COP-5555 PROGRAMMING LANGUAGE PRINCIPLES
NOTES ON THE DENOTATIONAL SEMANTICS OF TINY.

1. The ""o" operator.
The "o" operator is defined as follows:
o = Af. Ag. Ax. f x eqerror - error | g(f X)
i.e., "o" takes two functions, f and g, and yields a new function on x that returns g(f x) if (f x) does NOT

evaluate to error, and error if (f X) does evaluate to error. "o" simply serves as a convenient way to put

error checking in our denotational definition everywhere without laboriously specifying it ourselves every-
where. In the denotational semantics description of Tiny we will be using "o" as an INFIX operator, writ-

ing f o g instead of o fg.
Thus

fog=ax. fxeqerror - error | g(f x)

This is purely a syntactic convention of ours that turns out to make denotational semantics descriptions read
easier. It allows a "left-to-right flow" reading of such descriptions, exemplified below. Consider an exam-
ple where

f=21y. 2ly
g=A4z.2+3
Thenfog=

AX. (Ay.2ly) x eqerror — error | (1z.z+3) ((1y.2/y)x) =
AX. 2/x egerror — error | 2/x+3

Consider applying f o g to an actual argument, say, 4:

(fog)4=
2/4 eq error — error | 2/4+3 =
2/4+3 =3 1/2.

Now consider

(fog)0=
2/0 eq error — error | 2/0+3 =
error, since 2/0 eq error (division by zero).

It is to catch things like division by zero or undeclared identifiers that we use "o".

Now here’s the left-to-right bent for "o". Re-consider (f o g) 4. The computation can be depicted by

the diagram

PLP Notes Tiny’s Denotational Semantics

4 f(x) 9(f(x))
N /S N/
f o

g

4 gets "sent into" f, and the result pops out on the other side of f, i.e. (f x). This result (f x) gets sent into g
(unless it equals error, in which case the computation in g is skipped), and the final answer is g(f x). So,
you can read "o" expressions very naturally in a left-to-right manner. In general, read the expression

fof,o..ofy

as denoting that function of x that first sends x through f;, the result of which is sent through f,, the result
of which is sent through f3, ..., the result of which is sent through f,., with error checking at each step so that
if the evaluation of any f; applied to its argument is "error", then the evaluation of functions f;,; ... f, are
SKIPPED and the final answer is “error".

"o" therefore, takes two functions and produces a third.

2. The "= >"" operator.
"x = > f" denotes "x eq error - error | f x".
The difference between "o" and "= >" is that "o" takes two FUNCTIONS, while "= >" takes a value and a
function.
Note: If we have

x=>fogoh..

we can replace this with
x=>f)=>goh..

Also, "o" is left associative.

3. TINY’s rules.

3.1. Syntactic domains.

AST= E+C+P, where

E= 0]1|2..|true|false|read|ld|<notE>|<<EE>|<+EE>
C= <=I1E>|<PrintE>|<ifECC>|<whileEC>|<; C; C,>
P= <program C>

3.2. Semantic Domains.

State: Mem X Input x Output
Mem: Id - Val

PLP Notes Tiny’s Denotational Semantics

Output: Val*
Input: Val*
Val: Num + Bool

3.3. Functionalities of semantic functions.

EE: E - State - (Val x State)
CC: C - State - State
PP: P - Input - Output

3.4. Definitions of semantic functions.

Auxiliary functions:

Return: Val — State - (Val x State)
AV. 8. (v,s)

Check: Domain - (Val x State) - (Val x State)
AD. A(V,S). v OD - (vs) | error

Dummy: State - State
As. S

Cond: (State - State) - (State — State) —» (ValxState) —» State
AF,. AF,. A(V,S). s=>(v - F|Fy)

Replace: Mem - Id - Val - Mem
am. Al AW (A.1’eqi - v|mi’)

"Return" takes a value and a state and returns them as a tuple, which is the output of EE. "Check" checks
that the Val parameter is in the Domain. If so, it merely returns the Val and State. "Dummy" doesn’t do
very much: it returns the given state. "Cond" takes two State-to-State functions, and a (Value,State) pair. It
returns the result of applying one of the functions to the State, depending on the Value. Finally, "Replace"
takes an old Mem, Id, and Val, and produces a new Mem in which the Id is associated with the Val.

Now for EE, CC, and PP:

EE[0] = Return 0; EE[1] = Return 1; EE[2] = Return 2; ... etc. ...
EE[true] = Return true; EE[false] = Return false

EE[read] = A(m,i,0). Null i - error | (Head i, (m, Tail i, 0))

"read" pulls the first input symbol from the input, and replaces the input with the rest of the input.
Example: EE[read](m, (5,3,1), 0) for any memory m and output o has value (5, (m, (3,1), 0)). The
latter is a Val x State pair. The new State reflects the fact that a value has been pulled off the input.
Null checks for the nil tuple. Head gets the first element of the tuple, and Tail gets the tuple contain-
ing all but the first element.

PLP Notes Tiny’s Denotational Semantics

EE[I] = A(m,i,0). mleq! - error|(m I, (m,i,0))
Look up an identifier; return its value along with the same state that came in.
EE[<not E>] = EE[E] o (Check Bool) o (4(v,s).((not v),s))

Evaluate the expression, make sure it is boolean, and negate it.

EE[<< E; E,>] = EE[E;] 0
(Check Num) o
(A(vis1)sy =>EE[E]
= > (Check Num)
=> (Z(Vz,Sz)-(VjLSVZISZ))

)

Evaluate the first argument, then the second. Return their comparison, and the new state.

EE[<+ E, E,>] = EE[E,] 0
(Check Num) o
(A(v1,81)-81 => EE[E;]
= > (Check Num)
=> (A(Vv2,52)-(V1tV2,52))

)

Evaluate the arguments and return their sum, with the new state.
CC[<:=1E>]= EE[E] o (A(v,(m,i,0)). (Replace m v, i, 0))

CCI[<Print E>] = EE[E] o (A(v,(m,i,0)). (m,i,0 aug Vv))

CC[<if E C, C,>] = EE[E] o (Check Bool) o (Cond CC[C,] CC[C.])

CC[<while E C>] = EE[E] o (Check Bool) o (Cond (CC[<; C <while E C>>]) Dummy)
CC[<; C, C,>] = CC[C,] o CC[C,]

PP[<program C>] = (Ai. CC[C]((4i.), i, nil)) © (A(m,i,0).0)

The meaning of a program <program C> is a function that takes an input i, computes the value of
CCIC] applied to an initial configuration with an everywhere-undefined memaory, the input i, and a null out-
put, takes the resulting value from CC[C](...) and sends it into a function that discards everything but the
output.

END OF DENOTATIONAL DESCRIPTION OF TINY

4. A Tiny example.
Let us work out a TINY example (which won’t be so tiny):
What is the meaning of

PP[<program <Print <+ read <+ 12>>>>]5 ?

PLP Notes Tiny’s Denotational Semantics

PP[<program ...>] is a function from input to output; the input in our particular case is nil aug 5; we expect
the output to be nil aug (5+1+2) = nil aug 8.

PP[<program <Print <+ read <+ 1 2>>>>] 5

= ((Ai. CC[<Print ...>](Ai.L, i, nil)) 0 (4(m,i,0).0))5
= 5=> (Ai. CC[<Print ...>](Ai.L, i, nil)) o (4(m,i,0).0)

= (5 => (Ai. CC[<Print ...>](4i.L, i, nil))) => (4(m,i,0).0)
= CCI<Print...>](4i.l, 5, nil) => (A(m,i,0).0)
= (4i.L, 5, nil) = > CC[<Print ...>] => (A(m,i,0).0)

= (4i.L, 5, nil) = > EE[<+ read ...>] o (Av,(m,i,0).(m,i,0 augv)) => (4(m,i,0).0)
= (4i.L, 5, nil) = > EE[<+ read ...>] = > (4v,(m,i,0).(m,i,0 aug v)) => (4(m,i,0).0)

Now to send the argument (Zi..,5,nil) into EE[<+ read...>] , we must first compute the meaning of EE[<+
read...>]. This is a perfect time to test out our claim that we can compute the meaning of a program frag-
ment independently. So let’s compute EE[<+ read...>], and then substitute that value back into the above
line.

EE[<+ read <+ 1 2>>] = EE[read]
o (Check Num)

O (A(vq,81)- 81 =>EE[<+12>]
= > (Check Num)
=> (A(v2,52).(V1V2,57))

)

Well, how about computing EE[<+ 1 2>] first, and then returning to our subproblem.

We now have pushed two problems on our stack, and are evaluating

EE[<+ 12>] = EE[1]
o (Check Num)

0 (A(vy,81).- 51 =>EE[2]
= > (Check Num)
=> (A(v2,52). (V1+V2,57))
)
What are EE[1] and EE[2]? Return 1 and Return 2, respectively, or 1s.(1,s) and 1s.(2,s), respectively.
Plug them in:

EE[<+12>] = 4s.(1,5)
O (Check Num)

O (A(vq,51)-81 =>1s.(29)
= > (Check Num)
=> (A(v2,52). (V1+V2,57))

PLP Notes Tiny’s Denotational Semantics

Simplify the expression's; = > ...

S = > 1s.(2,5) = > (Check Num) = > (4(V5,S).(V1+V5,S))

= (2s) = > (Check Num) = > (4(V2,%,).(V1+V2,%y))
= (2s) => (A(V2,9)-(V11V2,))
= (V1+2,5)

So:
EE[<+ 1 2>] = (4s.(L,9)) © (Check Num) o (A(v1,5).(v1+2,5,))
Now compute (1s.(1,5)) © (Check Num):

= Ax.(4s.(1,9)x eq error — error | (Check Num) ((4s.(1,9)x)
= Ax.(1,x) eq error — error | (Check Num) (1,x)

= AX.(Check Num) (1,x)

= AX.(1,X)

=1s(1,9

So:

EE[<+12>] =(4s.(1,9)) © (A(v1,91).(V11t2,5)))
= AX. (1s.(1,9)) x eq error — error | (A(v1,91)- (V1+2,51)) ((As.(1,9)X)
= AX. (1,x) eq error — error | (A(vy,S7)- (V1+2,91)) (1,X)
= AX. (A(v1,81).(v1+2,51)) (1.X)
= AX. (1+2,X)
= AX. (3,X)
=1s. (3,9

Thisisaswe expect: <+ 1 2> produces the value 3 and the same input state as it receives.

Now back to the earlier subproblem:
EE[<+ read <+ 1 2>>] = EFE[read]
o (Check Num)

0 (A(v,s1).s1 =>(4s(3)9)
= > (Check Num)
=> (A(v2,2)- (V11V2,S2))

Simplify the's; = > ... expression:

S =>(4s(3,9) =>(Check Num) => (A(v2,%).(V1tV2,%,))
= s = > (Check Num) = > (4(V2,5,).(V1+V2,5;))
= s =>(A(v2,8)- (V11V2,9))
= (V1+3,S]_)

So

EE[<+ read <+ 1 2>>] = EE[read] o (Check Num) o (4(v1,8).(V1+3,51)) .

PLP Notes Tiny's Denotational Semantics

Now let us substitute this value back into our computation for PP[<program ...>]. If you recall, our last line
in this computation was

(Ai.L, 5, nil) = > EE[<+ read ...>] = > (A(v,(m,i,0)).(m,i,0 aug Vv)) = > (1(m,i,0).0) .
This now becomes
(2i.1,5,nil) = > EE[read]
0 (Check Num)

0 (A(v1,81)-(V1+3,51))
= > (A(v,(m,i,0)).(m,i,0 aug v))
=> (A(m,i,0).0)

(2i.L,5,nil) = > EF[read]
= > (Check Num)
=> (Avy,81)(v1+3,51))
= > (A(v,(m,i,0)).(m,i,0 aug v))
=> (A(m,i,0).0)

Null 5- error|
(Head 5,(2i..,Tail 5,nil)) => (Check Num)
= > (A(v1,81)-(v1*3,81))
= > (A(v,(m,i,0)).(m,i,0 aug v))
=> (A(m,i,0).0)

(5,(Ai.Lnil,nil)) = > (Check Num)
=> (},(Vl,S_I_)-(V1+3!51))
= > (A(v,(m,i,0)).(m,i,0 aug v))
=> (ﬂ,(m,i,O).O)

(5,(Ai..nil nil)) => (A(v1,81)-(v1+3,81))
= > (A(v,(m,i,0)).(m,i,0 aug v))
=> (4(m,i,0).0)

(8,(Ai.L,nil,nil)) = > (A(v,(m,i,0)).(m,i,0 aug v))
=> (A(m,i,0).0)

(Ai.Lnil,nil aug 8) = > (A(m,i,0).0)

nil aug 8 (Whew!)

An exercise. Denotational semantics have a property that no other method seen so far has had: The mean-
ing of any construct can be obtained, usually as afunction of the state in which that meaning is to be evalu-
ated. Note that we refer to the meaning of ANY construct, i.e. any portion of a program. To illustrate fur-
ther this property, and as an exercise, you may want to derive the value of

PP[<program <Print <+ read <+ 1 2>>>>] (notice we have NOT applied it to 5),

and then apply the result to 5 to see if you get the answer 8.

PLP Notes Tiny's Denotational Semantics

