Direct Manipulation

Human Computer Interaction CIS 6930/4930 Section 4188/4186

Introduction

Δ 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

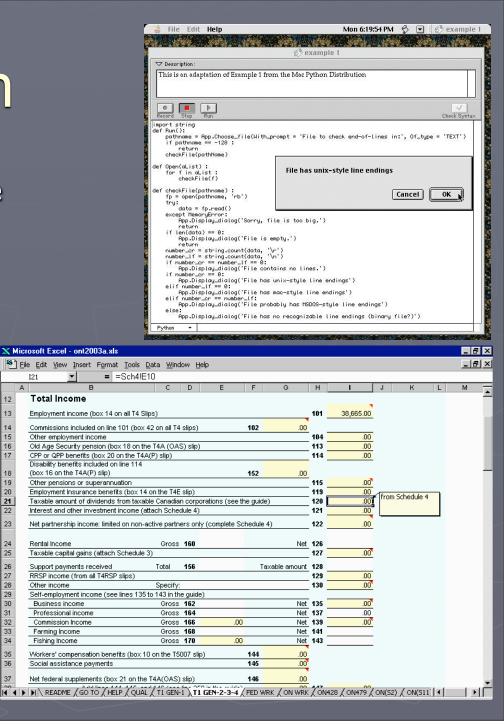
28

29

30 31

32

33


34

35

36

37

- Interactive systems can produce reactions that non-interactive systems are less likely to produce
- Truly pleased user! They report...
 - Master of the interface
 - Competency of task performance
 - Ease of learning new and advanced features
 - Confidence of retention
 - Enjoyment
 - Eagerness to show to novices
 - Desire to explore

C Finder File Edit View Co Window Help 11:23 AM ¥ A 1 D 000 Fruit Basket.jpg tone Wall.jpg 410 Ø 1221 ind & Mus C untitled docume Read m 00 12 23 Save Image Preview Cancel Save Library Movies Music Picture Public Sites Show in Finde **1** 4

Interfaces that provide:

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest

HAND CENTERED

Interfaces that provide:

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest

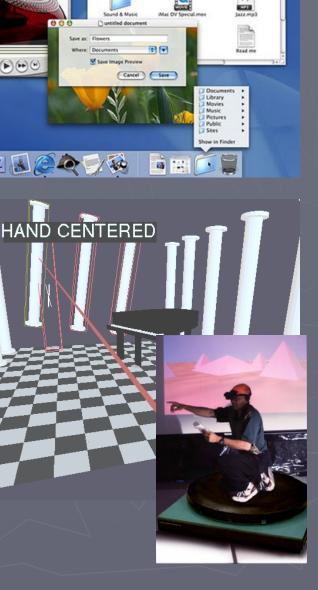
Ex. Drag a file to a trash can

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than `rm'?

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than `rm'?
- Other areas of direct manipulation?

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than `rm'?
- Other areas of direct manipulation?
 - Games

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than 'rm'?
- Other areas of direct manipulation?
 - Games
 - Scientific Viz



- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than `rm'?
- Other areas of direct manipulation?
 - Games
 - Scientific Viz
 - VR/AR (gestures, gloves, tracked devices)

Interfaces that provide:

- Visibility of objects of interact
- Rapid, reversible actions
- Instead of typed commands, graphic actions, such as pointing to the item of interest
- Ex. Drag a file to a trash can
- What reasons is this better than `rm'?
- Other areas of direct manipulation?
 - Games
 - Scientific Viz
 - VR/AR (gestures, gloves, tracked devices)
 - 2D/3D what's the difference?

(+)(+)(+)(+)

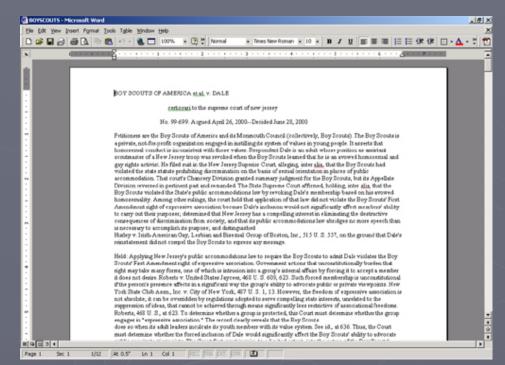
11:23 AM

Direct Manipulation Examples

Drive a car

- If you want to turn left, what do you do?
- What type of feedback do you get?
- How does this help?
- Think about turning left using a menu/text interfaces

Command-line vs. Display Editors vs. Word Processors


Case Study: Word Processors:

- Early 80s, only saw 1 line at a Hopend (Save file)
- Editing was difficult
- No global perspective
- Full-page Display Editors
 - 2D cursor control
 - Ex. WORDSTAR, emacs
- Researchers found:
 - Increased performance
 - Decreased frustration
 - Improved training
- What would be easier with command-line?

Command-line vs. Display Editors vs. Word Processors

- Early 90s: What You See Is What You Get (WYSIWYG)
 - Word, Corel's WordPerfect, Lotus Word Pro
 - See a full page of text
 - Seen as it will appear
 - Cursor action is visible (attention focus)
 - Cursor motion is natural (arrow/ mouse vs. 'Up 6' – requires converting)
 - Labeled icons make frequent actions rapid (remind users of possible actions)
 - Immediate display of the results of an action
 - Rapid Response and Display (sense of power)
 - Reversible Actions (lowers anxiety)

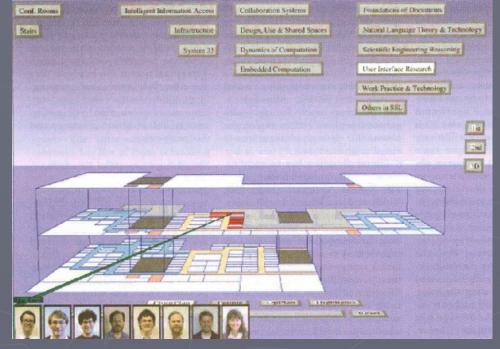
Technical Results from Empirical Studies and Word Processors

- Integration of multimodal information – graphics, sound, animation, data, photos
- Desktop-publishing software
- Presentation software
- Hypermedia environments and the WWW
- Improved macro/templates facilities
- Spell/grammar checkers & thesauri

VisiCalc Spreadsheet

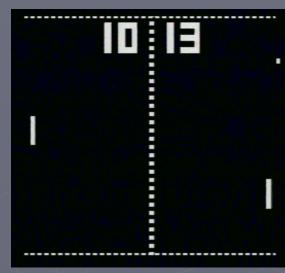
- 1979 Dan Brickland (254 rows, 63 columns)
 Direct Manipulations
 Users like
 - Auto propagation of their actions
 - Alternate plans
 - Macros
- Others:
 - Lotus 1-2-3, Excel

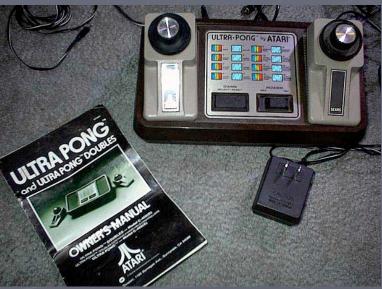
Spatial Data Management


- Geographical data visualization and interaction
- Direct Manipulations
 - Notion of using a joystick to navigate a map:
 - Idea: Nicholas Negroponte (MIT)
 - App: Spatial Data Management System ('80)
 - Zoom-in on ocean map and marker bouys

Spatial Data Management

Others:

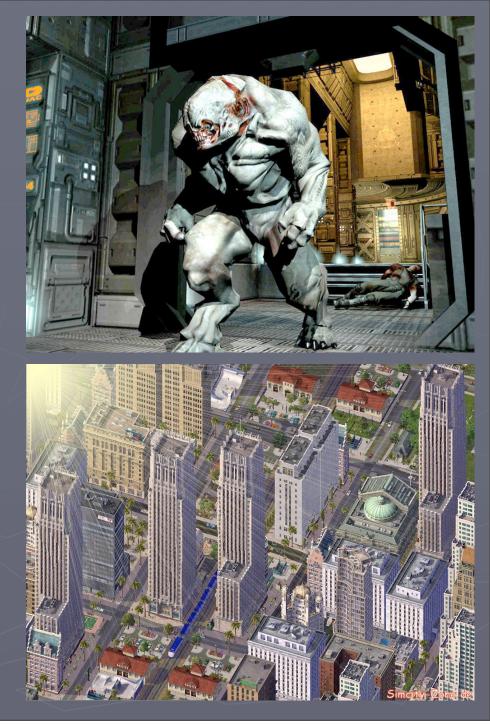

- Xerox PARC Information Visualizer
 - Walkthrough
 - File directories, org charts, 2d info
- ArcView Current map viewer pg. 221
- Success: Designer is very important!
 - Icons, representations, understanding user needs.
 - Users typically enjoy the direct manipulation



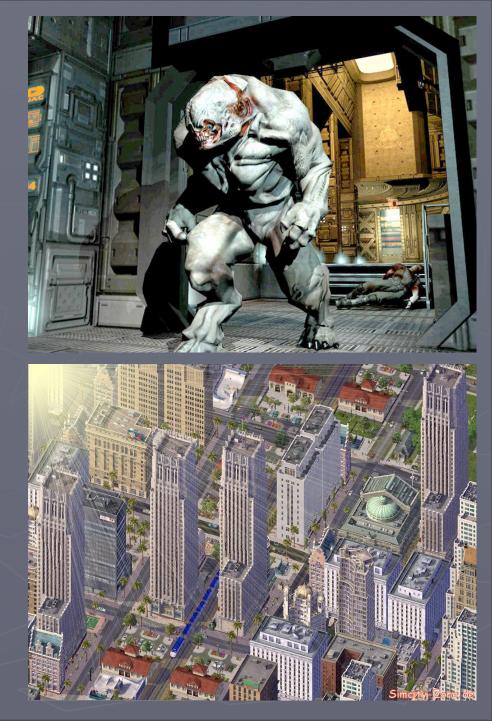
What is the most successful app of Direct Manipulation?

What is the most successful app of Direct Manipulation?

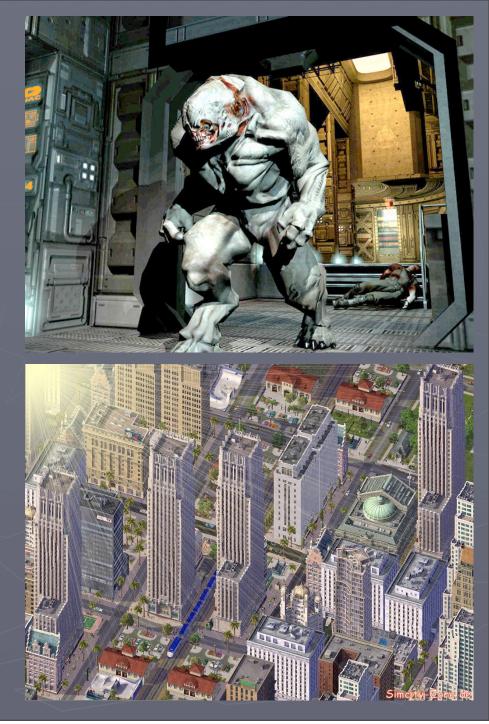
- Video Games
- PONG
 - Low learning curve
 - Mass appeal (which many current games don't have!)
 - Let's list a whole bunch of the most popular games
 - What are some commonalities?
- Direct Manipulations
 - Let's list them

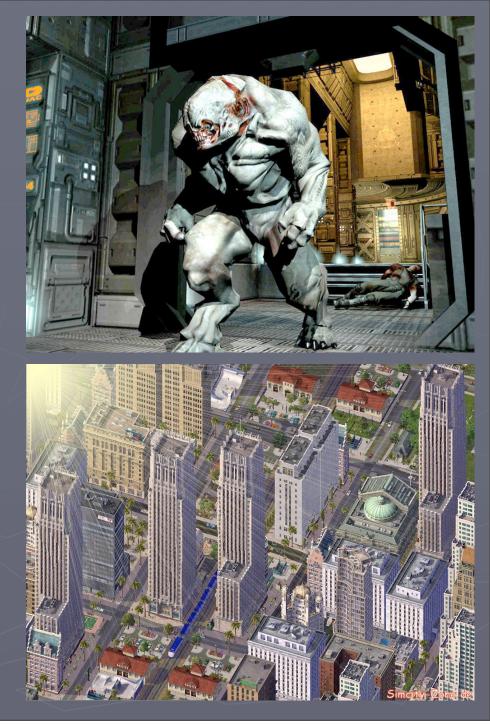


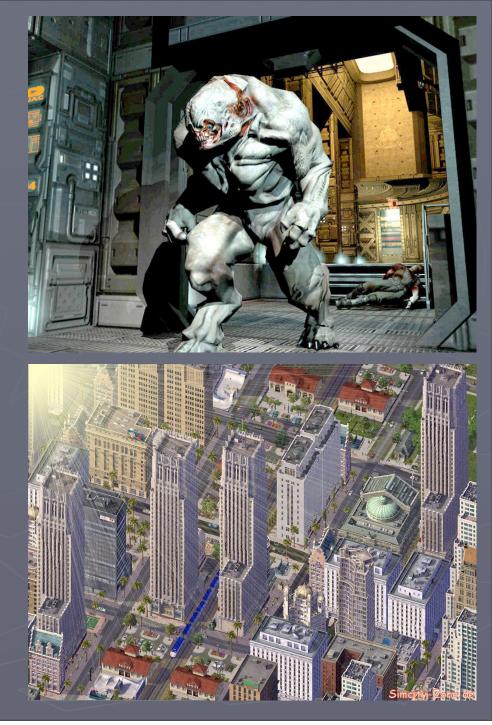
Think about designing for different platforms



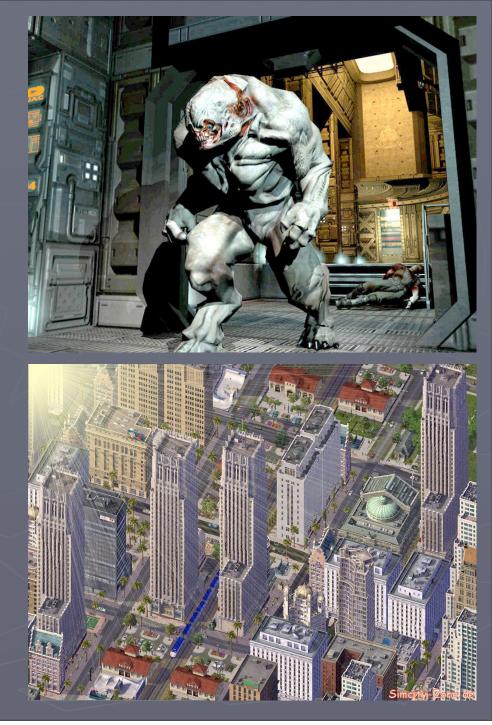
Think about designing for different platforms

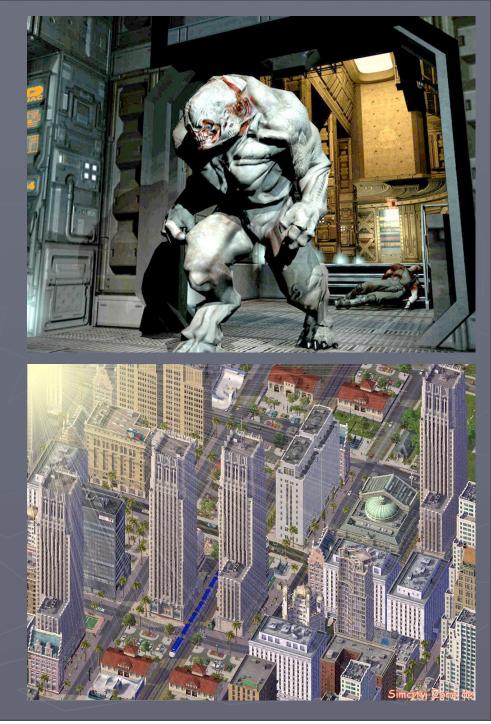

Age


- Think about designing for different platforms
 - Age
 - Gender


- Think about designing for different platforms
 - Age
 - Gender
 - Portability

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power


- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre

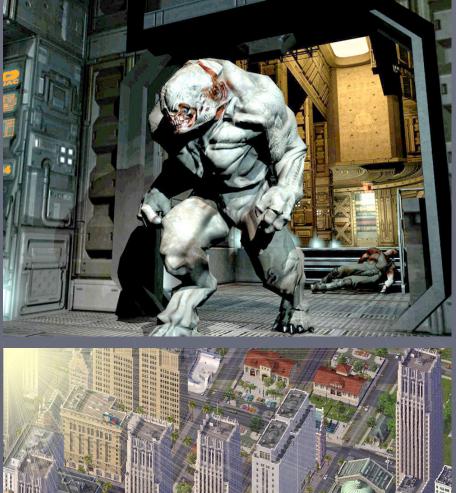

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures
- Different controllers

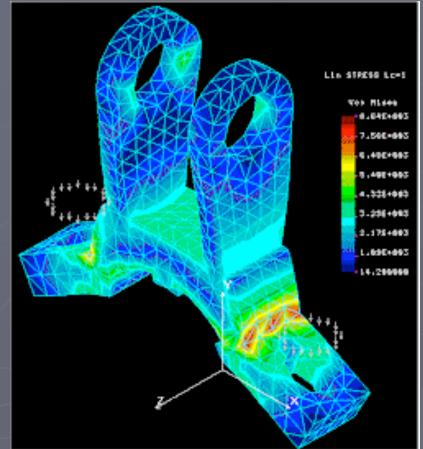
- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures
- Different controllers
- The effect of having a score (public display, compare w/ friends, competition, better than encouragement)

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures
- Different controllers
- The effect of having a score (public display, compare w/ friends, competition, better than encouragement)
- Direct manipulation for education



- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures
- Different controllers
- The effect of having a score (public display, compare w/ friends, competition, better than encouragement)
- Direct manipulation for education
 - SimCity

- Think about designing for different platforms
 - Age
 - Gender
 - Portability
 - Resolution/Computing Power
 - Genre
 - Multiplayer
 - Cultures
- Different controllers
- The effect of having a score (public display, compare w/ friends, competition, better than encouragement)
- Direct manipulation for education
 - SimCity
 - The Sims



Computer Aided-Design

- Extensively uses Direct Manipulation
- AutoCAD
- Structural engineer, landscaping, automobiles, etc.
- Change design and evaluate designs quickly
- Computer Aided Manufacturing (CAM)
- Allows many of the specification tools to be used for large designs (group review, etc.)
- Few complex commands
- Analogy/familiar designs important (don't change the terminology, etc.)

Office Automation

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows
- Command-line vs. GUI

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows
- Command-line vs. GUI
 - Study result: task time (5.8 vs. 4.8 minutes), errors (2.0 vs. 0.8) ('87)

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows
- Command-line vs. GUI
 - Study result: task time (5.8 vs. 4.8 minutes), errors (2.0 vs. 0.8) ('87)
 - Subjectively preferred

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows
- Command-line vs. GUI
 - Study result: task time (5.8 vs. 4.8 minutes), errors (2.0 vs. 0.8) ('87)
 - Subjectively preferred
 - novice/ computer naïve people really benefit

- Xerox Star (1981)
- Apple Lisa (1983) (precursor to the Mac)
- Direct manipulation
 - Drag file to printer
 - Pull-down menus
 - Window manipulation
- Microsoft Windows
- Command-line vs. GUI
 - Study result: task time (5.8 vs. 4.8 minutes), errors (2.0 vs. 0.8) ('87)
 - Subjectively preferred
 - novice/ computer naïve people really benefit
 - Improved productivity, reduced

Evolution of Direct Manipulation

- To create a good Direct Manipulation interface
 - Model reality well
 - Visual interface if possible
 - Know your users
- Aesthetic Computing
- Personal Finance (Quicken)
- Home design
- Robot programming (guide robots hand)

			See.e.
A State of the second	1 25 25 25 F	ORK Jack	TAXABLE IN CONTRACTOR
and a second second		ter:	210
and the second		-	
			100 - 2
10 Mail	- 14	144	Antenno V
the second	11.04	and the	10.0

Evolution of Direct Manipulation

Future:

- VR/AR
- Ubiquitous computing
- Wearable computing
- Tangible interfaces

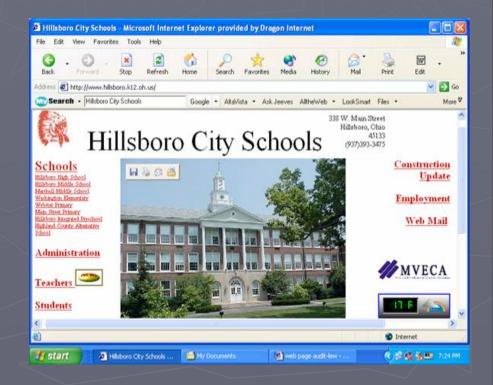
Goals:

- Comprehensive
- Rapid learning
- Predictable actions
- Appropriate feedback

Results:

- Retention
- Learning
- Lowered anxiety
- Users feel empowered and satisfied

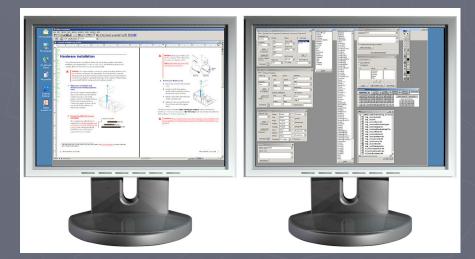
Thoughts on Direct Manipulation


- Principle of virtuality users enjoy being able to manipulate some version of reality (Nelson '80)
- Principle of transparency UI disappears and allows user to apply intellect to task (Rutokwsiki '82)
- Logical thinking (which engineers are good at) doesn't always lead to good design (Heckel '91)
- Gulf of execution and gulf of evaluation (Hutchins, Holland, and Don Norman '86)
- Related to psychology literature on problem-solving and learning research
 - Ex. Use beads to teach math (better than abstract terms)
 - Why people like the abacus over calc, esp. for teaching

Direct Manipulation problems

Blind / Vision-Impaired - If you develop for a visual interface, this group might be left out. Newer technologies help.

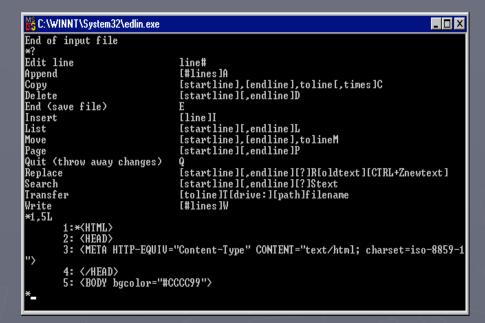
Screenspace


- Takes up plenty
- Possible `abuse'
- Multiple pages can slow user down
- Bad design is amplified
- Detail can be lost (graphs vs. tables)
- Learning curve users must learn meaning of icons, etc. Different for novice vs. experienced users

Direct Manipulation problems

Wrong conclusions – graphs

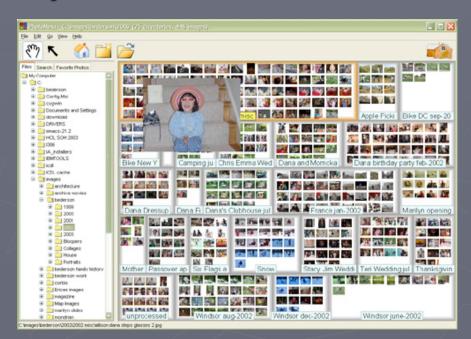
- Slow for fast typists (moving hand to mouse is relatively slow)
- Poor for some notations (e.g. math)
- Choosing the right icons/ metaphors is difficult
- Requires:
 - Fast turnaround time (100ms or less)
 - Reversibility (undo)
 - Both can be hard to code
 - Difficult to do w/ HTML (better w/ Java or Flash)


Direct Manipulation

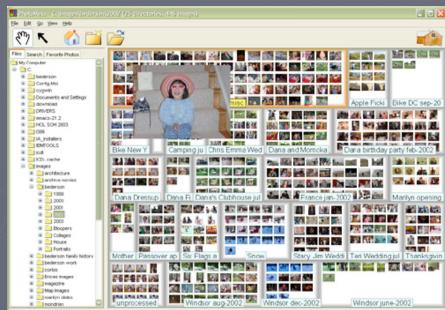
Advantages

- Continuous visual representation of objects and actions of interest
- Physical actions instead of syntax
- Rapid, incremental, and reversible actions whose results are visible immediately

Systems with Direct Manipulation usually have the following:


- Novices can learn basic functionality quickly
- Experts can work quickly to carry out a wide range of tasks
- Intermittent users can retain concepts
- Error messages are rarely needed
- Immediate feedback if actions furthered or hampered goals
- Less anxiety due to comprehension and reversibility
- Gain confidence because users




- Ex: organizing digital photos, stock portfolios
- What are the objects?
- What are the actions?

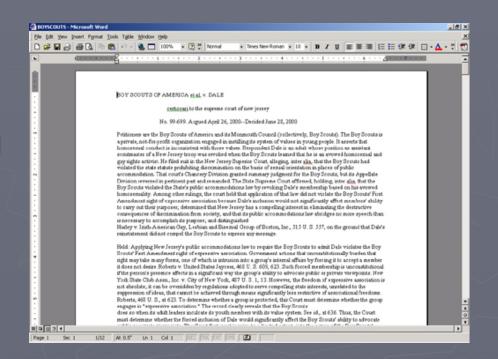
- Ex: organizing digital photos, stock portfolios
- What are the objects?
- What are the actions?
- What is the interface?

- Ex: organizing digital photos, stock portfolios
- What are the objects?
- What are the actions?
- What is the interface?
- Objects and actions are displayed close together

C Images/bederson/2002/2002 misc/allison dana streps glasses 2 jpg

- Ex: organizing digital photos, stock portfolios
- What are the objects?
- What are the actions?
- What is the interface?
- Objects and actions are displayed close together
- Little need to break down into complex syntax

- Ex: organizing digital photos, stock portfolios
- What are the objects?
- What are the actions?
- What is the interface?
- Objects and actions are displayed close together
- Little need to break down into complex syntax
- Result: Closeness of task domain to the interface domain reduces cognitive load and stress (stimulus-response compatibility in Human Factors research)


OAI and DM

- Actions are icons are more 'natural' (developed earlier) thar language
- 7 to 11 yr old, can handle the DM approach (physical actions on an object)
 - Concepts of conservation and invariance
- 11+ is for formal operations (symbol manipulation)
 - Math, programming, languages
 - Children often link early math, etc. to objects
- Easier not only for kids but for everyone (Yet another example!)

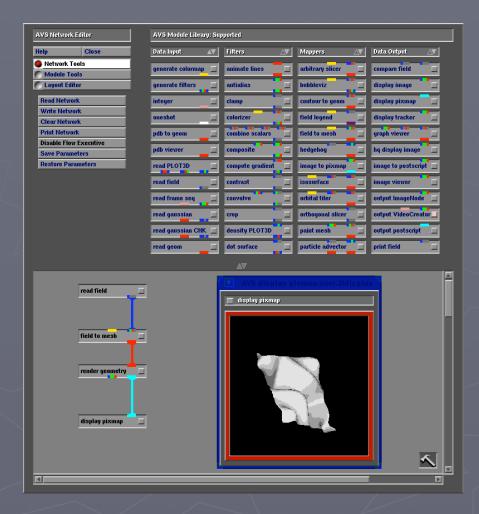
Visual Thinking and Icons

- Visual Languages and Visual Thinking (Arnheim '72)
 - Data viz and symbol people Reaches out to the rightbrained (look at all the users)
 - Shunned by many a left-brained
 - Read a paper by an algorithm/ theory person lately?
 - WIMP interfaces have that nickname for a reason
- No one style
 - People think differently
 - Should provide several if possible
 - Depend on expected user base
 - Paint program (icons) vs. word processors (text menus)

Icon Design Considerations

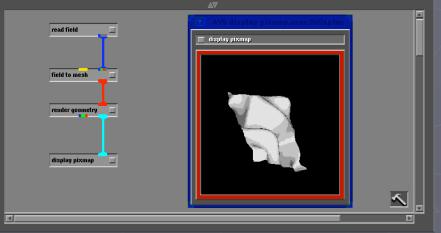
- Stand out from background and each other
- Limit the number
- 3D not necessarily good
- Familiarity (ex.)
- Selected icons should be easily found
- Animations, shadows, etc. help
- Dynamic icons (size changes, thumbnails, etc.)
 Interaction between icons

Icon Design Considerations


Components of icons:

- Lexical brightness, color, blinking etc.
- Syntatics appearance and movements (lines, shape)
- Semantics object represented
- Pragmatics legibility, utility
- Dynamics receptivity to actions
- Adding multimodal or subtle affects helps users detect anomalies
 - Phone dialing
 - Hypothesis: Directories played a song when opened

Direct Manipulation Programming


- Instead of just affecting a simulation/system with DM, how about programming with it?
- Alice, AVS, Car making robots
- Other examples of programming with DM?
 - Car radio presets
 - Movie camera tracks
 - Macros
- Systems observe the user and can replicate actions (chess)

Direct Manipulation Programming

- PITUI programming in the user interface
 - Sufficient generality
 - Access to data structures and operators
 - Ease in programming and editing
 - Simplicity in execution and supplying arguments
 - Low-risk (low errors, reversibility, etc.)
- Cognitive-dimensions framework (Green and Petre '96)
 - Analyzes design issues
 - Viscosity difficulty in making changes
 - Progress evaluation execute partial programs
 - Consistency, hidden dependences, visbility, etc.
 - Doesn't try to guess user's

AVS Network Editor	AVS Module Library: Supported				
Help Close	Data Input 🔊	Filters 🔊	Mappers 🛆	Data Output 🛆	
Network Tools	generate colormap 🔲	animate lines 📃	arbitrary slicer 📃	compare field	
C Layout Editor	generate filters 📃	antialias 📃	bubbleviz 📃	display image 📃	
Read Network	integer 📃 🗖	clamp 📃	contour to geom 📃	display pixmap 📃	
Write Network Clear Network	oneshot 📃	colorizer 📃	field legend	display tracker 📃	
Print Network	pdb to geom 📃	combine scalars	field to mesh	graph viewer 📃	
Disable Flow Executive Save Parameters	pdb viewer 📃	composite 📃	hedgehog 📃 📃	hq display image 📃	
Restore Parameters	read PLOT3D 📃	compute gradient 📃	image to pixmap 📃	image to postscript 📃	
	read field 📃	contrast 📃	isosurface 📃	image viewer 📃	
	read frame seq 📃	convolve 📃	orbital tiler 📃	output ImageNode 📃	
	read gaussian 📃	crop 📃	orthogonal slicer 📃	output VideoCreator	
	read gaussian CHK 📃	density PLOT3D 📃	paint mesh 📃	output postscript 📃	
	read geom 📃	dot surface 📃 📃	particle advector 📃	print field	

We live in a 3D world

We live in a 3D worldNatural interfaces are better

- We live in a 3D world
- Natural interfaces are better
- Therefore 3D interfaces will be the ultimate

- We live in a 3D world
- Natural interfaces are better
- Therefore 3D interfaces will be the ultimate
- What's wrong with the above?
 - Natural interfaces aren't always better!
 - Making the interface simple (thus unnatural) often aids performance
 - Constrains movement
 - Limiting possible actions
 - Depends on application and goal of the user interface
 - Surgery simulation
 - Military simulation (general vs. soldier training)
 - Architecture, education, product design

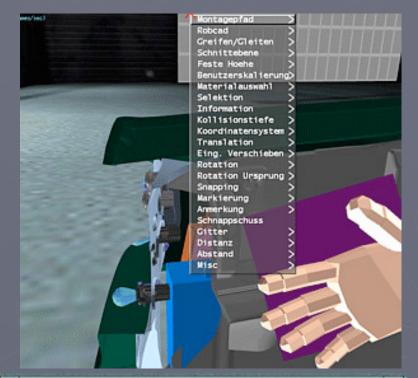
- We live in a 3D world
- Natural interfaces are better
- Therefore 3D interfaces will be the ultimate
- What's wrong with the above?
 - Natural interfaces aren't always better!
 - Making the interface simple (thus unnatural) often aids performance
 - Constrains movement
 - Limiting possible actions
 - Depends on application and goal of the user interface
 - Surgery simulation
 - Military simulation (general vs. soldier training)
 - Architecture, education, product design
 - Video games

- What we really want are enhanced interfaces
- Give us powers we don't normally have
 - Flying, x-ray vision, teleportation, undo, etc.
- Be careful we don't become overzealous
 - Air traffic control 3D display
 - Library interfaces using a books on shelves (what is it good for? What is it poor for?)
- Hurts performance

Social interfaces + 3D can be very powerful

- MMORPG (EveQuest)
- ActivedWorlds
- The Sims Online

Experiences

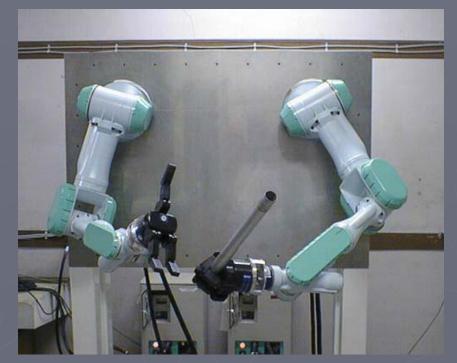

- Art gallary
- 3D Desktops (Mac's latest)
- Office metaphors did not take off (BOB, Task Gallary)
- 3D Webbrowsing. Sure you can arrange 16 web pages spatially, but why?
- Compromises to provide 3D interfaces might be undermine usability
 - Think RTS games
- Discussion: Is the interface holding back 3D?

Good 3D

- Use occlusion, shadows, perspective carefully
 - Improves use of spatial memory (Ark '98)
 - Distracting and confusing
- Minimize navigation steps
- Keep text readable (good contrast, 30 degree tilt max)
- Simple user movement (why lock to a floor?) Descent vs Quake

3D Interface Development

Developments that show promise:


- 3D sound
- Stereo display (Ware and Frank '96)
- Haptic feedback (mouse)

3D can help by:

- Provide overviews to see big picture
- Rapid teleportation (context shifts)
- Zooming (aid disabled)
- Multiple coordinated views (3dsmax)
- 3D icons can represent abstract or recognizable concepts
- Homework: Find a UI to accomplish a 3D task. Describe the system, explain DM is applied. (Max 2 paragraphs)
 - Include a list of objects you can interact with
 - How it provides a global perspective
 - Feedback mechanism
 - Interaction mechanism (what does the user do to interact)

Teleoperation

- Combines:
 - Direct Manipulation
 - Process Control
- Human operators control physical processes in complex environments
- Example applications: Mars rover control, flying airplanes (Predator), manufacturing, medicine (surgery)
- Supervisory control (Sheridan '92)
 - Different levels of human control (automation)
- Direct Manipulation Issues
 - Adequate feedback (data quality, latency (transmission and operation delays), incomplete, interference)
 - Presence
 - Point and click or more natural interaction vs. typing

VR Interaction

- Trying to simulate reality or an experience
 - Training, Learning, Exploring
 - Expensive
 - Dangerous
 - Logistically Difficult
- Best interaction?
 - Flight simulators (they can cost \$100 mil, but that's still a good deal!)
 - Why?

Why do video game flight sims not cut it? (only \$40!)

Okay, we have monitors that show 3D worlds, what else do we possibly need?