disjoint too.

Rule 17 ∀ q ∈ {inside, disjoint} : ¬(equal(Ak ⊕ Ac, w) ∧
q(Ay, w) ∧ disjoint(Ax, w))

Rule 18 ∀ q ∈ {contains, disjoint} : ¬(equal(v, Bk ⊕Bc) ∧
q(v, Bj) ∧ disjoint(v, Bi))

The application of all cancellation-by-contradiction rules,
which was supported by a utility program not shown here,
eliminates further 33053 rules and leaves 197 valid 9-tuples
that correspond to vague topological predicates for two
vpoint objects. All invalid predicate combinations are cap-
tured since it is possible for all remaining 197 predicate
combinations to draw a spatial configuration representing
the nine topological relationships of such a 9-tuple. Due to
space restrictions, we are unable to show the valid 9-tuples
and their proofs by drawing.

5.2 Clustering Rules
To handle and distinguish such a large amount of very

specialized vague topological predicates is difficult for users
and not necessarily desired by them. For easier use we there-
fore group the predicates (Figure 2) into the five clustered
predicates Disjoint , Equal , Overlap, Contains, and Inside,
which are supposed to be the vague counterparts of the five
topological predicates disjoint , equal , overlap, contains, and
inside between two crisp point objects [1]. Clustering rules
define for which 9-tuples a clustered predicate yields true,
maybe, and false. In the following, we specify these cluster-
ing rules for the five clustered predicates. The strategy is
always the same. For p ∈ Tvpoint,vpoint we only define the two
cases for which p(A, B) = true and p(A, B) = false. Then
p(A, B) = maybe ⇔ ¬(p(A, B) = true ∨ p(A, B) = false).

Equal(A, B). Two vpoint objects A and B definitely satisfy
this predicate if their kernel parts are the same and their
conjecture parts are empty (crisp case). The existence of
conjecture parts at any rate introduces uncertainty so that
equality cannot be assured. If conjecture parts exist, A and
B may be equal if the kernel parts are equal, or if one object
is contained within the other object or overlaps it and the
difference between the objects is all made out of conjecture
parts. Finally, A and B are not equal if they are either
disjoint or if there is not such containment as just described.

Equal(A, B) = true ⇔
equal(Ak, Bk) ∧ equal(Ak, Bk ⊕Bc) ∧
equal(Ak ⊕Ac, Bk) ∧ equal(Ak ⊕Ac, Bk ⊕Bc)

Equal(A, B) = false ⇔
overlap(Ak, Bk ⊕Bc) ∨ overlap(Ak ⊕Ac, Bk)
∨ inside(Ak ⊕Ac, Bk) ∨ contains(Ak, Bk ⊕Bc)
∨ disjoint(Ak ⊕Ac, Bk ⊕Bc)
∨ (equal(Ak ⊕Ac, Bc) ∧ inside(Ak ⊕Ac, Bk ⊕Bc))
∨ (equal(Ac, Bk ⊕Bc) ∧ contains(Ak ⊕Ac, Bk ⊕Bc))
∨ (overlap(Ak ⊕Ac, Bk ⊕Bc)
∧ ¬(inside(Ak, Bk ⊕Bc) ∧ contains(Ak ⊕Ac, Bk)))

Inside(A, B). A vpoint object A is considered certainly in-
side another vpoint object B only if all components of A are
inside the kernel part of B. It is uncertain whether A is
inside B if A’s kernel part is inside B but A’s conjecture is
not. When the interior of the kernel part of A overlaps the
exterior of B we can definitely say that A is not inside B.

Inside(A, B) = true ⇔
inside(Ak ⊕Ac, Bk) ∧ inside(Ak, Bk)

Inside(A, B) = false ⇔
overlap(Ak, Bk ⊕Bc) ∨ contains(Ak, Bk ⊕Bc)
∨ disjoint(Ak ⊕Ac, Bk ⊕Bc) ∨

(equal(Ak ⊕Ac, Bk ⊕Bc) ∧ equal(Ak, Bk ⊕Bc))

Contains(A, B). This clustered predicate is the inverse ver-
sion of Inside.

Contains(A, B) ⇔ Inside(B, A)

Overlap(A, B). Two vpoint objects truly overlap only if their
kernel parts overlap and there is no possibility of contain-
ment once the conjecture parts are considered. The pred-
icate is uncertain if a containment might exist or if there
might be an overlapping but not between the two kernel
parts. We can assure both objects do not overlap if all
components between both objects are certainly disjoint from
each other or if any of the other predicates certainly hold.

Overlap(A, B) = true ⇔
overlap(Ak, Bk) ∧ ¬(inside(Ak, Bk ⊕Bc)
∨ (equal(Ak, Bk ⊕Bc) ∧ equal(Ak ⊕Ac, Bk ⊕Bc)))
∧ ¬(contains(Ak ⊕Ac, Bk) ∨ (equal(Ak ⊕Ac, Bk)
∧ equal(Ak ⊕Ac, Bk ⊕Bc)))

Overlap(A, B) = false ⇔
disjoint(Ak ⊕Ac, Bk ⊕Bc) ∨ inside(Ak ⊕Ac, Bk)
∨ contains(Ak, Bk ⊕Bc) ∨ (equal(Ak ⊕Ac, Bk ⊕Bc)
∧ (equal(Ak, Bk ⊕Bc) ∨ equal(Ak ⊕Ac, Bk)))

Disjoint(A, B). Two vpoint objects are definitely disjoint
if all components from both objects are disjoint from each
other. They are perhaps disjoint if we additionally allow
that some components but not the kernels of both objects
overlap. The predicate is certainly false if the kernel parts
of both objects are in a relationship unequal to disjoint .

Disjoint(A, B) = true ⇔ disjoint(Ak ⊕Ac, Bk ⊕Bc)
Disjoint(A, B) = false ⇔ ¬disjoint(Ak, Bk)

Due to space limitations we are unable to show the clus-
tering of the 197 vague topological predicates of Tvpoint,vpoint

into the five clustered predicates.

6. QUERYING
In this section, we briefly demonstrate the integration

of clustered vague topological predicates into an SQL-like
query language. The problem is that we have to trans-
form the results of our three-valued logic into results of the
boolean logic common to SQL predicates. As a solution, we
assign the three boolean predicates True P, Maybe P, and
False P to each clustered predicate P ∈ Tvpoint,vpoint. For
two vague spatial objects A and B, we obtain:

True P(A, B)=true ⇒P (A, B)=true
True P(A, B)=false⇒P (A, B)=maybe ∨P (A, B)=false

Maybe P(A, B)=true ⇒P (A, B)=maybe
Maybe P(A, B)=false⇒P (A, B)=true ∨P (A, B)=false
False P(A, B)=true ⇒P (A, B)=false
False P(A, B)=false⇒P (A, B)=true ∨P (A, B)=maybe

Note that ¬True P(A, B) 6= False P(A, B). Two queries
shall illustrate the use of these boolean predicates. We as-
sume a homeland security scenario and store in a database
table information about terrorists, the terrorist cell they
are associated with, and their known and possible locations
modeled as vpoint objects. Another table shall contain the
description of oil fields where a vpoint object specifies the
locations of all oil pumps in the field. The first query asks
for those fields that have pumps where terrorists might have
been located so that it is urgent to secure these oil fields.

SELECT f.name

FROM fields f, terrorists t

WHERE f.pumps False_Disjoint t.locations

The use of the predicate False Disjoint means here that oil
pumps and terrorist locations are definitely not disjoint. In
other words, the interiors of their kernel parts intersect. For
the next query, we supplement the oil field table by another
attribute which represents possible, unexploited well loca-
tions where oil pumps can be installed. The second query
asks for all oil fields that still have possible well locations
available for installing oil pumps.

SELECT f.name

FROM fields f

WHERE f.pumps Maybe_Inside f.wells OR

f.pumps True_Inside f.wells

Note that Maybe Inside(A, B) ∨ True Inside(A, B) =
¬False Inside(A, B) (see definition above).

7. CONCLUSIONS AND FUTURE WORK
Based on a concept of vague spatial data types, a three-

valued logic, a set of cancellation rules, and a set of cluster-
ing rules, we have presented a general mechanism for iden-
tifying vague topological predicates and clustered versions
of them. This mechanism is appropriate for all type com-
binations. Due to the large number of vague topological
predicates (197 predicates in the vpoint/vpoint case) over-
whelming users, we have recognized the necessity to group
these predicates into a few clustered and manageable pred-
icates (five in the vpoint/vpoint case).

In the future, we will extend VASA by vague topological
predicates for all remaining type combinations according to
the general identification mechanism described. Of course,
another important topic will then be their efficient imple-
mentation on top of existing algebras for crisp spatial data
types and predicates.

8. REFERENCES
[1] T. Behr and M. Schneider. Topological Relationships of

Complex Points and Complex Regions. Int. Conf. on
Conceptual Modeling, pp. 56–69, 2001.

[2] P. A. Burrough and A. U. Frank, editors. Geographic
Objects with Indeterminate Boundaries. GISDATA
Series, vol. 2. Taylor & Francis, 1996.

[3] E. Clementini and P. Di Felice. An Algebraic Model for
Spatial Objects with Indeterminate Boundaries, pp.
153–169. In Burrough and Frank [2], 1996.

[4] A. G. Cohn and N. M. Gotts. The ‘Egg-Yolk’
Representation of Regions with Indeterminate
Boundaries, pp. 171–187. In Burrough and Frank [2],
1996.

[5] A. Pauly and M. Schneider. Vague Spatial Data Types,
Set Operations, and Predicates. 8th East-European
Conf. on Advances in Databases and Information
Systems, 2004.

[6] M. Schneider. Spatial Data Types for Database Systems
- Finite Resolution Geometry for Geographic
Information Systems, volume LNCS 1288.
Springer-Verlag, Berlin Heidelberg, 1997.

[7] M. Schneider. Uncertainty Management for Spatial
Data in Databases: Fuzzy Spatial Data Types. 6th Int.
Symp. on Advances in Spatial Databases, LNCS 1651,
pp. 330–351. Springer-Verlag, 1999.

