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Abstract 

 
We present algorithms that enable virtual objects to interact 

with and respond to virtual representations, avatars, of real 
objects.  These techniques allow dynamic real objects, such as the 
user, tools, and parts, to be visually and physically incorporated 
into the virtual environment (VE).  The system uses image-based 
object reconstruction and a volume query mechanism to detect 
collisions and to determine plausible collision responses between 
virtual objects and the avatars.  This allows our system to provide 
the user natural interactions with the VE. 

We have begun a collaboration with NASA Langley Research 
Center to apply the hybrid environment system to a satellite 
payload assembly verification task.  In an informal case study, 
NASA LaRC payload designers and engineers conducted 
common assembly tasks on payload models.  The results suggest 
that hybrid environments could provide significant advantages for 
assembly verification and layout evaluation tasks. 

 
CR Categories: H.5.2 (Information Interfaces and Presentation):  
User Interfaces – Haptic I/O; I.3.7 (Computer Graphics): Three-
Dimensional Graphics and Realism – Virtual reality; I.6.0 
(Simulation and Modeling): General.  
 
Keywords: interactions in virtual environments, collision 
detection, mixed reality 

 
1. Introduction 

 
Suppose one has a virtual model of a car engine and wants to 

use an immersive virtual environment (VE) to determine whether 
both a large man and a petite woman can readily replace the oil 
filter.  This real world problem is difficult to solve efficiently with 
current modeling, tracking, and rendering techniques.  Hybrid 
environments, systems that incorporate both real and virtual 
objects in a VE, can greatly assist in answering questions of this 
kind. 

Conducting design evaluation and assembly verification tasks 
in immersive virtual environments (VEs) enables designers to 
evaluate and validate alternative designs more quickly and 
cheaply than if mock-ups are built and more thoroughly than can 
be done from drawings.  Design review has become one of the 
major productive applications of VEs [Brooks 1999].  Virtual 
models can be used to study the following important design 
questions: 

? Can an artifact readily be assembled? 
? Can repairers readily service it? 

In the assembly verification example, the ideal VE system 
would have the participant fully convinced he was actually 
performing a task [Sutherland 1965].  Parts and tools would have 
mass, feel real, and handle properly with appropriate visual and 
haptic feedback.  The user would interact with virtual objects as if 
he were actually doing the task, and virtual objects would respond 
to the user’s actions.   

Both assembly and servicing are hands-on tasks and the 
principal drawback of virtual models — that there is nothing there 
to feel, to give manual affordances, and to constrain motions — is 
a serious one for these applications.  Using a six degree-of-
freedom wand to simulate a wrench, for example, is far from 
natural or realistic, perhaps too far to be useful.  Imagine trying to 
simulate a task as basic as unscrewing an oil filter from a car 
engine in a VE!  Interacting with purely virtual objects limits the 
types of feedback the system can provide.   

Getting a virtual representation of a specific real object – such 
as the user’s hand, specialized tools, or parts – into the VE 
requires specific development for modeling, tracking, and 
interaction.  The required additional development effort, coupled 
with the difficulties of object tracking and modeling, lead 
designers to use few real objects in most VEs.  Further, there are 
also restrictions on the types of real objects that can be 
incorporated into a VE.  Highly deformable real objects, for 
example a bushy plant, would be difficult to include in a VE.   

 
1.1. Incorporating Real Objects 

 
We feel a hybrid environment system, one that incorporates 

representations of dynamic real objects into the VE, would assist 
in providing natural interactivity. 

Dynamic real objects are defined as objects that can deform, 
change topology, and change appearance.  Examples include a 
socket wrench, clothing, and the human hand.  For a many types 
of VEs, incorporating dynamic real objects would provide 
improved affordance matching and tactile feedback.   

Incorporating real objects is defined as being able to see, and 
have virtual objects react to, the virtual representations of real 
objects.  The challenges are visualizing the real objects in the VE 
and managing the interactions among the real and virtual objects. 

In this work, we extend the definition of an avatar to include a 
virtual representation of any real object, including the participant.  
These real-object avatars are registered with, and ideally have the 
same shape, appearance and motion as, the  real object.  
They also provide haptic cues and physical restraints — the types 
of feedback that purely virtual objects can’t provide.   

We believe spatial cognitive tasks would benefit from 
incorporating real objects.  These tasks require problem solving 
while manipulating objects and maintaining mental model of 
spatial relationships among them.  With the capability of having 
real objects interact with virtual models, designers can see if there 
is enough space to reach a certain location (Figure 1) all while 
handling real parts, real tools, and the variability among 
participants. 

 



 

Figure 1 - A hybrid environment detects collisions between real 
objects (PVC pipe and user) and virtual objects (payload models) 

 
1.2. Approach 

 
We use a hybrid environment system that uses image-based 

object reconstruction algorithms to generate real-time virtual 
representations, avatars, of real objects.  The participant sees 
avatars of himself and real objects visually incorporated into the 
VE.  Further, the participant handles and feels the real objects 
while interacting with virtual objects.   

The system models each object as the visual hull derived from 
multiple camera views, and then texture-maps onto the visual hull 
the object’s image from a HMD mounted camera.  The resulting 
virtual representations or avatars are visually combined with 
virtual objects with correct obscuration.   

We then developed algorithms to use the virtual 
representations in virtual lighting and in physically-based 
mechanics simulations.  This includes new collision-detection and 
collision-response algorithms that exploit graphics hardware for 
computing results in real time.  This type of interaction allows the 
real-object avatars to affect simulations such as particle systems, 
cloth simulations, and rigid-body dynamics. 

In an exploratory study, four payload design experts from 
NASA Langley Research Center (NASA LaRC) used the hybrid 
environment system to evaluate an abstracted version of a payload 
assembly task.  The participants’ experiences with the system 
showed anecdotally the effectiveness of handling real objects 
when interacting with virtual objects.  We expect hybrid VEs to 
expand the types of tasks and applications that would benefit from 
immersive VEs by providing a higher-fidelity natural interaction. 

 
2. Previous Work 

 
Our goal is to populate a VE with virtual representations of 

dynamic real objects.  This involves two primary components: 
capturing object information and having virtual systems interact 
with the captured object data.  We review current algorithms for 
capturing this information, then look at methods to use the 
captured data as part of a virtual system. 

 
2.1. Incorporating Real Objects into VEs 

 
Applications that incorporate real objects must capture the 

shape, surface appearance, and motion of the real objects.  Object 
material properties and articulation may also be of interest.  

Prebuilt models are usually not available for specific real objects.  
Making measurements and then using a modeling package is 
laborious for complex static objects, and near impossible for 
capturing all the degrees of freedom of complex dynamic objects. 

Creating a virtual version of a real scene has many 
applications.  For example, capturing 3-D models of archeological 
sites, sculptures, and objects allows new methods of education, 
visualization, archiving, and exploration [Levoy et al. 2000].   
Generating novel views of sporting events from several cameras 
were used to enhance television coverage of Superbowl XXXV 
[Baba et al. 2000].  The Office of the Future project, described by 
Raskar et al., generates 3-D models of participants from multiple 
camera images [1998] for telecommunications  

Real-time algorithms simplify object reconstruction by 
restricting the inputs, making simplifying assumptions, or 
accepting output limitations.  This allows the desired model to be 
computed at interactive rates.  

For example, the 3-D Tele-Immersion reconstruction 
algorithm by Daniilidis, et al., restricts the reconstructed volume 
size and number of input cameras so that usable results can be 
computed in real time using their dense-stereo algorithm [2000].   

For some applications, precise models of real objects are not 
necessary.  A simplification is to compute approximations of the 
objects’ shapes, such as the visual hull.  A shape-from-silhouette 
concept, the visual hull, for a set of objects and set of n cameras, 
is the tightest volume that can be obtained by examining only the 
object silhouettes, as seen by the cameras [Laurentini 1994]. 

At SIGGRAPH 2000, Matusik, et al., presented an image-
based visual hull algorithm, “Image Based Visual Hulls” (IBVH), 
which uses image-based rendering (IBR) algorithms to calculate 
the visual hull at interactive rates [2000].  Further, the IBVH 
algorithm computes visibility, coloring, and creating polygonal 
models of visual hulls [2001]. 

Similar in spirit to this work are augmented reality systems 
[Feiner 1993], which visually incorporates a few virtual objects 
with the real world.  Our work focuses on incorporating a few real 
objects into a virtual environment, for example, training for 
assembling a virtual payload in outer space with real tools and 
parts. 

 
2.2. Collision Detection 

 
Detecting and resolving collisions between moving objects is a 

fundamental issue in physical simulations.  Our work not only 
detects collisions between the VE and a representation of the user, 
but also between the VE and any real objects the user introduces 
into the system.   

Collision detection between virtual objects is an active area of 
research.  Efficient and accurate packages, such as Swift++, detect 
collisions between polygonal objects, splines, and surfaces 
[Ehmann and Lin 2000].  Hoff, et. al., use graphics-hardware 
accelerated functions to solve for collisions and penetration 
information [2001].  Other approaches to collision detection 
between real and virtual objects first create geometric models of 
the rigid-body real objects and then use standard collision 
detection approaches [Breen et. al. 1996]. 

Ideally, a participant would interact with objects in the VE in 
the same way he would in a real world situation, i.e. using his 
hands, body, and tools to manipulate objects in the environment.  
As a step toward this goal, some VE systems provide tracked, 
instrumented real objects as input devices.  Common devices 
include articulated gloves with gesture recognition or buttons 
(Immersion’s Cyberglove), mice (Ascension Technology’s 6D 
Mouse), or joysticks (Fakespace’s NeoWand). 



Another approach is to engineer a device for a specific type of 
interaction to improve interaction affordance.  For example, 
tracking a toy spider registered with a virtual spider [Hoffman et. 
al. 1997] or tracking a doll’s head and props (cutting plane and 
stylus) to enable doctors to more naturally visualize MRI data 
[Hinckley 1994] enhances the VE interaction.  However, this 
specialized engineering can be time-consuming and the results are 
often application specific. 

[Hand 1997] and [Bowman and Hodges 1997] provide good 
summaries of studies of interaction in VEs. 

 
3. Real Object Reconstruction 

 
We use a real-object reconstruction algorithm that exploits the 

tremendous recent advances in graphics hardware performance to 
render the visual hulls of real objects [Lok 2001].  Here, we 
provide a volume query overview as background for Section 4. 

 
3.1. Capturing Real Object Shape 

 
The reconstruction algorithm, takes multiple, live, fixed-

position video camera images, identifies newly introduced real 
objects in the scene (image segmentation) and then computes a 
novel view, corresponding to the user’s view direction, of the real 
objects’ shape (performing volume query).   

When a new frame is captured, it is compared to a reference 
image of an “empty” scene (only the background) to create a 
difference image.  This background subtraction with thresholding 
identifies the pixels (labeled object pixels) that correspond to 
newly introduced objects.  This is done for each camera at every 
frame and produces a set of object pixels (S(Oi)).  The visual hull 
is the intersection of the projected right cones of the 2D object 
pixel maps.  The visual hull is a conservative approach that 
always encompasses the real objects.   

 
3.2. Volume Query 

 
To volume query a point asks, given a 3D point (P), is it 

within the visual hull (VH) of a real object in the scene? P is 
within the visual hull if and only if P projects onto an object pixel 
in each camera (defined by perspective matrix Ci) 

 
P ?  VHreal objects iff ?  i, P = Ci

-1
 Oi  (1) 

 
To render the visual hull from a novel viewpoint, the volume 

of the new view frustum is queried against the visual hull.  We 
sample the view frustum with a series of planes ordered front to 
back and orthogonal to the view direction.  By rendering a large 
primitive such as a plane, we volume query for many 3D points in 
a massively parallel manner.   

To accelerate the volume query process, we make use of the 
texture mapping and stencil buffer hardware available in most 
graphics accelerator cards.  For each plane, the ith’s camera’s 
texture is projected onto the plane and a pixel’s stencil buffer is 
incremented if an object pixel projects onto the plane at that pixel 
location (P = Ci

-1Oi).  After all n textures have been projected onto 
the plane, only the pixels with a stencil value equal to n are kept 
(?  i, P = Ci

-1
 Oi).  They represent the points on the plane that are 

within a visual hull.   The volume query technique results in a 
correctly z-buffered first-visible surface representation of the 
visual hull from the novel viewpoint.  Traditional rendering of the 
VE will correctly incorporate the result. 

While planes are used for novel viewpoint reconstruction, it is 
possible to volume query with any primitive.  We use this in 
detecting intersections between real and virtual objects. 

 
4. Visual Hull – Virtual Object Collision Detection 

and Response 
 
The collision detection and collision response algorithms 

enable real objects to be dynamic inputs to simulations running in 
the application.  Combined with lighting and shadow rendering 
algorithms, they provide a more natural interface with the VE.  
That is, participants can use real objects to interact with virtual 
objects as if the environment were real. 

For example, Figure 5 shows a participant parting a virtual 
curtain to look out a virtual window.  The interaction between the 
real hand and virtual cloth involves first detecting the collision 
between hand and cloth, and then the cloth simulation’s 
appropriately responding to the collision.  Collision detection 
occurs first and computes information used by the application to 
compute the appropriate response.   

The laws of physics resolve collisions between real objects; 
standard collision detection packages handle collisions between 
virtual objects.  We present an image-space algorithm to detect 
and allow virtual objects to plausibly respond to collisions with 
real 
 
4.1. Collision Detection 

 
Standard collision detection algorithms detect collisions 

among objects defined as geometric models.  Since our 
reconstruction algorithm does not generate a geometric model of 
the visual hull, we needed new algorithms to detect collisions 
between the real-object avatars and virtual objects.  Similar to 
how the object reconstruction algorithm volume-queries the novel 
view frustum, the collision detection algorithm tests for collisions 
by performing a volume query with the primitives composing the 
virtual objects. 

The real-virtual collision detection algorithm takes as inputs a 
set of n live camera images and a set of triangles defining the 
virtual objects.  It outputs: 

? (CPi) – set of points on the virtual object surface that are 
within a real-object avatar.   

It also estimates, within some tolerance, the following:  
? (CPobj) – point of first contact on the virtual object 
? (CPhull) – point of first contact on the visual hull 
? (Vrec) – recovery vector and 
? (Drec) – distance to translate the virtual object out of 

collision with the real-object avatar 
? (Nhull) – surface normal at the point of visual hull contact. 
 

4.1.1. Assumptions 
 
A set of simplifying assumptions makes interactive-time real-

virtual collision detection a tractable problem.   
 
Only virtual objects can move or deform as a consequence of 

collision.  Because the real-object avatars are registered with the 
real objects, and virtual objects cannot physically affect the real 
objects themselves, the system does not handle virtual objects 
affecting real objects due to collision. 

 
Both real objects and virtual objects are considered stationary 

at the time of collision.  Real-object avatars are computed anew 



each frame.  No information, such as a centroid of the visual hull, 
is computed and retained between frames.  Consequently, no 
information about the motion of the real objects, or of their hulls, 
is available to the real-virtual collision detection algorithm.  This 
means the algorithm cannot determine how or when the real and 
virtual objects came into collision. It simply suggests a way to 
move the virtual object out of collision. 

 
There is at most one collision between a virtual object and the 

real object visual hull at a time.   If the real object and virtual 
object intersect at disjoint locations, we apply a heuristic to 
estimate the point of first contact.  This is due to the inability to 
backtrack the real object to calculate the true point of first contact.   

 
The real objects that contribute to the visual hull are treated 

as a single object.  Although the real-object avatar may appear 
visually as multiple disjoint volumes, e.g., two hands, 
computationally there is only a single visual hull representing all 
real objects in the scene.    

 
Collisions are detected relatively shortly after a virtual object 

enters the visual hull, and not as the virtual object is exiting the 
visual hull.  This assumes the simulation time step (frame rate) is 
fast compared to the dynamics of the objects, and thus moving the 
virtual object along the vector compute by our algorithm will 
approximate backing the virtual object out of collision. 

 
4.1.2. Approach 

 
There are two steps to managing the interaction of virtual 

objects with real-objects avatars.  The first and most fundamental 
operation is determining whether a virtual object, defined by a set 
of geometric primitives representing its surface, is in collision 
with a real object, represented by its visual hull.   

If a virtual object is found to be in collision with a real object, 
the next step is to reduce or eliminate any unnatural penetration.  
Whereas the simulation typically has additional information on 
the virtual object, such as velocity, acceleration, and material 
properties, we do not have this information for the real object.  
Recall that we do not track, or have models of, the real object.  To 
the reconstruction system, the real object is only an occupied 
volume. 

 

 

Figure 2 – The first step is to detect if any points of the virtual 
objects (teapot) are within the visual hull of the real objects (hand) 

– the set of collision points, CPi (dots). 

Since it is not possible to backtrack the real object, it is not 
possible to determine the exact time of collision and the points of 
first collision for the virtual object or the real object.  If a collision 
occurred, we seek only to recover from any erroneous 
interpenetration by moving the virtual object out of collision.  

 
4.1.3. Detecting Collisions 

 
The real-virtual object collision detection algorithm performs a 

volume query to determine which points on the surface of virtual 
objects, if any, are within a visual hull. These collision points 
make up the set CPi.  The set of collision points is a sampling of 
the virtual object surface. 

In novel viewpoint reconstruction (Section 3), the points in the 
view frustum volume were volume-queried to determine which 
were inside the visual hull.  Collision detection volume queries 
with the triangles defining the virtual object’s surface.  If any part 
of a triangle lies within the visual hull, the virtual object is 
intersecting a real-object avatar, and a collision has occurred 
(Figure 2).   

As in the novel viewpoint reconstruction, the algorithm first 
sets up n projected textures – one each for the n cameras and 
using that camera's image, object-pixel map, and projection 
matrix.  Performing a volume query with each triangle involves 
rendering the triangle n times, once with each of the projected 
textures.  During each rendering pass a pixel’s stencil buffer is 
incremented if the pixel is 1) part of the triangle being scan 
converted and 2) textured by a camera’s object pixel.  After the n 
rendering passes, the stencil buffer will have values in the range 
of [0...n].  A collision occurs if any pixel has a stencil buffer value 
= n, indicating some part of a triangle, and in turn a virtual object, 
is within a visual hull.   

If the triangle is projected ‘on edge’ during scan-conversion, 
the sampling of the triangle surface during a volume query will be 
sparse, and collision points could be missed.  No one viewpoint 
will be optimal for all triangles.  To address this, the algorithm 
performs a volume query with each triangle in its own viewport, 
scaled so that the triangle’s projection maximally fills the 
viewport.  To do this, each triangle is rendered from a viewpoint 
along the triangle’s normal, and the view direction that is the 
inverse of the triangle’s normal (Figure 3).  

The sizes of the viewport and triangle affect the scan 
conversion sampling for performing a volume query, and thus 
collision detection accuracy.   

 

 

Figure 3 – The algorithm performed a volume query with each 
primitive in its own portion of the rendering window. 



After a volume query is performed on all the triangles, the 
frame buffer is read back and pixels with a stencil value of n 
represent points of collision between the visual hull and the 
triangle.  These ‘collision’ pixels are unprojected from screen 
space coordinates (u, v, depth) to world space coordinates (x, y, 
z).  These 3-D points form a set of collision points, CPi, for that 
virtual object.   

The real-virtual collision detection algorithm returns whether a 
collision exists and a set of collision points for each triangle.  
How a simulation utilizes this information is application 
dependent.  This division of labor is similar to other collision 
detection algorithms. We provide a suite of tools to assist in 
moving the virtual object out of collision with the real object.   

 
4.2. Recovery from Interpenetration 

 
We present one approach to use the collision information to 

generate a plausible response for the virtual object.  As stated 
before, the simplifying assumptions that make this problem 
tractable also make the response data approximations. 

The first step is to try to move the virtual object out of 
collision with the visual hull.  We estimate the point of first 
contact on the virtual object, CPobj, to be the collision point 
farthest from the virtual object’s reference point, RPobj.  The 
default RPobj is the center of the virtual object.  CPobj is not 
guaranteed to be the point of first collision due to our inability to 
backtrack the visual hull objects.  CPobj is not guaranteed to be 
unique as there may be several collision points the same distance 
from RPobj.  If multiple points are the same distance, we 
arbitrarily choose one of the points from the CPi set for 
subsequent computations. 

A recovery vector, Vrec – defined as the vector from CPobj to 
RPobj – is our estimate of the direction with possibly the shortest 
distance to move the virtual object out of collision.  This vector 
works well for most objects.  The simulation can specify a Vrec for 
virtual objects a constrained motion, such as a hinged door, for 
better, object-specific results.  

Vrec crosses the visual hull boundary at the hull collision point, 
CPhull.  CPhull is an estimate of the point of first contact on the 
visual hull, and to where CPobj will be backed out. 

 

 
Figure 4 – CPobj (A) is the farthest collision point from the 

virtual object’s reference point (RPobj).  This is used to find the 
visual hull collision point, CPhull, recovery vector (Vrec = A-

>CPhull), and recovery distance (Drec=|Vrec|). 
 
To find CPhull, Vrec is searched from RPobj towards CPobj for 

the first point within the visual hull.  This is done by performing a 
volume query on an isosceles triangle ABC, A = CPobj and the 

base, BC, is bisected by Vrec.  Angle BAC (at CPobj) is set small 
(10º) so that AB and AC intersect the visual hull near CPhull, and 
the height is set relatively large (5 cm) so the triangle base is 
likely to be outside the visual hull.  The triangle dimensions can 
be altered to fit the primitive.  A volume query is performed on 
ABC in the entire window’s viewport and from a viewpoint along 
the triangle normal such that Vrec lies along a scan line. CPhull is 
found by stepping along the Vrec scan line, starting at the base of 
ABC, to the first pixel within the visual hull (stencil buffer = n).  
Unprojecting the pixel from screen to world space yields CPhull.   

The recovery distance, Drec, is the distance between CPobj and 
CPhull, and is the distance along Vrec required to move CPobj 
outside the visual hull.  It is not necessarily the minimum 
separation distance, as is found in other collision detection 
packages [Ehmann and Lin 2000], nor does it guarantee removing 
the virtual object completely from collisions with a visual hull. 

If the visual hull collision point surface normal, Nhull, is 
required by the application for collision response, we locate four 
points on the visual hull surface near CPhull.  Stepping along BA 
and CA (Figure 4) and finding where they intersect the visual hull 
boundary determines points I and J.  A second triangle, DAE, is 
constructed that is similar to ABC and lies in a plane roughly 
perpendicular to ABC.   Points K and L are located by stepping 
along DA and EA.  Nhull is the cross product of IJ and KL. 

Figure 6 are frames taken from a dynamic sequence in which a 
virtual ball is bouncing around between a set of real blocks.  Nhull 
is used in the computation of the ball’s direction after collision. 

 
4.3. Implementation 

 
4.3.1. Hardware 
 

The algorithms were implemented in a system that 
reconstructs objects within a 1.6 m x 1.3 m x 1 m volume above a 
tabletop.  [Lok 2001] described the setup more extensively.  The 
system used four NTSC cameras (720 x 243 resolution – 1 field of 
NTSC), three wall-mounted and one mounted on the user’s 
Virtual Research V8 HMD (640 x 480 display resolution).   

The participant was tracked with the UNC HiBall, a scalable 
wide-area optical tracker. The cameras were connected to an SGI 
Reality Monster system.  A completely PC based solution is 
possible as they can now easily handle the computation and 
bandwidth requirements. 

We used five SGI graphics pipes: a parent pipe to render the 
VE and assemble the reconstruction results, a video pipe to 
capture video, two reconstruction pipes for performing a volume 
query, and a simulation pipe to run simulation and collision 
detection.  The reconstruction was done at 320x240 to reduce the 
pixel fill rate, and the results scaled to 640x480.   

The reconstruction system runs at 15-18 FPS for a volume 0.7 
m (1.5 cm spacing between planes) in front of the user. 

The collision detection and response routines run on a 
dedicated simulation pipe on the SGI.  At each real-virtual 
collision time-step, the simulation pipe performs the image 
segmentation operation to obtain new object-pixel maps.   

For optimization, collision detection is first done between the 
visual hull and the virtual objects’ axis-aligned bounding boxes.  
For the virtual objects whose bounding box was in collision with 
the visual hull, a per-triangle volume query is done.  If collisions 
exist, the simulation is notified and passed the set of collision 
points.  The simulation managing the behavior of the virtual 
objects decides how it will respond to the collision.  Then the 
response algorithm computes the recovery vector, distance, and 
surface normal. 

CPhull 

RPobj 



 

Figure 5 – Sequence of images with the user interacting with virtual curtains to look out the window. 

 

 
 

 

Figure 6 – A virtual ball bouncing off of real objects.  The overlaid arrows show the balls motion between images.



4.3.2. Performance 
 
For collision detection, given n cameras, virtual objects with m 

triangles, and u x v viewports in an x x y window: the geometry 
transformation is (n x m) triangles, pixel fill is (n x m x u x v)/2 
pixels, and (x x y) pixel readbacks and compares per frame.  For 
collision response, the transformation cost is two triangles per 
virtual object in collision and a pixel fill of (x x y x n) per frame. 

The curtains in the hybrid environment in Figure 5 were 
composed of 720 triangles.  The volume query was performed in 
10 x 10 pixel viewports in a 400 x 400 window for collision 
detection, which ran at 6 frames per second.  The collision 
detection work was 13,000 triangles transformations per second, 
648,000 pixels, and 160,000 pixel readbacks and compares per 
second.  The collision response work was 2 triangles and 480,000 
pixels per virtual object in collision.  As this was a first 
implementation, there are many optimizations that should 
improve performance. 

 
4.3.3. Accuracy 

 
The collision detection accuracy is affected by image 

segmentation, camera setup and models, and the use of visual 
hulls.  The errors introduced in these stages are covered in [Niem 
1997] and [Lok 2002].  Here, we examine only the effect of the 
volume query viewport and primitive size on collision detection 
accuracy.   

The spatial sampling frequency is proportional to the size of 
the volume query viewport.  The accuracy of collision detection 
for a u x v resolution viewport (if u = v, viewport layout is easier) 
and a triangle with c x d bounding box (in world space) is c/u by 
d/u.  The accuracy is the two longest dimensions of the primitive 
divided by the viewport horizontal size (again assuming u = v). 

One can volume query with primitives at a higher resolution 
(larger viewports), producing a higher number of more closely 
spaced collision points with less error. A larger viewport also 
means that fewer volume queries with triangles can be performed 
in the collision detection window.  If all the primitives can not be 
allocated their own viewport in a single frame buffer, then 
multiple volume query and read-back cycles will needed to test all 
primitives. 

Hence, there is a speed-accuracy tradeoff in establishing the 
appropriate level of parallelism: the more viewports, the faster the 
algorithm executes, but the lower the pixel resolution available for 
the collision detection (which may result in missed collisions).     

The size of virtual object triangles will vary, but typical 
tabletop objects had triangles less than 2 cm, which would have 
0.2 cm x 0.2 cm collision point detection error in 10 x 10 pixel 
viewports.  The curtain system had a collision detection resolution 
of 0.75 cm x 0.3 cm.  These values are the spatial frequency for 
performing a volume query and provide the maximum error to 
finding a collision point. 

For collision response, the accuracy of the CPhull point impacts 
Drec and Nhull.  The error in finding CPhull along the Vrec is the 
length of triangle ABC’s major axis divided by the horizontal 
length of collision response window (assuming a square window).  
With a 400 x 400 collision detection window, this results in .0125 
cm error for detecting CPhull.  The accuracy of Nhull, depends on 
the surface topology (affected by camera resolution), the distance 
from points I,J,K, and L to CPhull, and the distance from CPhull to 
CPobj.  We estimate that collision response results have at most 
0.75 cm error.  This is comparable to object reconstruction error, 
which is estimated at 0.5 cm for visual hull shape.   

 

4.4. Algorithm Extensions 
 
Figure 5 is a sequence of frames of a user pushing aside a 

virtual curtain with his hands.  This shows using the algorithm 
with a deformable virtual object with constrained motions (a 
specified Vrec in the collision response).  When trying to move 
individual cloth nodes out of collision, the motion is constrained 
in the vector direction (Vrec).   

The algorithm can perform a volume query with primitives 
other than surface boundaries.  We hypothesize that using 
primitives which represent distance fields could aid in visualizing 
thermal radiation of real objects onto virtual objects, magnetic 
fields of real objects, or barriers in a motion planning simulation.  
We have prototyped incorporating real-object avatars into other 
physical simulations, including lighting, shadowing, and particle 
systems. 

 
5. NASA Case Study 

 
We worked with space shuttle payload designers at NASA 

Langley Research Center (NASA LaRC) to investigate how using 
hybrid environments could assist them in evaluating payload 
designs and assembly layouts.  Information reported in this paper 
concerning the designers’ motivations, comments, and 
suggestions are taken directly from oral or written responses to 
surveys, interviews, and informal remarks made during 
experiments and discussions. 

Given virtual models of complex multipart devices such as 
satellites, designers want to determine if assembling the device is 
physically possible.  Answering this question involves managing 
parts, tools, and people with a large variance in shape.  Space 
planning errors can have a significant impact in terms of money, 
scheduling, and personnel.   

NASA LaRC designers receive payload subsection CAD 
models from their subcontractors early in the design stage, before 
anything gets built.  They would like to use these models to 
investigate assembly, layout, and integration.  Changes in the 
early project stages are substantially cheaper in money, time, and 
personnel than fixes in later stages.   

Since different subsystems are separately subcontracted out, 
the integration stage always generates compatibility and layout 
issues.  Even with the greatest care in the specification of 
subsystem designs, it is difficult to perceive the integration of the 
subpayloads, as the complexity and nuances of each component 
are understood well by only a particular group.  For example, 
attaching external cables is a common final integration task, and 
the designers described several occasions when they encountered 
spacing problems during the final cable attachment step.  The 
payloads had conformed to specifications, but the reality of 
attaching the cables showed inadequate space for hands, tools, or 
parts.  Layout issues result in schedule delays, equipment 
redesign, or makeshift engineering fixes.   

Later in the development cycle, simplified physical mock-ups 
are manufactured for design verification and layout.  The 
assembly procedure is documented in a step-by-step instruction 
list.  The designers recounted several occasions when the limited 
fidelity of mock-ups and assembly documents caused significant 
problems to slip through to later stages.  They also suggested that 
interacting with virtual models early in the design cycle would 
enable training additional technicians on critical assembly stages. 

A hybrid VE system would enable designers to test 
configurations using the final assembly personnel, real tools and 
parts.  We hypothesize that such a hybrid VE would be a more 



effective system for evaluating hardware designs and planning 
assembly than a purely virtual one. 

 
5.1. Payload Spacing Study 

 
During a visit to the NASA LaRC facilities, we were shown a 

weather imaging satellite (CALIPSO) and a light imager unit on 
the satellite called the photon multiplier tube (PMT) (Figure 7).  
We used CAD models of the PMT for our case study, and 
abstracted a task that was similar to common assembly steps. 

 
5.1.1. Assembly Task Description 

 
The PMT model and two other fictional payloads (payload A 

and payload B) were rendered in the VE.  The system performed 
object reconstruction (on the user, tools, and some parts) and 
collision detection among the virtual payloads and the real-object 
avatars.  Virtual objects in collision were rendered red (Figure 1). 

The task, diagramed in Figure 9, was to screw a cylindrical 
shield (mocked-up as a PVC pipe - Figure 8) into a receptacle 
(Figure 10) and then plug a power connector into an outlet inside 
the shield (Figure 11).  If the participant asked for additional 
assistance, we provided tools to aid in the task (Figure 12).  

 
5.1.2. Study Procedure 

 
Four NASA LaRC payload designers participated in the case 

study.  First, we provided task information in approximately the 
same manner as in actual design evaluation.  The participants 
were asked how much space was needed – and how much would 
actually be allocated – between the PMT and payload A. 

Each participant then performed the pipe insertion and power 
cable attachment procedure in the hybrid system.  After a period 
of VE adjustment, participants picked up the pipe and eased it into 
the center cylindrical assembly while trying to avoid colliding 
with any of the virtual payloads.  After the pipe was lowered into 
the cylindrical shaft of the PMT, they snaked the power cord 
down the tube and inserted it into the outlet. 

If the participant asked for more or less space between the 
PMT and payload A, the experimenter could dynamically adjust 
the spacing.  This allowed quick evaluation of different spatial 
configurations of the two payload subassemblies. 

 
5.2. Results 

 
For the study, the pipe had a length of 14 cm and a diameter of 4 
cm.  Table 1 summarizes the data collected. 
 
Between Payload A and PMT #1 #2 #3 #4 
(Pre) How much space is 
necessary? 

14.0 14.2 15.0-16.0 15.0 

(Pre) How much space would 
you allocate? 

21.0 16.0 20.0 15.0 

Actual space required in VE 15.0 22.5 22.3 23.0 
(Post) How much space would 
you allocate? 

18.0 16.0 
adjust tool 

25.0 23.0 

Table 1 – LaRC participant responses and task results (cm) 

Space is scarce and the engineers were stingy with it.  
Participant #1 was able to complete the task without using any 
tool, as the power cable was stiff enough to force into the outlet.  
Since an aim was to impress upon the participants the unforeseen 

possibility of requiring tools in assembly or repair, we used a 
more flexible cable for the remaining participants.   

While trying to insert the power cable, participants #2, 3, and 4 
noted they could not complete the task.  The more flexible power 
cable could not be snaked down the pipe and inserted into the 
outlet without some device to help push the connector when it was 
inside the pipe.  This was because the pipe was too narrow for the 
participant’s hands.  When asked what they required, they all 
remarked they wanted a tool to assist in plugging in the cable.  
They were handed a tool (set of tongs).  They were then able to 
complete the power cable insertion task.  This required increasing 
the spacing between the PMT and Payload A from 14 cm to an 
average of 24 cm to avoid collisions.   

Whereas in retrospect it was obvious that the task would not 
be easily completed without a tool, none of the designers 
anticipated this requirement.  We believe the manner the assembly 
information was provided (diagrams, assembly documents and 
drawings), made it difficult for designers – even though each had 
substantial payload development experience – to identify subtle 
assembly integration issues.  On average, the participants under 
allocated an average of 5.6 cm between the payloads. 

Accommodating tools extemporaneously in a VE session, 
without additional modeling or development, enabled easy 
evaluation of multiple layouts, approaches, and tools.  The 
presence of the pipe threads and cable socket provided important 
motion constraints that aided in interacting with these objects.  

Physical mock-ups are costly to build, require substantial time 
to create, and have varying degrees of fidelity to the final payload.  
These characteristics reduce their use early in the design 
evaluation stage.  In the early design phases, hybrid VEs can 
provide a cheaper and quicker alternative for evaluating designs 
and layouts than mock-ups.   

 
5.3. Debriefing 

 
The participants were extremely surprised that both a tool and 

substantial additional space were required.  When they discovered 
the required spacing was much more than the amount they 
allocated, they immediately focused on the potential time and 
schedule savings of finding such an error at the design stage.  The 
participants commented that the financial cost of the spacing error 
could range from moderate (keeping personnel waiting until a 
design fix was implemented) to extreme (launch delays). 

The virtual model was not very detailed, and the visual 
contrast between real and virtual objects was rather obvious.  Yet, 
participants were observed to make concerted efforts to avoid 
touching the virtual model.  Upon being told about his effort to 
avoid touching the virtual PMT box, one participant said, “That 
was flight hardware… you don’t touch flight hardware.”  The 
familiarity and relevance of the task made it a vivid experience for 
the participants. 

NASA LaRC payload designers remarked that VEs and object 
reconstruction VEs would be useful for assembly training, 
hardware layout, and design evaluation.  They are also interested 
in looking at traditional VEs and virtual models to evaluate 
current payload integration tasks and upcoming payload designs. 

There are substantial gains to be realized by using virtual 
models in almost every stage of payload development.  Early 
identification of assembly, integration, or design issues can result 
in considerable savings in terms of time, money, and man-hours.  
Many of NASA LaRC tasks involve technicians interacting with a 
payload with tools and parts.  These tasks are well suited to be 
simulated within a hybrid VE.   



 

Figure 7 – Photon Multiplier Tube (PMT) box for the 
CALIPSO satellite payload.  We used this payload subsystem 

as the basis for our case study. 

Courtesy of NASA LaRC's CALIPSO project. 

 

Figure 8 – Parts used in the shield fitting experiment.  PVC 
pipe prop, power cord, tongs (tool), and the outlet and pipe 

connector that was registered with the virtual model. 

 

Figure 9 – Cross-section diagram of task.  The pipe (red) and 
power cable (blue) need to be plugged into the corresponding 

connector down the center shaft of the virtual PMT box. 

 

Figure 10 - The first step was to slide the pipe between the 
payloads and then screw it into the fixture. 

 

 

Figure 11 – After the pipe was in place, the next step was to 
fish the power cable down the pipe and plug it into the outlet 

on the table. 

 

Figure 12– The insertion of the cable into the outlet was 
difficult without a tool.  Tongs were provided to assist in the 

plugging in the cable. 



6. Conclusions and Future Work 
 
We have developed a system for incorporating dynamic real 

objects into a virtual environment.  This involved developing 
image-based hardware-accelerated algorithms for detecting 
collisions and providing plausible responses between virtual 
representations of real objects and other virtual objects.  Future 
work would focus on improving performance, increasing 
accuracy, and providing better collision response information.   

The present limitation in our responding to collisions follows 
from the inability to backtrack the motions of real objects.  
Retaining previous object pixel maps images, along with tracking 
real objects within the camera images, could enable backtracking.  
By looking at the shape and motion of a tracked object across 
several frames, information, such as object velocity, acceleration, 
rotation, and center of mass, could be derived.  This information 
could allow for more accurate collision response. 

We believe that many VE applications, such as training, 
telepresence, phobia treatment, and assembly verification, could 
be assisted through interacting with real objects in a VE.  Our 
work with NASA LaRC has shown that the system could provide 
a substantial advantage in hardware layout and assembly 
verification tasks.  Future work would identify tasks that would 
most benefit from having the user handle dynamic real objects.   
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