
Incorporating Dynamic Real Objects into Immersive Virtual Environments

Benjamin Lok
University of North Carolina at Charlotte

bclok@cs.uncc.edu

Samir Naik
Disney Corporation

Samir.D.Naik@disney.com

Mary Whitton,
Frederick P. Brooks Jr.

University of North Carolina at Chapel Hill
[whitton, brooks]@cs.unc.edu

Abstract

We present algorithms that enable virtual objects to interact

with and respond to virtual representations, avatars, of real
objects. These techniques allow dynamic real objects, such as the
user, tools, and parts, to be visually and physically incorporated
into the virtual environment (VE). The system uses image-based
object reconstruction and a volume query mechanism to detect
collisions and to determine plausible collision responses between
virtual objects and the avatars. This allows our system to provide
the user natural interactions with the VE.

We have begun a collaboration with NASA Langley Research
Center to apply the hybrid environment system to a satellite
payload assembly verification task. In an informal case study,
NASA LaRC payload designers and engineers conducted
common assembly tasks on payload models. The results suggest
that hybrid environments could provide significant advantages for
assembly verification and layout evaluation tasks.

CR Categories: H.5.2 (Information Interfaces and Presentation):
User Interfaces – Haptic I/O; I.3.7 (Computer Graphics): Three-
Dimensional Graphics and Realism – Virtual reality; I.6.0
(Simulation and Modeling): General.

Keywords: interactions in virtual environments, collision
detection, mixed reality

1. Introduction

Suppose one has a virtual model of a car engine and wants to

use an immersive virtual environment (VE) to determine whether
both a large man and a petite woman can readily replace the oil
filter. This real world problem is difficult to solve efficiently with
current modeling, tracking, and rendering techniques. Hybrid
environments, systems that incorporate both real and virtual
objects in a VE, can greatly assist in answering questions of this
kind.

Conducting design evaluation and assembly verification tasks
in immersive virtual environments (VEs) enables designers to
evaluate and validate alternative designs more quickly and
cheaply than if mock-ups are built and more thoroughly than can
be done from drawings. Design review has become one of the
major productive applications of VEs [Brooks 1999]. Virtual
models can be used to study the following important design
questions:

? Can an artifact readily be assembled?
? Can repairers readily service it?

In the assembly verification example, the ideal VE system
would have the participant fully convinced he was actually
performing a task [Sutherland 1965]. Parts and tools would have
mass, feel real, and handle properly with appropriate visual and
haptic feedback. The user would interact with virtual objects as if
he were actually doing the task, and virtual objects would respond
to the user’s actions.

Both assembly and servicing are hands-on tasks and the
principal drawback of virtual models — that there is nothing there
to feel, to give manual affordances, and to constrain motions — is
a serious one for these applications. Using a six degree-of-
freedom wand to simulate a wrench, for example, is far from
natural or realistic, perhaps too far to be useful. Imagine trying to
simulate a task as basic as unscrewing an oil filter from a car
engine in a VE! Interacting with purely virtual objects limits the
types of feedback the system can provide.

Getting a virtual representation of a specific real object – such
as the user’s hand, specialized tools, or parts – into the VE
requires specific development for modeling, tracking, and
interaction. The required additional development effort, coupled
with the difficulties of object tracking and modeling, lead
designers to use few real objects in most VEs. Further, there are
also restrictions on the types of real objects that can be
incorporated into a VE. Highly deformable real objects, for
example a bushy plant, would be difficult to include in a VE.

1.1. Incorporating Real Objects

We feel a hybrid environment system, one that incorporates

representations of dynamic real objects into the VE, would assist
in providing natural interactivity.

Dynamic real objects are defined as objects that can deform,
change topology, and change appearance. Examples include a
socket wrench, clothing, and the human hand. For a many types
of VEs, incorporating dynamic real objects would provide
improved affordance matching and tactile feedback.

Incorporating real objects is defined as being able to see, and
have virtual objects react to, the virtual representations of real
objects. The challenges are visualizing the real objects in the VE
and managing the interactions among the real and virtual objects.

In this work, we extend the definition of an avatar to include a
virtual representation of any real object, including the participant.
These real-object avatars are registered with, and ideally have the
same shape, appearance and motion as, the real object.
They also provide haptic cues and physical restraints — the types
of feedback that purely virtual objects can’t provide.

We believe spatial cognitive tasks would benefit from
incorporating real objects. These tasks require problem solving
while manipulating objects and maintaining mental model of
spatial relationships among them. With the capability of having
real objects interact with virtual models, designers can see if there
is enough space to reach a certain location (Figure 1) all while
handling real parts, real tools, and the variability among
participants.

Figure 1 - A hybrid environment detects collisions between real
objects (PVC pipe and user) and virtual objects (payload models)

1.2. Approach

We use a hybrid environment system that uses image-based

object reconstruction algorithms to generate real-time virtual
representations, avatars, of real objects. The participant sees
avatars of himself and real objects visually incorporated into the
VE. Further, the participant handles and feels the real objects
while interacting with virtual objects.

The system models each object as the visual hull derived from
multiple camera views, and then texture-maps onto the visual hull
the object’s image from a HMD mounted camera. The resulting
virtual representations or avatars are visually combined with
virtual objects with correct obscuration.

We then developed algorithms to use the virtual
representations in virtual lighting and in physically-based
mechanics simulations. This includes new collision-detection and
collision-response algorithms that exploit graphics hardware for
computing results in real time. This type of interaction allows the
real-object avatars to affect simulations such as particle systems,
cloth simulations, and rigid-body dynamics.

In an exploratory study, four payload design experts from
NASA Langley Research Center (NASA LaRC) used the hybrid
environment system to evaluate an abstracted version of a payload
assembly task. The participants’ experiences with the system
showed anecdotally the effectiveness of handling real objects
when interacting with virtual objects. We expect hybrid VEs to
expand the types of tasks and applications that would benefit from
immersive VEs by providing a higher-fidelity natural interaction.

2. Previous Work

Our goal is to populate a VE with virtual representations of

dynamic real objects. This involves two primary components:
capturing object information and having virtual systems interact
with the captured object data. We review current algorithms for
capturing this information, then look at methods to use the
captured data as part of a virtual system.

2.1. Incorporating Real Objects into VEs

Applications that incorporate real objects must capture the

shape, surface appearance, and motion of the real objects. Object
material properties and articulation may also be of interest.

Prebuilt models are usually not available for specific real objects.
Making measurements and then using a modeling package is
laborious for complex static objects, and near impossible for
capturing all the degrees of freedom of complex dynamic objects.

Creating a virtual version of a real scene has many
applications. For example, capturing 3-D models of archeological
sites, sculptures, and objects allows new methods of education,
visualization, archiving, and exploration [Levoy et al. 2000].
Generating novel views of sporting events from several cameras
were used to enhance television coverage of Superbowl XXXV
[Baba et al. 2000]. The Office of the Future project, described by
Raskar et al., generates 3-D models of participants from multiple
camera images [1998] for telecommunications

Real-time algorithms simplify object reconstruction by
restricting the inputs, making simplifying assumptions, or
accepting output limitations. This allows the desired model to be
computed at interactive rates.

For example, the 3-D Tele-Immersion reconstruction
algorithm by Daniilidis, et al., restricts the reconstructed volume
size and number of input cameras so that usable results can be
computed in real time using their dense-stereo algorithm [2000].

For some applications, precise models of real objects are not
necessary. A simplification is to compute approximations of the
objects’ shapes, such as the visual hull. A shape-from-silhouette
concept, the visual hull, for a set of objects and set of n cameras,
is the tightest volume that can be obtained by examining only the
object silhouettes, as seen by the cameras [Laurentini 1994].

At SIGGRAPH 2000, Matusik, et al., presented an image-
based visual hull algorithm, “Image Based Visual Hulls” (IBVH),
which uses image-based rendering (IBR) algorithms to calculate
the visual hull at interactive rates [2000]. Further, the IBVH
algorithm computes visibility, coloring, and creating polygonal
models of visual hulls [2001].

Similar in spirit to this work are augmented reality systems
[Feiner 1993], which visually incorporates a few virtual objects
with the real world. Our work focuses on incorporating a few real
objects into a virtual environment, for example, training for
assembling a virtual payload in outer space with real tools and
parts.

2.2. Collision Detection

Detecting and resolving collisions between moving objects is a

fundamental issue in physical simulations. Our work not only
detects collisions between the VE and a representation of the user,
but also between the VE and any real objects the user introduces
into the system.

Collision detection between virtual objects is an active area of
research. Efficient and accurate packages, such as Swift++, detect
collisions between polygonal objects, splines, and surfaces
[Ehmann and Lin 2000]. Hoff, et. al., use graphics-hardware
accelerated functions to solve for collisions and penetration
information [2001]. Other approaches to collision detection
between real and virtual objects first create geometric models of
the rigid-body real objects and then use standard collision
detection approaches [Breen et. al. 1996].

Ideally, a participant would interact with objects in the VE in
the same way he would in a real world situation, i.e. using his
hands, body, and tools to manipulate objects in the environment.
As a step toward this goal, some VE systems provide tracked,
instrumented real objects as input devices. Common devices
include articulated gloves with gesture recognition or buttons
(Immersion’s Cyberglove), mice (Ascension Technology’s 6D
Mouse), or joysticks (Fakespace’s NeoWand).

Another approach is to engineer a device for a specific type of
interaction to improve interaction affordance. For example,
tracking a toy spider registered with a virtual spider [Hoffman et.
al. 1997] or tracking a doll’s head and props (cutting plane and
stylus) to enable doctors to more naturally visualize MRI data
[Hinckley 1994] enhances the VE interaction. However, this
specialized engineering can be time-consuming and the results are
often application specific.

[Hand 1997] and [Bowman and Hodges 1997] provide good
summaries of studies of interaction in VEs.

3. Real Object Reconstruction

We use a real-object reconstruction algorithm that exploits the

tremendous recent advances in graphics hardware performance to
render the visual hulls of real objects [Lok 2001]. Here, we
provide a volume query overview as background for Section 4.

3.1. Capturing Real Object Shape

The reconstruction algorithm, takes multiple, live, fixed-

position video camera images, identifies newly introduced real
objects in the scene (image segmentation) and then computes a
novel view, corresponding to the user’s view direction, of the real
objects’ shape (performing volume query).

When a new frame is captured, it is compared to a reference
image of an “empty” scene (only the background) to create a
difference image. This background subtraction with thresholding
identifies the pixels (labeled object pixels) that correspond to
newly introduced objects. This is done for each camera at every
frame and produces a set of object pixels (S(Oi)). The visual hull
is the intersection of the projected right cones of the 2D object
pixel maps. The visual hull is a conservative approach that
always encompasses the real objects.

3.2. Volume Query

To volume query a point asks, given a 3D point (P), is it

within the visual hull (VH) of a real object in the scene? P is
within the visual hull if and only if P projects onto an object pixel
in each camera (defined by perspective matrix Ci)

P ? VHreal objects iff ? i, P = Ci

-1
 Oi (1)

To render the visual hull from a novel viewpoint, the volume

of the new view frustum is queried against the visual hull. We
sample the view frustum with a series of planes ordered front to
back and orthogonal to the view direction. By rendering a large
primitive such as a plane, we volume query for many 3D points in
a massively parallel manner.

To accelerate the volume query process, we make use of the
texture mapping and stencil buffer hardware available in most
graphics accelerator cards. For each plane, the ith’s camera’s
texture is projected onto the plane and a pixel’s stencil buffer is
incremented if an object pixel projects onto the plane at that pixel
location (P = Ci

-1Oi). After all n textures have been projected onto
the plane, only the pixels with a stencil value equal to n are kept
(? i, P = Ci

-1
 Oi). They represent the points on the plane that are

within a visual hull. The volume query technique results in a
correctly z-buffered first-visible surface representation of the
visual hull from the novel viewpoint. Traditional rendering of the
VE will correctly incorporate the result.

While planes are used for novel viewpoint reconstruction, it is
possible to volume query with any primitive. We use this in
detecting intersections between real and virtual objects.

4. Visual Hull – Virtual Object Collision Detection

and Response

The collision detection and collision response algorithms

enable real objects to be dynamic inputs to simulations running in
the application. Combined with lighting and shadow rendering
algorithms, they provide a more natural interface with the VE.
That is, participants can use real objects to interact with virtual
objects as if the environment were real.

For example, Figure 5 shows a participant parting a virtual
curtain to look out a virtual window. The interaction between the
real hand and virtual cloth involves first detecting the collision
between hand and cloth, and then the cloth simulation’s
appropriately responding to the collision. Collision detection
occurs first and computes information used by the application to
compute the appropriate response.

The laws of physics resolve collisions between real objects;
standard collision detection packages handle collisions between
virtual objects. We present an image-space algorithm to detect
and allow virtual objects to plausibly respond to collisions with
real

4.1. Collision Detection

Standard collision detection algorithms detect collisions

among objects defined as geometric models. Since our
reconstruction algorithm does not generate a geometric model of
the visual hull, we needed new algorithms to detect collisions
between the real-object avatars and virtual objects. Similar to
how the object reconstruction algorithm volume-queries the novel
view frustum, the collision detection algorithm tests for collisions
by performing a volume query with the primitives composing the
virtual objects.

The real-virtual collision detection algorithm takes as inputs a
set of n live camera images and a set of triangles defining the
virtual objects. It outputs:

? (CPi) – set of points on the virtual object surface that are
within a real-object avatar.

It also estimates, within some tolerance, the following:
? (CPobj) – point of first contact on the virtual object
? (CPhull) – point of first contact on the visual hull
? (Vrec) – recovery vector and
? (Drec) – distance to translate the virtual object out of

collision with the real-object avatar
? (Nhull) – surface normal at the point of visual hull contact.

4.1.1. Assumptions

A set of simplifying assumptions makes interactive-time real-

virtual collision detection a tractable problem.

Only virtual objects can move or deform as a consequence of

collision. Because the real-object avatars are registered with the
real objects, and virtual objects cannot physically affect the real
objects themselves, the system does not handle virtual objects
affecting real objects due to collision.

Both real objects and virtual objects are considered stationary

at the time of collision. Real-object avatars are computed anew

each frame. No information, such as a centroid of the visual hull,
is computed and retained between frames. Consequently, no
information about the motion of the real objects, or of their hulls,
is available to the real-virtual collision detection algorithm. This
means the algorithm cannot determine how or when the real and
virtual objects came into collision. It simply suggests a way to
move the virtual object out of collision.

There is at most one collision between a virtual object and the

real object visual hull at a time. If the real object and virtual
object intersect at disjoint locations, we apply a heuristic to
estimate the point of first contact. This is due to the inability to
backtrack the real object to calculate the true point of first contact.

The real objects that contribute to the visual hull are treated

as a single object. Although the real-object avatar may appear
visually as multiple disjoint volumes, e.g., two hands,
computationally there is only a single visual hull representing all
real objects in the scene.

Collisions are detected relatively shortly after a virtual object

enters the visual hull, and not as the virtual object is exiting the
visual hull. This assumes the simulation time step (frame rate) is
fast compared to the dynamics of the objects, and thus moving the
virtual object along the vector compute by our algorithm will
approximate backing the virtual object out of collision.

4.1.2. Approach

There are two steps to managing the interaction of virtual

objects with real-objects avatars. The first and most fundamental
operation is determining whether a virtual object, defined by a set
of geometric primitives representing its surface, is in collision
with a real object, represented by its visual hull.

If a virtual object is found to be in collision with a real object,
the next step is to reduce or eliminate any unnatural penetration.
Whereas the simulation typically has additional information on
the virtual object, such as velocity, acceleration, and material
properties, we do not have this information for the real object.
Recall that we do not track, or have models of, the real object. To
the reconstruction system, the real object is only an occupied
volume.

Figure 2 – The first step is to detect if any points of the virtual
objects (teapot) are within the visual hull of the real objects (hand)

– the set of collision points, CPi (dots).

Since it is not possible to backtrack the real object, it is not
possible to determine the exact time of collision and the points of
first collision for the virtual object or the real object. If a collision
occurred, we seek only to recover from any erroneous
interpenetration by moving the virtual object out of collision.

4.1.3. Detecting Collisions

The real-virtual object collision detection algorithm performs a

volume query to determine which points on the surface of virtual
objects, if any, are within a visual hull. These collision points
make up the set CPi. The set of collision points is a sampling of
the virtual object surface.

In novel viewpoint reconstruction (Section 3), the points in the
view frustum volume were volume-queried to determine which
were inside the visual hull. Collision detection volume queries
with the triangles defining the virtual object’s surface. If any part
of a triangle lies within the visual hull, the virtual object is
intersecting a real-object avatar, and a collision has occurred
(Figure 2).

As in the novel viewpoint reconstruction, the algorithm first
sets up n projected textures – one each for the n cameras and
using that camera's image, object-pixel map, and projection
matrix. Performing a volume query with each triangle involves
rendering the triangle n times, once with each of the projected
textures. During each rendering pass a pixel’s stencil buffer is
incremented if the pixel is 1) part of the triangle being scan
converted and 2) textured by a camera’s object pixel. After the n
rendering passes, the stencil buffer will have values in the range
of [0...n]. A collision occurs if any pixel has a stencil buffer value
= n, indicating some part of a triangle, and in turn a virtual object,
is within a visual hull.

If the triangle is projected ‘on edge’ during scan-conversion,
the sampling of the triangle surface during a volume query will be
sparse, and collision points could be missed. No one viewpoint
will be optimal for all triangles. To address this, the algorithm
performs a volume query with each triangle in its own viewport,
scaled so that the triangle’s projection maximally fills the
viewport. To do this, each triangle is rendered from a viewpoint
along the triangle’s normal, and the view direction that is the
inverse of the triangle’s normal (Figure 3).

The sizes of the viewport and triangle affect the scan
conversion sampling for performing a volume query, and thus
collision detection accuracy.

Figure 3 – The algorithm performed a volume query with each
primitive in its own portion of the rendering window.

After a volume query is performed on all the triangles, the
frame buffer is read back and pixels with a stencil value of n
represent points of collision between the visual hull and the
triangle. These ‘collision’ pixels are unprojected from screen
space coordinates (u, v, depth) to world space coordinates (x, y,
z). These 3-D points form a set of collision points, CPi, for that
virtual object.

The real-virtual collision detection algorithm returns whether a
collision exists and a set of collision points for each triangle.
How a simulation utilizes this information is application
dependent. This division of labor is similar to other collision
detection algorithms. We provide a suite of tools to assist in
moving the virtual object out of collision with the real object.

4.2. Recovery from Interpenetration

We present one approach to use the collision information to

generate a plausible response for the virtual object. As stated
before, the simplifying assumptions that make this problem
tractable also make the response data approximations.

The first step is to try to move the virtual object out of
collision with the visual hull. We estimate the point of first
contact on the virtual object, CPobj, to be the collision point
farthest from the virtual object’s reference point, RPobj. The
default RPobj is the center of the virtual object. CPobj is not
guaranteed to be the point of first collision due to our inability to
backtrack the visual hull objects. CPobj is not guaranteed to be
unique as there may be several collision points the same distance
from RPobj. If multiple points are the same distance, we
arbitrarily choose one of the points from the CPi set for
subsequent computations.

A recovery vector, Vrec – defined as the vector from CPobj to
RPobj – is our estimate of the direction with possibly the shortest
distance to move the virtual object out of collision. This vector
works well for most objects. The simulation can specify a Vrec for
virtual objects a constrained motion, such as a hinged door, for
better, object-specific results.

Vrec crosses the visual hull boundary at the hull collision point,
CPhull. CPhull is an estimate of the point of first contact on the
visual hull, and to where CPobj will be backed out.

Figure 4 – CPobj (A) is the farthest collision point from the

virtual object’s reference point (RPobj). This is used to find the
visual hull collision point, CPhull, recovery vector (Vrec = A-

>CPhull), and recovery distance (Drec=|Vrec|).

To find CPhull, Vrec is searched from RPobj towards CPobj for

the first point within the visual hull. This is done by performing a
volume query on an isosceles triangle ABC, A = CPobj and the

base, BC, is bisected by Vrec. Angle BAC (at CPobj) is set small
(10º) so that AB and AC intersect the visual hull near CPhull, and
the height is set relatively large (5 cm) so the triangle base is
likely to be outside the visual hull. The triangle dimensions can
be altered to fit the primitive. A volume query is performed on
ABC in the entire window’s viewport and from a viewpoint along
the triangle normal such that Vrec lies along a scan line. CPhull is
found by stepping along the Vrec scan line, starting at the base of
ABC, to the first pixel within the visual hull (stencil buffer = n).
Unprojecting the pixel from screen to world space yields CPhull.

The recovery distance, Drec, is the distance between CPobj and
CPhull, and is the distance along Vrec required to move CPobj
outside the visual hull. It is not necessarily the minimum
separation distance, as is found in other collision detection
packages [Ehmann and Lin 2000], nor does it guarantee removing
the virtual object completely from collisions with a visual hull.

If the visual hull collision point surface normal, Nhull, is
required by the application for collision response, we locate four
points on the visual hull surface near CPhull. Stepping along BA
and CA (Figure 4) and finding where they intersect the visual hull
boundary determines points I and J. A second triangle, DAE, is
constructed that is similar to ABC and lies in a plane roughly
perpendicular to ABC. Points K and L are located by stepping
along DA and EA. Nhull is the cross product of IJ and KL.

Figure 6 are frames taken from a dynamic sequence in which a
virtual ball is bouncing around between a set of real blocks. Nhull
is used in the computation of the ball’s direction after collision.

4.3. Implementation

4.3.1. Hardware

The algorithms were implemented in a system that
reconstructs objects within a 1.6 m x 1.3 m x 1 m volume above a
tabletop. [Lok 2001] described the setup more extensively. The
system used four NTSC cameras (720 x 243 resolution – 1 field of
NTSC), three wall-mounted and one mounted on the user’s
Virtual Research V8 HMD (640 x 480 display resolution).

The participant was tracked with the UNC HiBall, a scalable
wide-area optical tracker. The cameras were connected to an SGI
Reality Monster system. A completely PC based solution is
possible as they can now easily handle the computation and
bandwidth requirements.

We used five SGI graphics pipes: a parent pipe to render the
VE and assemble the reconstruction results, a video pipe to
capture video, two reconstruction pipes for performing a volume
query, and a simulation pipe to run simulation and collision
detection. The reconstruction was done at 320x240 to reduce the
pixel fill rate, and the results scaled to 640x480.

The reconstruction system runs at 15-18 FPS for a volume 0.7
m (1.5 cm spacing between planes) in front of the user.

The collision detection and response routines run on a
dedicated simulation pipe on the SGI. At each real-virtual
collision time-step, the simulation pipe performs the image
segmentation operation to obtain new object-pixel maps.

For optimization, collision detection is first done between the
visual hull and the virtual objects’ axis-aligned bounding boxes.
For the virtual objects whose bounding box was in collision with
the visual hull, a per-triangle volume query is done. If collisions
exist, the simulation is notified and passed the set of collision
points. The simulation managing the behavior of the virtual
objects decides how it will respond to the collision. Then the
response algorithm computes the recovery vector, distance, and
surface normal.

CPhull

RPobj

Figure 5 – Sequence of images with the user interacting with virtual curtains to look out the window.

Figure 6 – A virtual ball bouncing off of real objects. The overlaid arrows show the balls motion between images.

4.3.2. Performance

For collision detection, given n cameras, virtual objects with m

triangles, and u x v viewports in an x x y window: the geometry
transformation is (n x m) triangles, pixel fill is (n x m x u x v)/2
pixels, and (x x y) pixel readbacks and compares per frame. For
collision response, the transformation cost is two triangles per
virtual object in collision and a pixel fill of (x x y x n) per frame.

The curtains in the hybrid environment in Figure 5 were
composed of 720 triangles. The volume query was performed in
10 x 10 pixel viewports in a 400 x 400 window for collision
detection, which ran at 6 frames per second. The collision
detection work was 13,000 triangles transformations per second,
648,000 pixels, and 160,000 pixel readbacks and compares per
second. The collision response work was 2 triangles and 480,000
pixels per virtual object in collision. As this was a first
implementation, there are many optimizations that should
improve performance.

4.3.3. Accuracy

The collision detection accuracy is affected by image

segmentation, camera setup and models, and the use of visual
hulls. The errors introduced in these stages are covered in [Niem
1997] and [Lok 2002]. Here, we examine only the effect of the
volume query viewport and primitive size on collision detection
accuracy.

The spatial sampling frequency is proportional to the size of
the volume query viewport. The accuracy of collision detection
for a u x v resolution viewport (if u = v, viewport layout is easier)
and a triangle with c x d bounding box (in world space) is c/u by
d/u. The accuracy is the two longest dimensions of the primitive
divided by the viewport horizontal size (again assuming u = v).

One can volume query with primitives at a higher resolution
(larger viewports), producing a higher number of more closely
spaced collision points with less error. A larger viewport also
means that fewer volume queries with triangles can be performed
in the collision detection window. If all the primitives can not be
allocated their own viewport in a single frame buffer, then
multiple volume query and read-back cycles will needed to test all
primitives.

Hence, there is a speed-accuracy tradeoff in establishing the
appropriate level of parallelism: the more viewports, the faster the
algorithm executes, but the lower the pixel resolution available for
the collision detection (which may result in missed collisions).

The size of virtual object triangles will vary, but typical
tabletop objects had triangles less than 2 cm, which would have
0.2 cm x 0.2 cm collision point detection error in 10 x 10 pixel
viewports. The curtain system had a collision detection resolution
of 0.75 cm x 0.3 cm. These values are the spatial frequency for
performing a volume query and provide the maximum error to
finding a collision point.

For collision response, the accuracy of the CPhull point impacts
Drec and Nhull. The error in finding CPhull along the Vrec is the
length of triangle ABC’s major axis divided by the horizontal
length of collision response window (assuming a square window).
With a 400 x 400 collision detection window, this results in .0125
cm error for detecting CPhull. The accuracy of Nhull, depends on
the surface topology (affected by camera resolution), the distance
from points I,J,K, and L to CPhull, and the distance from CPhull to
CPobj. We estimate that collision response results have at most
0.75 cm error. This is comparable to object reconstruction error,
which is estimated at 0.5 cm for visual hull shape.

4.4. Algorithm Extensions

Figure 5 is a sequence of frames of a user pushing aside a

virtual curtain with his hands. This shows using the algorithm
with a deformable virtual object with constrained motions (a
specified Vrec in the collision response). When trying to move
individual cloth nodes out of collision, the motion is constrained
in the vector direction (Vrec).

The algorithm can perform a volume query with primitives
other than surface boundaries. We hypothesize that using
primitives which represent distance fields could aid in visualizing
thermal radiation of real objects onto virtual objects, magnetic
fields of real objects, or barriers in a motion planning simulation.
We have prototyped incorporating real-object avatars into other
physical simulations, including lighting, shadowing, and particle
systems.

5. NASA Case Study

We worked with space shuttle payload designers at NASA

Langley Research Center (NASA LaRC) to investigate how using
hybrid environments could assist them in evaluating payload
designs and assembly layouts. Information reported in this paper
concerning the designers’ motivations, comments, and
suggestions are taken directly from oral or written responses to
surveys, interviews, and informal remarks made during
experiments and discussions.

Given virtual models of complex multipart devices such as
satellites, designers want to determine if assembling the device is
physically possible. Answering this question involves managing
parts, tools, and people with a large variance in shape. Space
planning errors can have a significant impact in terms of money,
scheduling, and personnel.

NASA LaRC designers receive payload subsection CAD
models from their subcontractors early in the design stage, before
anything gets built. They would like to use these models to
investigate assembly, layout, and integration. Changes in the
early project stages are substantially cheaper in money, time, and
personnel than fixes in later stages.

Since different subsystems are separately subcontracted out,
the integration stage always generates compatibility and layout
issues. Even with the greatest care in the specification of
subsystem designs, it is difficult to perceive the integration of the
subpayloads, as the complexity and nuances of each component
are understood well by only a particular group. For example,
attaching external cables is a common final integration task, and
the designers described several occasions when they encountered
spacing problems during the final cable attachment step. The
payloads had conformed to specifications, but the reality of
attaching the cables showed inadequate space for hands, tools, or
parts. Layout issues result in schedule delays, equipment
redesign, or makeshift engineering fixes.

Later in the development cycle, simplified physical mock-ups
are manufactured for design verification and layout. The
assembly procedure is documented in a step-by-step instruction
list. The designers recounted several occasions when the limited
fidelity of mock-ups and assembly documents caused significant
problems to slip through to later stages. They also suggested that
interacting with virtual models early in the design cycle would
enable training additional technicians on critical assembly stages.

A hybrid VE system would enable designers to test
configurations using the final assembly personnel, real tools and
parts. We hypothesize that such a hybrid VE would be a more

effective system for evaluating hardware designs and planning
assembly than a purely virtual one.

5.1. Payload Spacing Study

During a visit to the NASA LaRC facilities, we were shown a

weather imaging satellite (CALIPSO) and a light imager unit on
the satellite called the photon multiplier tube (PMT) (Figure 7).
We used CAD models of the PMT for our case study, and
abstracted a task that was similar to common assembly steps.

5.1.1. Assembly Task Description

The PMT model and two other fictional payloads (payload A

and payload B) were rendered in the VE. The system performed
object reconstruction (on the user, tools, and some parts) and
collision detection among the virtual payloads and the real-object
avatars. Virtual objects in collision were rendered red (Figure 1).

The task, diagramed in Figure 9, was to screw a cylindrical
shield (mocked-up as a PVC pipe - Figure 8) into a receptacle
(Figure 10) and then plug a power connector into an outlet inside
the shield (Figure 11). If the participant asked for additional
assistance, we provided tools to aid in the task (Figure 12).

5.1.2. Study Procedure

Four NASA LaRC payload designers participated in the case

study. First, we provided task information in approximately the
same manner as in actual design evaluation. The participants
were asked how much space was needed – and how much would
actually be allocated – between the PMT and payload A.

Each participant then performed the pipe insertion and power
cable attachment procedure in the hybrid system. After a period
of VE adjustment, participants picked up the pipe and eased it into
the center cylindrical assembly while trying to avoid colliding
with any of the virtual payloads. After the pipe was lowered into
the cylindrical shaft of the PMT, they snaked the power cord
down the tube and inserted it into the outlet.

If the participant asked for more or less space between the
PMT and payload A, the experimenter could dynamically adjust
the spacing. This allowed quick evaluation of different spatial
configurations of the two payload subassemblies.

5.2. Results

For the study, the pipe had a length of 14 cm and a diameter of 4
cm. Table 1 summarizes the data collected.

Between Payload A and PMT #1 #2 #3 #4
(Pre) How much space is
necessary?

14.0 14.2 15.0-16.0 15.0

(Pre) How much space would
you allocate?

21.0 16.0 20.0 15.0

Actual space required in VE 15.0 22.5 22.3 23.0
(Post) How much space would
you allocate?

18.0 16.0
adjust tool

25.0 23.0

Table 1 – LaRC participant responses and task results (cm)

Space is scarce and the engineers were stingy with it.
Participant #1 was able to complete the task without using any
tool, as the power cable was stiff enough to force into the outlet.
Since an aim was to impress upon the participants the unforeseen

possibility of requiring tools in assembly or repair, we used a
more flexible cable for the remaining participants.

While trying to insert the power cable, participants #2, 3, and 4
noted they could not complete the task. The more flexible power
cable could not be snaked down the pipe and inserted into the
outlet without some device to help push the connector when it was
inside the pipe. This was because the pipe was too narrow for the
participant’s hands. When asked what they required, they all
remarked they wanted a tool to assist in plugging in the cable.
They were handed a tool (set of tongs). They were then able to
complete the power cable insertion task. This required increasing
the spacing between the PMT and Payload A from 14 cm to an
average of 24 cm to avoid collisions.

Whereas in retrospect it was obvious that the task would not
be easily completed without a tool, none of the designers
anticipated this requirement. We believe the manner the assembly
information was provided (diagrams, assembly documents and
drawings), made it difficult for designers – even though each had
substantial payload development experience – to identify subtle
assembly integration issues. On average, the participants under
allocated an average of 5.6 cm between the payloads.

Accommodating tools extemporaneously in a VE session,
without additional modeling or development, enabled easy
evaluation of multiple layouts, approaches, and tools. The
presence of the pipe threads and cable socket provided important
motion constraints that aided in interacting with these objects.

Physical mock-ups are costly to build, require substantial time
to create, and have varying degrees of fidelity to the final payload.
These characteristics reduce their use early in the design
evaluation stage. In the early design phases, hybrid VEs can
provide a cheaper and quicker alternative for evaluating designs
and layouts than mock-ups.

5.3. Debriefing

The participants were extremely surprised that both a tool and

substantial additional space were required. When they discovered
the required spacing was much more than the amount they
allocated, they immediately focused on the potential time and
schedule savings of finding such an error at the design stage. The
participants commented that the financial cost of the spacing error
could range from moderate (keeping personnel waiting until a
design fix was implemented) to extreme (launch delays).

The virtual model was not very detailed, and the visual
contrast between real and virtual objects was rather obvious. Yet,
participants were observed to make concerted efforts to avoid
touching the virtual model. Upon being told about his effort to
avoid touching the virtual PMT box, one participant said, “That
was flight hardware… you don’t touch flight hardware.” The
familiarity and relevance of the task made it a vivid experience for
the participants.

NASA LaRC payload designers remarked that VEs and object
reconstruction VEs would be useful for assembly training,
hardware layout, and design evaluation. They are also interested
in looking at traditional VEs and virtual models to evaluate
current payload integration tasks and upcoming payload designs.

There are substantial gains to be realized by using virtual
models in almost every stage of payload development. Early
identification of assembly, integration, or design issues can result
in considerable savings in terms of time, money, and man-hours.
Many of NASA LaRC tasks involve technicians interacting with a
payload with tools and parts. These tasks are well suited to be
simulated within a hybrid VE.

Figure 7 – Photon Multiplier Tube (PMT) box for the
CALIPSO satellite payload. We used this payload subsystem

as the basis for our case study.

Courtesy of NASA LaRC's CALIPSO project.

Figure 8 – Parts used in the shield fitting experiment. PVC
pipe prop, power cord, tongs (tool), and the outlet and pipe

connector that was registered with the virtual model.

Figure 9 – Cross-section diagram of task. The pipe (red) and
power cable (blue) need to be plugged into the corresponding

connector down the center shaft of the virtual PMT box.

Figure 10 - The first step was to slide the pipe between the
payloads and then screw it into the fixture.

Figure 11 – After the pipe was in place, the next step was to
fish the power cable down the pipe and plug it into the outlet

on the table.

Figure 12– The insertion of the cable into the outlet was
difficult without a tool. Tongs were provided to assist in the

plugging in the cable.

6. Conclusions and Future Work

We have developed a system for incorporating dynamic real

objects into a virtual environment. This involved developing
image-based hardware-accelerated algorithms for detecting
collisions and providing plausible responses between virtual
representations of real objects and other virtual objects. Future
work would focus on improving performance, increasing
accuracy, and providing better collision response information.

The present limitation in our responding to collisions follows
from the inability to backtrack the motions of real objects.
Retaining previous object pixel maps images, along with tracking
real objects within the camera images, could enable backtracking.
By looking at the shape and motion of a tracked object across
several frames, information, such as object velocity, acceleration,
rotation, and center of mass, could be derived. This information
could allow for more accurate collision response.

We believe that many VE applications, such as training,
telepresence, phobia treatment, and assembly verification, could
be assisted through interacting with real objects in a VE. Our
work with NASA LaRC has shown that the system could provide
a substantial advantage in hardware layout and assembly
verification tasks. Future work would identify tasks that would
most benefit from having the user handle dynamic real objects.

7. Acknowledgements

We thank Danette Allen, Marilee Roell, Lloyd Spangler, Kerry

Gough, and Glenn Hines from NASA Langley Research Center
for participating in evaluating the system. We also thank Henry
Fuchs, Herman Towles, David Harrison, Kurtis Keller, John
Thomas, and the UNC-Chapel Hill Effective Virtual
Environments group. This work was supported by the LINK
Simulation and Training Foundation, ONR Virte Program, NIH
National Institute of Biomedical Imaging and Bioengineering,
NSF Information Technology Research BioGeometry Project,
UNC-Chapel Hill, and UNC-Charlotte.

8. Bibliography

BABA, S., SAITO, H., VEDULA, S., CHEUNG, K., AND KANADE, T.

2000. Appearance-Based Virtual-View Generation for Fly
Through in a Real Dynamic Scene. VisSym ’00 (Joint
Eurographics – IEEE TCVG Symposium on Visualization).

BOWMAN, D., AND HODGES, L. 1997. An Evaluation of Techniques

for Grabbing and Manipulating Remote Objects in Immersive
Virtual Environments. In Proceedings 1997 ACM Symposium
on Interactive 3-D Graphics, 35-38.

BREEN, D., WHITAKER, R., ROSE, E., AND TUCERYAN, M. 1996.

Interactive Occlusion and Automatic Object Placement for
Augmented Reality, Computer Graphics Forum, 11-22.

BROOKS, F. 1999. What's Real About Virtual Reality? In IEEE

Computer Graphics and Applications. Vol. 19, 6, 16-27.

DANIILIDIS, K., MULLIGAN, J., MCKENDALL, R., KAMBEROVA, G.,

SCHMID, D., AND BAJCSY R. 2000. Real-Time 3-D Tele-
immersion. In The Confluence of Vision and Graphics, A
Leonardis et al., Ed., Kluwer Academic Publishers.

EHMANN, S., AND LIN, M. 2000. Accurate Proximity Queries

Between Convex Polyhedra By Multi-Level Voronoi Marching.

In Proceedings of the International Conference on Intelligent
Robots and Systems.

FEINER, S., MACINTYRE, B., AND SELIGMANN, D. 1993.

Knowledge-based Augmented Reality. Communications of the
ACM, Vol. 36, 7, 52-62.

HAND, C. 1997. A Survey of 3-D Interaction Techniques.

Computer Graphics Forum, Blackwell Publishers, Vol. 16, 5,
269-281.

HINCKLEY, K., PAUSCH, R., GOBLE, J. AND KASSELL, N. 1994.

Passive Real-World Interface Props for Neurosurgical
Visualization, In Proceedings of the 1994 SIG-CHI Conference,
452-458.

HOFF, K., ZAFERAKIS, A., LIN, M., AND MANOCHA, D. 2001. Fast

and Simple 2-D Geometric Proximity Queries Using Graphics
Hardware. In Proceedings 2001 ACM Symposium on
Interactive 3-D Graphics, 145-148.

HOFFMAN, H., CARLIN, A. AND WEGHORST, S. 1997. Virtual

Reality and Tactile Augmentation in the Treatment of Spider
Phobia. Medicine Meets Virtual Reality 5.

LAURENTINI, A. 1994. The Visual Hull Concept for Silhouette-

Based Image Understanding. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 16, 2, 150-162.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER,

D., PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J.,
GINSBERG, J., SHADE, J., AND FULK, D. 2000. The Digital
Michelangelo Project. In Proceedings of ACM SIGGRAPH
2000, Annual Conference Series, ACM, 131-144.

LOK, B. 2001. Online Model Reconstruction for Interactive

Virtual Environments. In Proceedings 2001 ACM Symposium
on Interactive 3-D Graphics, 69-72, 248.

LOK, B. 2002. Interacting with Dynamic Real Objects in Virtual

Environments. Ph.D. Dissertation, Department of Computer
Science, University of North Carolina at Chapel Hill.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER S., AND

MCMILLAN, L. 2000. Image-Based Visual Hulls. In
Proceedings of ACM SIGGRAPH 2000, Annual Conference
Series, 369-374.

MATUSIK, W., BUEHLER, C., AND MCMILLAN, L. 2001. Polyhedral

Visual Hulls for Real-Time Rendering. In Proceedings of
Eurographics Workshop on Rendering 2001.

NIEM, N. 1997. "Error Analysis for Silhouette-Based 3D Shape

Estimation from Multiple Views", In Proceedings on
International Workshop on Synthetic - Natural Hybrid Coding
and Three Dimensional Imaging, Rhodos.

RASKAR, R., WELCH, G., CUTTS, M., LAKE, A., STESIN, L., AND

FUCHS, H. 1998. The Office of the Future: A Unified Approach
to Image-Based Modelling and Spatially Immersive Displays.
In Computer Graphics. ACM Press, Addison-Wesley: 179-188.

SUTHERLAND, I. 1965. The Ultimate Display. In Proceedings of

IFIP ‘65, vol. 2, 506.

