
COP-5555 PROGRAMMING LANGUAGE PRINCIPLES

NOTES ON LAMBDA-CALCULUS

To obtain the "value" of an RPAL program, we carry out the following steps:

1) Transduce the source PAL program to an AST (using the string-to-tree transduction grammar).

2) Standardize the AST, using the PAL subtree transformational grammar. This step breaks down

ev ery construct in RPAL into two basic ones: function abstraction (lambda), and functional

application (gamma).

3) Linearize the standardized tree, using the flattener grammar shown below. The result is a

lambda-expression.

4) Evaluate the lambda expression. The evaluating mechanism is the Control-Stack-Environment

Machine, which we will discuss later. We first need some theory, reg arding how lambda-

expressions are evaluated.

flattener RPAL:

RPAL → E

E → <’γ ’ E E > => E E

→ <’λ’ V E > => ’λ’ V ’.’ E

→ <id:x> => x

→ <integer:i> => i

→ <string:s> => s

→ ’true’ => ’true’

→ ’false’ => ’false’

.

.

.

end RPAL.

Note that the result of the transduction is a string (an applicative expression (AE), or well-formed-formula

(WFF)). The interpretation of the AE is ambiguous, because there are no parentheses. We will add them to

disambiguate, as required by the following rules:

1) Function application is left associative.

2) If an expression of the form λx.M occurs in a larger expression, then M is extended as far as

possible (i.e. to the end of the expression or to the next unmatched right parenthesis).

Example: λx.λy.+xy 2 3 is equivalent to λx.(λy.+xy 2 3), and hence must be parenthesized to obtain the

intended correct expression: (λx.λy.+xy) 2 3.

Definition: Let M and N be λ-expressions. An occurrence of x in a λ-expression is free if it can be proved

so via the following three rules:

1) The occurrence of x in λ-expression "x" is free.

2) Any free occurrence of x in either M or N is free in M N.

3) Any free occurrence of x in M is free in λy.M, if x and y are different.

Definition: An occurrence of x in a λ-expression M is said to be bound iff it is not free in M.

PLP Notes Lambda calculus

-2-

Examples:

a - a occurs free

x - x occurs free

a x - a and x both occur free

(λx.ax)x - a occurs free; x occurs both free and bound

Definition: In an expression of the form λx.M, x is the bound variable of the abstraction (the formal

parameter name), and M is the body.

Definition: The scope of an identifier x, in an expression of the form λx.M, consists of all free occurrences

of x in M.

Axiom Delta: Let M and N be AE’s that do not contain λ-expressions. Then M <=>δ N iff Val(M) =

Val(N). "Val" is the value obtained from ordinary evaluation. We say that M and N are delta-convertible.

Example: +35 <=>δ 8.

Axiom Alpha: Let x and y be names, and M be an AE with no free occurrences of y. Then, in any context,

λx.M <=>α λy.subst[y,x,M]. "subst[y,x,M]" means "substitute y for x in M", and is defined formally

below. This axiom can be used to rename the bound variable. Example: λx.+x3 <=>α λy.+y3.

Axiom Beta: Let x be a name, and M and N be AE’s. Then, in any context, (λx.M) N =>β subst[N,x,M].

This is called a beta-reduction, and is used to apply a function to its argument.

Definition: Let M and N be AE’s, and x be a name. Then subst[N,x,M] (also denoted as [N/x]M) means

1) If M is an identifier, then

1.1) if M=x, then return N

1.2) if M is not x, then return M

2) if M is of the form X Y, then return ([N/x]X)([N/x]Y)

3) If M is of the form λy.Y, then

3.1) if y=x then return λy.Y

3.2) if y is not x then

3.2.1) if x does not occur free in Y, then return λy.Y

3.2.2) if y does not occur free in N, then return λy.[N/x]Y

3.2.3) if x occurs free in Y and y occurs free in N, then return λw.[N/x]([w/y]Y), for any

w that does nor occur free in either N or Y.

Examples:

a) [3/x](λx.+x2) = λx.+x2 (by 3.1)

b) [3/x](λy.y) = λy.y (by 3.2.1)

c) [3/x](λy.+xy) = λy.[3/x](+xy) = λy.+3y (by 3.2.2 and 2)

d) [y/x](λy.+xy) = λz.[y/x]([z/y](+xy)) = λz.[y/x](+xz) = λz.+yz (by 3.2.3, 2, and 2)

Definition: An AE M is said to be directly convertible to an AE N, denoted M <=> N, iff one of these

three holds: M <=>α N, M <=>β N, M <=>δ N.

Definition: Tw o AE’s M and N are said to be equivalent iff M <=>* N.

PLP Notes Lambda calculus

-3-

Definition: An AE M is in normal form iff either

1) M does not contain any λ’s, or

2) M contains at least one λ , and

2.1) M is of the form X Y, X and Y are in normal form, and X is not of the form λy.Z.

2.2) M is of the form λx.N, and N is in normal form.

Definition: Given an AE M, a reduction sequence on M is a finite sequence of AE’s E0, E1, . . . , En, such

that M = E0 => E1. . . => En.

Definition: A reduction sequence is said to terminate iff its last AE is in normal form.

Definition: Tw o AE’s M and N are said to be congruent iff M <=>*
α N.

Definition: A reduction sequence is said to be in normal order iff in each reduction, the left-most λ is

reduced.

Definition: A reduction sequence is said to be in programming language order (PL order) iff for each

beta-reduction of the form (λx.M) N, N has been reduced, unless N is a λ-expression.

Examples:

Normal Order:

(λy.y)[(λx.+x3)2] =>β (λx.+x3)2 =>β (+23) =>δ 5

PL order:

(λy.y)[(λx.+x3)2] =>β (λy.y)(+23) =>δ (λy.y)5 =>β 5

Theorem (Church-Rosser):

1) All sequences of reductions on an AE that terminate, do so on congruent AE’s.

2) If there exists a sequence of reductions on an AE that terminates, then reduction in normal

order also terminates.

Conclusions:

1) Some applicative expressions can be reduced to normal form, but some cannot (we are still

stuck with the classic halting problem).

2) If an AE can be reduced to normal form, then that normal form is unique to within a choice of

bound variables.

3) If a normal form exists, a reduction to normal form can be obtained in a finite number of steps

using normal order.

PLP Notes Lambda calculus

