
COP-5555 PROGRAMMING LANGUAGE PRINCIPLES

NOTES ON THE MECHANICAL EVALUATION OF APPLICATIVE EXPRESSSIONS

The substitution mechanism for evaluating applicative expressions is convenient for humans, but

inconvenient for machines, since the arguments involved may be arbitrarily complex. Here we introduce a

mechanical means for evaluating applicative expressions: the CSE Machine. It is an abstract machine

(implemented via software in the PAL compiler-interpreter) with the following components:

C - Control - contains a sequence of operations

S - Stack - contains operands

E - Environment - Initially, PE. Updated as evaluation proceeds

M - Machine

The primitive environment (PE) is assumed to be a collection of objects and operations that behave in

accordance with a common-sense set of rules. Actually, another mechanism is used to specify these ‘‘com-

mon-sense’’ rules; it is called the grammatical axiomatization of RPAL’s Universe of Discourse. In any

ev ent, one "looks up" names in the PE (e.g. "+"); in return one obtains the "real" object, be it an integer, a

truthvalue, or an operation.

We begin by taking a given RPAL program’s strandardized syntax tree, and flattening it to a "control

structure" (rather than to an applicative expression) by a simple pre-order tree walk.

Example: Evaluate -2 ** (a-b), in an environment in which a=6 and b=1.

γ

neg γ

γ γ

** 2 γ b

- a

Flattened structure: γ neg γ γ ** 2 γ γ - a b.

This control structure is placed on the Control of the CSE Machine, which operates (vaguely) as follows:

1) Remove the right-most item from the control.

2) If it’s a name (variable, constant, primitive operation) then lookup the name in the current envi-

ronment, and push the result on the stack.

3) If it is γ , then pop the stack (obtaining the rator), pop it again (obtaining the rand), apply the

rator to the rand, and push the result.

4) Stop if the control is empty: the value on the stack is the result.

In our case, recall that a=6 and b=1. We will deal later with how these names get associated with these val-

ues.

PLP Notes The CSE Machine

-2-

CONTROL STACK ENV

γ neg γ γ ** 2 γ γ - a b PE

γ neg γ γ ** 2 γ γ - a 1

γ neg γ γ ** 2 γ γ - 6 1

γ neg γ γ ** 2 γ γ Minus 6 1

γ neg γ γ ** 2 γ Minus6 1

γ neg γ γ ** 2 5

γ neg γ γ ** 2 5

γ neg γ γ Exp 2 5

γ neg γ Exp2 5

γ neg 32

γ Neg 32

-32

Here, Minus is a function that subtracts its second argument from its first one. Minus6 is a function that

subtracts its argument from six. Exp is (in a similar fashion) the exponentiation function, and Exp2 is the

function that raises two to the power of its argument. The difference between an operator on the control

and the operator on the stack is a subtle one: on the control, we have only the name of the operator (e.g.

"neg", "**"). When this name surfaces on the right-most end of the control, we look it up in the primitive

environment, and obtain the corresponding function. In the case of "neg", the function obtained is (arbitrar-

ily) called Neg, and it is stacked. In general, then, the control contains only γ ’s and names, whereas the

stack contains "real" objects (integers, truthvalues, functions, etc.).

Evaluating λ expressions.

So far, we hav e seen that every intermediate value in an applicative expression is actually computed,

and held (at least temporarily) on the stack. In a λ-expression such as "(λx.λy.x+y) 2 3", the question is:

"What is the intermediate value for "λy.x+y" ? The answer is that the value is contextually dependent
upon the larger expression that "λy.x+y" is embedded in. In this particular case, that value can be

described, in English, as follows: "the value is a function that expects an argument y, and will add y to x.

The function will operate in an environment in which x=2".

In general, several environments may be created during the course of evaluating an applicative

expression. In other words, different environments apply in different parts of the expression. These envi-

ronments will be numbered consecutively as they are created.

We will use a single symbol to represent a λ-expression, both on the control, and on the stack. The

symbol is iλx
k, where i is the environment, k is the control structure of the function’s body, and x is the func-

tion’s bound variable. Notice that both k and x are static, i.e. they are known before the evaluation of the

expression begins. i is determined during the evaluation. The λ-expression becomes a λ closure when its

environment is determined.

Control structures (indicated by δ i’s) are generated from the standardized tree as follows:

1) Begin with δ0: perform a pre-order walk of the standardized tree. For each node:

a) if it is a name, add it to the current control structure.

b) if it is a γ , add it to the current control structure.

c) If it is a λ , add λx
k to the current control structure, where k is a new index, and x is the

node’s left kid. Generate control structure δk by traversing the λ node’s right kid.

PLP Notes The CSE Machine

-3-

Examples:

Applicative expression Control Structures

(λx.x-1)4 * 2 δ0 = γ γ * γ λx
1 4 2

δ1 = γ γ - x 1

(λx.λw.x+w) 5 6 δ0 = γ γ λx
1 5 6

δ1 = λw
2

δ2 = γ γ + x w

(λx.1+(λw.-w)x)[(λz.2*z)7] δ0 = γ λx
1 γ λz

3 7

δ1 = γ γ + 1 γ λw
2 x

δ2 = γ neg w

δ3 = γ γ * 2 z

We will now need environment markers on both the control and the stack, and we will need to keep track of

the information available in the various environments that are created.

Here are the rules for operating the CSE Machine:

CONTROL STACK ENV

Initial Configuration e0 δ0 e0 e0 = PE

CSE Rule 1 (stacking a name) Name where Ob=Lookup(Name,ec)

.... Ob where ec = current environment

CSE Rule 2 (stacking a λ) λx
k

.... cλx
k where ec = current environment

CSE Rule 3 (Applying a rator) γ Rator Rand

.... Result where Result=Apply[Rator,Rand]

CSE Rule 4 (Applying a λ-closure) γ cλx
k Rand en = [Rand/x]ec

.... en δk en

CSE Rule 5 (exit from environment) en value en

.... value

PLP Notes The CSE Machine

-4-

Example 1:

Applicative expression Control Structures

(λx.x-1)4 * 2 δ0 = γ γ * γ λx
1 4 2

δ1 = γ γ - x 1

RULE CONTROL STACK ENV

1 e0 γ γ * γ λx
1 4 2 e0 e0 = PE

1 e0 γ γ * γ λx
1 4 2 e0

2 e0 γ γ * γ λx
1 4 2 e0

4 e0 γ γ * γ 0λx
1 4 2 e0

1 e0 γ γ * e1 γ γ - x 1 e1 2 e0 e1 = [4/x]e0

1 e0 γ γ * e1 γ γ - x 1 e1 2 e0

1 e0 γ γ * e1 γ γ - 4 1 e1 2 e0

3 e0 γ γ * e1 γ γ - 4 1 e1 2 e0

3 e0 γ γ * e1 γ (-4) 1 e1 2 e0

5 e0 γ γ * e1 3 e1 2 e0

1 e0 γ γ * 3 2 e0

3 e0 γ γ * 3 2 e0

3 e0 γ (*3) 2 e0

5 e0 6 e0

6

Relationships among environments.

Environments that are created during the evaluation of an applicative expression exhibit a tree struc-

ture, since every environment that is opened is linked to a previously opened (but not necessarily currently

active) environment. In this particular case:

PE

4/x

e0

e1

PLP Notes The CSE Machine

-5-

Example 2:

Applicative expression Control Structures

(λx.λw.x+w) 5 6 δ0 = γ γ λx
1 5 6

δ1 = λw
2

δ2 = γ γ + x w

RULE CONTROL STACK ENV

1 e0γ γ λx
1 5 6 e0 e0=PE

1 e0γ γ λx
1 5 6 e0

2 e0γ γ λx
1 5 6 e0

4 e0γ γ 0λx
1 5 6 e0

2 e0γ e1 λw
2 e1 6 e0 e1=[5/x]e0

5 e0γ e1
1λw

2 e1 6 e0

4 e0γ 1λw
2 6 e0

1 e0 e2 γ γ + x w e2 e0 e2=[6/w]e1

1 e0 e2 γ γ + x 6 e2 e0

1 e0 e2 γ γ + 5 6 e2 e0

3 e0 e2 γ γ + 5 6 e2 e0

3 e0 e2 γ (+5) 6 e2 e0

5 e0 e2 11 e2 e0

5 e0 11 e0

11

Environment Structure:

PE

5/x

6/w

e0

e1

e2

PLP Notes The CSE Machine

-6-

Example 3:

Applicative expression Control Structures

(λx.1+(λw.-w)x)[(λz.2*z)7] δ0 = γ λx
1 γ λz

3 7

δ1 = γ γ + 1 γ λw
2 x

δ2 = γ neg w

δ3 = γ γ * 2 z

RULE CONTROL STACK ENV

1 e0 γ λx
1 γ λz

3 7 e0 e0=PE

2 e0 γ λx
1 γ λz

3 7 e0

4 e0 γ λx
1 γ 0λz

3 7 e0

1,1,1 e0 γ λx
1 e1 γ γ * 2 z e1 e0 e1=[7/z]e0

3,3 e0 γ λx
1 e1 γ γ * 2 7 e1 e0

5 e0 γ λx
1 e1 14 e1 e0

2 e0 γ λx
1 14 e0

4 e0 γ 0λx
1 14 e0

1 e0 e2 γ γ + 1 γ λw
2 x e2 e0 e2=[14/x]e0

2 e0 e2 γ γ + 1 γ λw
2 14 e2 e0

4 e0 e2 γ γ + 1 γ 2λw
2 14 e2 e0

1,1,3 e0 e2 γ γ + 1 e3 γ neg w e3 e2 e0 e3=[14/w]e2

5 e0 e2 γ γ + 1 e3 -14 e3 e2 e0

1,1,3,3 e0 e2 γ γ + 1 -14 e2 e0

5 e0 e2 -13 e2 e0

5 e0 -13 e0

-13

Environment Structure:

PE

7/z 14/x

14/w

e0

e1 e2

e3

PLP Notes The CSE Machine

-7-

Optimizations for the CSE Machine.

The above five rules for operating the CSE Machine are sufficient for carrying out the evaluation of

any applicative expression, but they are rather clumsy for unary and binary operators, for conditionals, for

tuples, and for n-ary functions. Here are additional rules for operating the CSE Machine more efficiently.

CSE Rules 6 and 7: Unary and Binary Operators.

In the control structures, abbreviate:

γ γ + to +

γ γ - to -

. . . (other binary operators)

γ neg to neg

γ not to not

. . . (other unary operators)

CONTROL STACK ENV

CSE Rule 6 (binop) binop Rand Rand

.... Result where Result=Apply[binop,Rand,Rand]

CSE Rule 7 (unop) unop Rand

.... Result where Result=Apply[unop,Rand]

CSE Rule 8: Conditional.

For an expression of the form "B → E1 | E2", generate the following control structures:

δ then δ else β B

δ then = control structure for E1

δ else = control structure for E2

Here, "B" will be evaluated first, leaving (we hope) a truthvalue on the top of the stack. Then, β is an oper-

ator that pops the truthvalue from the stack, and based on it, keeps one of the δ ’s and discards the other.

Note: Here, β and δ have nothing to do with the so-named reductions for applicative expressions. Also

note that with these control structures, it is no longer necessary to standardize the "→" node in the AST.

Primitive operator "Cond" is no longer necessary.

CONTROL STACK ENV

CSE Rule 8 (Conditional) δ then δ else β true

.... δ then

.... δ then δ else β false

.... δ else

Example Applicative expression Control Structures

(λn.n<0 → -n | n) (-3) δ0 = γ λn
1 neg 3

δ1 = δ2 δ3 β < n 0

δ2 = neg n

δ3 = n

PLP Notes The CSE Machine

-8-

RULE CONTROL STACK ENV

1 e0 γ λn
1 neg 3 e0 e0=PE

7 e0 γ λn
1 neg 3 e0

2 e0 γ λn
1 -3 e0

4 e0 γ 0λn
1 -3 e0

1,1 e0 e1 δ2 δ3 β < n 0 e1 e0 e1=[-3/n]e0

6 e0 e1 δ2 δ3 β < -3 0 e1 e0

8 e0 e1 δ2 δ3 β true e1 e0

1,7 e0 e1 neg n e1 e0

5,5 e0 e1 3 e1 e0

3

CSE Rules 9 and 10: Tuples.

For a tuple of the form (E1, E2, ..., En), generate the control structure "τn E1 ... En". Here τn pops the n top-

most values from the stack, makes a tuple with them, and pushes the tuple on the stack. Note that tuple ele-

ments are evaluated right-to-left this way.

CONTROL STACK ENV

CSE Rule 9 (tuple formation) τn V1 ... Vn

.... (V1,...,Vn)

CSE Rule 10 (tuple selection) γ (V1,...,Vn) I

.... VI

CSE Rule 11: n-ary functions.

For an expression of the form λ(x,y).E, simply allow each environment to bind more than one variable to a

value. It will no longer be necessary to standardize subtrees in which there is a "," node to the left of a λ
node.

CONTROL STACK ENV

CSE Rule 11 (n-ary function) γ cλV1,...,Vn
k (val1, . . . , valn) em=[val1/V1]...[valn/Vn]ec

.... em δk em

Example:

Applicative expression Control Structures

(λ(x,y).x+y) (5,6) δ0 = γ λx,y
1 τ2 5 6

δ1 = + x y

PLP Notes The CSE Machine

-9-

RULE CONTROL STACK ENV

1,1 e0 γ λx,y
1 τ2 5 6 e0 e0=PE

9 e0 γ λx,y
1 τ2 5 6 e0

2 e0 γ λx,y
1 (5,6) e0

11 e0 γ 0λx,y
1 (5,6) e0

1,1 e0 e1 + x y e1 e0 e1=[5/x][6/y]e0

6 e0 e1 + 5 6 e1 e0

5,5 e0 e1 11 e1 e0

11

PLP Notes The CSE Machine

