wherec, = a, + b,. For multiplication, we have
p(z)-q(z) =do+ diw+ - +dpa" -+,

T
whered,, = > a;b,_;. Althoughpolynomialadditionis obviouslycommutativewve notethatif R is nota
1=0

commutativering, then Z a;b,,_; neednot be equalto Z b;a,_;. However,associativityof polynomial
multiplication follows d|rectly from the fact that (R, ) |s a semigroup.In particular,supposep(z) and
¢(z) areasabove,r(z) = Z c;xt, d(z) = p(z) - q(z), and s(z) = ¢(z) - r(z). Then

1=0

h

(o] n
= Z e,x", where e, = z dpc,_y, and dy, = Z a;bp_; .
n=0

h=0 1=0
Also, . .
= Z sma™, where s, = Zb]'cm_j.
m=0 =0
Therefore, J
[p(z) - q(z)]-r(z) = Z (Z dhcnh> " = Z [Z (Z a;bp_ 2> Cr_ h] z" Z Z a;bjcr | 2"
n=0 \h=0 n=0 Lh=0 n=0 |i+j+k=n

_Z Zanm zbcmj m”:<§:az

n=0 [m=0 =0

) S {3 byenss ) o™ = o0 late) - (e

m=0 \ j=0

The fact that multiplication distributesover additioncan alsobe provenin the samestraightforward
but cumbersomdashion. Thus, our discussionshowsthat the threering axiomshold for polynomials
with coeficientsin aring. We statethis observationas a theorem.

3.6.2 Theorem. Theset R[z] of all polynomialsin anindeterminater with coefficientdn aring R
is a ring underpolynomialaddition and multiplication. If R is commutativethen R[z] is also
commutativeand if R hasunity 1, then1 is also the unity for R[z].

Thus,Z[z] is thering of polynomialswith integral coeficients,R[z] is thering of polynomialswith
real coeficients, and C[z] is the ring of polynomialswith complexcoeficients. The elementsof these
rings arethe polynomialsone encountersn elementaryalgebra.A lesscommonring of polynomialsin
one variableis the ring Z;[z]. Here we have

+D)+(+1)=(04+1)2z+(14+1)=024+0=0
and
(z+1) =@+ Dz+)=c*+(1+Dz+1=2?+1.

The mostimportant polynomial domainsarise when the coeficient ring is a field F. The ring of
polynomialsF[z] over a field F hasa numberof propertieswhich parallelthoseof the ring of integers
Z. For example we know from elementarynumbertheorythatif m is a positiveintegerandn any other
integer, then there exists unique integersq and r suchthat

n=mg+r and 0 <r <m.
This is alsoknown asthe divisionalgorithm for the integers.A similar resultholdsfor elementsf F[z].
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3.6.3

Theorem. (Division Algorithm for F[z]) Let
p(z) =ao+ a1z + -+ ayz”

and
s(z) =byg+byz + -+ bya™

be two elementof F[z], with a,, andb,, bothnonzeo elementof F and m > 0.
Thenthere existuniquepolynomialsg(z) and r(z) in F[z] suchthat

p(z) = s(z) - q(z) + r(z),
with the degeeof r(z) lessthan m = degree s(z).
Proof: ConsiderthesetX = {p(z) — s(z)-t(z): t(z) € Flz]}. Letr(z) € X suchthatfor

any otherr'(z) € X, degreer(z) < r'(z). Thenr(z) is of form r(z) = p(z) — s(z) - q(z)
for someg(z) € F[z]. Adding s(z) - ¢(z) to both sidesof this equationwe havethat

p(e) = s(z) - g(x) + r().

Next we showthatthe degreeof r(z) is lessthanm. Supposehatr(z) = ij c;zt with ¢; € F
andcp £ 0if k£ 0. If k > m, then =
p(2) = q(x) - 5(x) = (ex/bu)a* ™ - s(x) = r(2) = (ex/br)a ™™ s(x). ()
Now let the left side of Equation| be representedy
F(w) = () = (erfbp )2 s(x) = (@) = ek [2* + (b1 [bn)e o (bo b )]
andlet w(z) = (bp_1/bm)x" 1 4+ -+ + (bo/bm)z* ™. Then
M(2) = e 1e¥ T4+ o — cpu(a)

which is of degreestrictly lessthan k. Furthermoresettingt(z) = [q(z) — (cx/bm )" ]
andsubstituting? into the right sideof Equationl we obtainr/(z) = p(z) — s(x) -t (z). Thus,
r'(x) is anelementof X of degredessthanr(z), contradictingthe factthatr(z) wasselected
to have minimal degree. Thereforek must be lessthanm.

We haveleft to showthat ¢(z) andr(z) are unique. Supposethat

p(z) = s(z) - q(x) + r(x)
and
p(z) = s(z) - ¢'(z) + ().
Then subtractingthe secondequationfrom the first, we have
(@) [a(@) = ()] = (@) = r(2) .
Sincethedegreeof /(2 )—r(z ) is lessthanthedegreeof s(z ), we musthavethatg(z)—¢'(z) =

0 or g(z) = ¢'(2). But thenwe musthavethat+'(z) — r(z) = 0 or r'(z) = r(2).
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Q.E.D.

The polynomial s(z) in Theorem3.6.3 is called a divisor of p(z) wheneverr(z) is the zero
polynomial. The polynomialsg(z) and r(z) can be computedby the samelong division as usedin
high schoolfor dividing real polynomials.

If F is afield or a commutativering andc € F, thenthe function ¢, : F[z] — F definedby
Y (Z aixi) = Z a;ct
=0 =0

for eacha, + a1z + - --a,2™ € F[z] is a homomorphism.We leaveit to the readerto checkthat .
preserveshefield operationf additionandmultiplication. It is commonpracticeto let the symbolp(c)
denotethe evaluationy.(p(z)) = ap+ a1c+ - - -a,c”™. Thisnotationprovidesfor thefollowing definition.

3.6.4  Definition. Let F be a commutativering or field, ¢ € F, andp(z) € Flz]. If p(c) = 0,
then ¢ is a zewo of p(z).

In termsof this definition, the problemof solvinga polynomialequationis identicalto thatof finding
all the zeios of the correspondingpolynomial Of course,the zerosof a polynomial are foundin terms
factoring the polynomial into productsof lower degreepolynomials.

3.6.5 Corollary. Anelement € F isazeo of p(z) € F[z] <= 2 — ¢ is afactorof p(z) in F[z].

Proof: Supposethatc € F andp(c) = 0. Thenby Theorem3.6.33¢(z),r(z) € Flz]
such that

p(z) = (z = ¢) - g(2) + r(2),
wherethe degreeof r(z) is lessthan 1. It follows thatr(z) = a for somea € F. Thus
plz) = (z—c)-q(z) +a.
Applying the homomaorphismy)., we obtain
0=p(c)=0-q(c)+a.

Hence,a = 0 andp(z) = (z — ¢) - g(z). Thus,(z — ¢) is a factor of p(z).
Conversely,if (z — ¢) is a factor of p(z), then applying the homomorphismy. to p(z) =
(z —¢)-q(z), we obtainp(c) = 0-¢(c) = 0.

Q.E.D.

Factorizationof polynomialsplaysanimportantrole in the optimizationof certainimagetransforms
(Chapters). Similarto thefactorizationof numberanto prime numberspolynomialscanonly befactored
into prime componentghat cannotbe factoredany further. More precisely,a nonconstanpolynomial
p(z) € F[z] is anirreducibleor prime polynomialin F[z] if p(2) cannotbe expressedas a product
s(z) - ¢(x) of two polynomialsin F[z], both of lower degreethanthe degreeof p(z).
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In additionto factorizationinto prime componentsthe ring of polynomialsF[z] over a field F has
many other propertieswhich parallelthoseof thering Z of integers. For example the setF[z] may be
partitionedby any polynomial s(z) € F[z] of degreen > 1 into aring

Fle]/(s(2)) = {[p(®)], [a(2)], .- .}

of equivalenceclassegustasZ waspartitionedinto theringZ/(n) = Z,,. Foranyp(z) € F[z] we define

[p(2)] = {p(2) + 1(z) - s(2) : t(z) € Fle]}.

Thenp(z) € [p(z)] sincethe zeroelementof F is alsoanelementf F[z], and[p(z)] = [¢(z)] if andonly
if s(z) is adivisor of p(z) — ¢(z). In analogywith arithmeticmodulo »n, we denotethis last condition
by p(x) = g(x)(mod s(x)).

We now define addition and multiplication on theseequivalenceclasseshy

[p(2)] + [g(2)] = [p(z) + q(z)]

and
[p(2)] - [a(2)] = [p(2) - q(2)],
respectively,andleaveit to the readerto convincehimself of the following facts:

(1) Addition and multiplication are well definedoperationson F[z]/s(z).

(2) Flz]/s(x) has[0] as zero elementand [1] asunity, whereO and 1 are the zero and unity of F,
respectively.

(3) F[z]/s(x) is a commutativering with unity.

As for the elementsof Z,, we let the polynomial p(z) representthe equivalenceclass [p(z)],
keepingin mind that polynomial arithmetic is performedmod s(z). For instance,if R[z]/(z® — 1)
denotesthe quotientring of polynomialsmod 22 — 1, andz? — 1 andz — 1 are viewed as elements
of R[z]/(2® — 1), then (22 — 1) - (z — 1) = 2% — z. In general,if F[z]/(z" — 1) denotesthe ring
of polynomialsmod (2™ — 1), then we considerthe elementsof this ring to be polynomialson which
multiplicationis performedby replacingz™ with 1 whereverit appeargatherthanusingthe equivalence
classnotation| ].

Onereasonfor our emphasif polynomialrings is the immediateconnectionbetweenconvolution
of sequencesf numbersand polynomial products.Convolutionsof sequencesare usedin digital signal
processingas the primary meansof filtering. In image processinggconvolutionscan be usedfor such
methodsas edgedetection,image enhancementnd templatematching. A commonlyusedfilter is the
non-recursivefinite impulse responseilter. A finite impulse responsefilter is simply a tappeddelay
line in which the outputsat eachstageare multiplied by fixed constantsand then summed. In precise
mathematicaterms,let s = {s;}, ., and f = {f;}, ., be two sequencesf numbers. We assumethat
s; = 0 whenever; < 0 or: > n for somefixed positive integern. Similarly, f; = 0 whenever; < 0 or
i > m for somem € Z*. If the sequences representghe sampledinput signalandf the sequencef
filter tap weights,thenboth input andfilter sequencesanbe representedby the polynomials

7 m

s(z) = Z szt and  f(x) = z:f,:v2 .
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The integerm indicatesthe numberof stagesin the filter and is assumedo be much smallerthan n
which is assumedo be very large. Thelinear convolutionof thetwo sequenceis simply the polynomial
productp(z) = s(z)- f(x) andthe coeficientsof p(z) arecalledthe outputsequencef the convolution.

Another form of convolution is the cyclic convolution which is closely related to the linear
convolution. Here the input sequences = {s;}’_ andfilter sequencef = {fj};‘;& are assumedo
havethe samelength. The cyclic convolution of the two sequencess definedasthe polynomial product

in Flz]/(z™ — 1); thatis,

n—1

p(@) = s(2) - f@)mod " =)= | S sif et

k=1 \(i4j)mod n=k
where the coeficients of p(z) form the output sequence.

Linear convolutionscanbe computedrom cyclic convolutionsby separatinghe input sequencénto
shortsections.Eachsectionis thenindividually processedsa cyclic convolutionand properly meiged
with the other sectionsto producea linear convolution. For example,assumes = {s;}._, is our input
sequencend f = {fj};;U the desiredfilter sequence.Supposethat we wish to computethe linear
convolutions(z) - f(«) in termsof a cyclic convolutionon sectionsof length k£, wherem < k andn is
muchlargerthank. Onemethodfor achievingthis is asfollows. For 0 < ¢ < k and0 < j < n we first
constructpolynomialss(®)(z), s(M(z), ..., s\ (z) having coeficients

(0) (1) (2) ()

S; 0 = 80y 8 T = Sip(k—m)y 55 T = Sig2(k—m)> -5 = Sitj(k-m) -

Note that thereis an overlapof m coeficientsin the sequences() and s(*+1).

To illustratethe constructionof thesepolynomials,considerthe casewherek = 3 andm = 2. Then
0 <:< 3and

s(0) = {s0, $1,52}, s = {s1, 82, 83}, s(2) = {s2,83,84}, ..., etc.

Now supposethat p(z) = 3. pra” representshe linear convolutionp(z) = s(z) - f(z) andthat

h=0
pM(z) = sM(x) - f(x) mod(z* — 1) representshe hth cyclic convolutionsegment.Then, exceptfor
thefirst m coeficients,all the coeficientsof p(z) canbefoundamongthe coeficientsof the polynomials

p"(z), where0 < h < j. A quick checkshowsthat thesecoeficients are as follows:

pEO) =D, pz('l) = Pit(k—m) > pZ(Z) = Pit2(k-m), « -+ vpz(j) = Pitj(k—m) »

wherem < i < k. As canbeascertainedrom the nextexample gachcyclic convolutionproduces: — m
coeficients of the linear convolution,the remainingm coeficients are simply discarded.

3.6.6  Example: Supposes denotesthe input signalwith degrees(z) = n very large. If thefilter
is of lengththreewith tap weights fo = —1, fi = 0, and f» = 1, then f(z) = 2% — 1. The
linear convolutionp(z) = s(z) - f() is given by

p(x) = =80+ (—=s1)2 + (5o — 82)2? + (81 — 83)2° + ... + (8,2 — 8,)2" 2.

Thus, po = —so, p1 = —s1, pn = (Sh—2 — sp) for h > 1. Computingthe linear
convolution in terms of cyclic convolutionsof length m = 3 by using the formulation
pM(z) = sW(2) - f(z) mod (2% — 1) we obtain

s(h)(a:) = 5 + spp12 + sppp?, for h=10,1,... ,n—2.
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Therefore,p(h)(x) = [sp + Spp1@ + Spypoz?] - (:132 - 1) mod (x?’ - 1) and, hence,

PP (@) = (Shg1 — sn) + (Shp2 — Sh41)T + (S — Spy2)a? .

Sincem = 2, thefirst two coeficientsof the cyclic convolutionarediscardedandtheremaining
k—m = 3—2 = 1, whichin this caseis (s, — sx+2), matchesall the coeficientsof thelinear
convolutionexceptfor the first m = 2 coeficients, namelypy and p;.

S ‘ S ‘ S_L‘ S ‘ %‘ S, ‘ ......
]
é ? @ multiplication
i i
o [ilela
f lfl fo
e addition
!
p | S-S | S-S| 858 |

Figure 3.6.1 Linear convolution by sections.

Figure3.6.1providesa pictorial representatiof the computationof a linear convolutionasa
convolutionby sections.Herethefilter is superimposeaver part of the input sequenceAfter
the necessararithmeticcomputatioris performedthefilter is movedone stepto the right and
the computationalprocessis repeated.

The reasonfor computinglinear convolutionsin termsof cyclic convolutionsis the existenceof a
multitude of fast algorithmsfor computingshort cyclic convolutions[5, 22].

The conceptof a ring of polynomialsin one variable can be generalizedto rings of polynomials
in severalvariables.

3.6.7 Definition.  For any ring R, we definerecursively

Rlz1,29,...,2,]) = R[z1,22,. .., Tn_1][@n] .

If R is aring with unity 1, thenfor anyr € R, we havethatzr = (1z)(rz"). But by definition
of polynomial multiplication, (1z) - (rz°) = (1r)(z2°) = re. Thus,zr = rz, which meansthat «
commutesin R[z] with any elementof R. Similarly if R hasunity, then so does R[z] and, hence,in
R[z,y] = R[z][y] we have

ye = (1y)- (z-y°) = (1z)- (y-y°) = 2y.

But then, clearly, R[z]|[y] = R]y,z] or R[z,y] = R[y,z]. By repeatedapplicationsof this algumentwe
seethat in forming R[z1, 25, ...2,], the orderin which the z;’s are adjoinedis immaterial. It should
be observedhowever,thatif R doesnot haveunity, thenit is meaninglesso considerthe productar
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in termsof the ddfinitions of multiplication which we are using since,andthis is the crux of the matter,
x cannotbe an elementof R[z]. We shall not be too concernedwith this subtletyasall rings we will
usein our applicationswill be rings with unity.

As we havenotedearlier,rings of polynomialsin one variable provide a useful theoreticalfounda-
tion for studyingconvolutionsusedin one-dimensionasignal processing.A similar situationexistsfor
studyingconvolutionsfor higherdimensionakignalprocessingFor theanalysisof 2—dimensionatonvo-
lutions, which area basictool in digital imageprocessingtheringsF[z, y] andF[z, y]/(z™ — 1,y" — 1),
whereF € {R,C}, play a key role. HereF[z, y]/(z™ — 1,y™ — 1) denoteghe quotientring of polyno-
mials mod (z™ — 1) andmod (y™ — 1); i.e., the elementsof this ring are polynomialsin two variables
on which multiplication is performedby replacingz™ andy™ with 1 whereverthey appearratherthan
using setsof equivalenceclasses.As before, multiplication of elementsin F|z, y] correspondgo lin-
ear convolutions,while multiplications of elementsin F[z, y]/(¢™ — 1,y™ — 1) corresponddo cyclic
convolutions.

3.7 Vector Spaces

The theory of solutionsof systemsof linear equationsis part of a more inclusive theory of an
algebraicstructureknown as a “vector space.”As we assumehe reader’sacquaintancevith this topic,
our treatmentof vector spaceswill be brief, designedonly asa recall of basicconceptsandtheorems.

Although vector spacetheory as coveredin elementarflinear algebracoursesis usually concerned
with the Euclideanvectorspace®R”, the operationsof vectoradditionand scalarmultiplication are used
in many diverse contextsin mathematicsand engineering. Regardlesf the context, however,these
operationsobey the sameset of arithmeticrules. In the generalcase,the scalarsare elementsof some
field, which may be different than the real numbers.

3.7.1 Definition. A vectorspaceV overthefield F, denotedby V(F), is an additiveabeliangroup
V togethemwith an operationcalledscalarmultiplication of eachelementof V by eachelement
of F ontheleft, suchthatV «, 5 € F andv,w € V thefollowing five conditionsare satisfied:

i a-vev
Va2 a-(B-v)=(af)-v

Vs (a+p)-v=(a-v)+(B-V)
Vi a-(v+w)=(a-v)+ (a-w)
Vs 1-v=yv

The elementsof V are called vectorsand the elementsof F are called scalars

If the field F of scalarsis clear from the context of discussion,thenit is customaryto usethe
symbolV insteadof V(F). We alsonotethatin comparisorno the algebraicsystemsdiscussedhusfar,
multiplication for a vector spaceis not a binary operationon one set, but a rule which associatean
elementa from F and an elementv from V with the elementa - v of V.

3.7.2 Examples:
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(i) Considerthe setR¥ . It follows directly from Theorem2.8.2that (RX , +) is anabeliangroup
which satisfiesaxiomsV; through Vi for all pairs of real numbersa and 3. Thus (R¥, +)
is a vector spaceover R.

(i) It follows from Example3.5.6that for any field F, M, (F) is anadditive abeliangroup. It
is also easyto seethat if one ddfines scalarmultiplication by

a-(a;;) = (aa;;) Yoo € F and Y(aj;) € M,(F),
thenaxiomsV; throughVs will hold. Thus, M, x.(F) is a vectorspaceoverF.

Oneof themostimportantconceptsn thetheoryof vectorspaceds thenotionof linearindependence.

3.7.3  Definition. Let V(F) beavectorspaceand$ = {vy,vs,...,v;} asubsetf V. If for every
combinationof scalarsay, as, ..., a;

aprvitag-veot ... tap-vp=0 = o, =0fore=1,2,...,k,
thenthe vectorsin S aresaidto be linearly independenbver F. In this definition, 0 denotes

the zerovectorin V and 0 denoteshe zeroof F. If the vectorsare not linearly independent
over I, thenthey are linearly dependenbver F.

Note that if the vectors are linearly dependentover F, then for some combinationof scalars
ay,ag,...,ar 1 a; # 0 for atleastone: = 1,2,...,k suchthat

a;vit+a-vet+...+ap-vy;=0.

In this casewe can solve for v;:

That is, v; canbe expresseds a linear combinationof the remainingvectors;i.e., v; dependson the
remainingv;’s.

3.7.4  Examples:

Q) The vectors(1,0),(0,1) € R? arelinearly independen{over R) since

a-(1,0)+5-(0,1) = (e, 5) =(0,0) <= a=0and =0 Yo, €R.

(i) The vectors(-3,6), (3,-4), and (-1,0) are linearly dependensince
2- (_376) +3- (37 _4) +3- (_170) = (_67 12) + (97 _12) + (_370) = (070) :
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(iii) The vectors

(2 a0 1)

are not linearly independensincew = 3v.

If V is a vector space,then certain subsetsof V themselvedorm vector spacesunderthe vector
addition and scalar multiplication definedon V. Thesevector spacesare called subspace®f V. For
example,the setW = {(z,y) € R? : y = 2z } is a subspaceof R?. Obviously, if (z,y) € W, then
definingu = az and v = ay, we seethatv = ay = a(22) = 2(az) = 2u for any realnumbera. Thus,
a(z,y) = (ax,ay) = (u,2u) € W andaxiom V; is satisfied. The remainingfour vector spaceaxioms
are just as easily verified. However,in orderto showthat a subsetW is a subspacef a vector space
V, it is not necessaryo verify axiomsV, throughVs. The following theorem,which we statewithout
proof, showsthatin additionto axiom Vi, all we needto showis thatW is closedundervectoraddition.

3.7.5 Theorem. If W is a non-emptysubsebf a vectorspaceV overF, thenW is a subspacef
V & the following conditionshold:

() if v,we W, then v4+w e W
(i) aoweW VaelF and we W.

Let W = {vy, ..., vi} beasubsetof avectorspaceV andlet S(W) denotethe setof all linear
combinationsof the vectorsvy, ..., vi. Thatis,
k
S(W) = {V tv= Z%‘Vi }
=1
k k k
Thenif v, w € S(W), with v = > a;v; andw = ) ;v;, we havefor a € F av = Y v;v;, where
=1 =1 =1

k
v = aq;, andv + w = Y é§;v; with §; = o; + ;. Therefore,av andv + w are elementsof S(W)
andby 3.7.5 S(W) is asl,aijspace)f V. The subspaces (W) of V is saidto be spannedby W andthe
vectorsof W are calledthe generatorsof the vectorspaceS(W). If S(W) =V, thenwe saythatW is
a spanfor V. In particular,if W is a spanfor V, theneveryvectorv € V is a linear combinationof
the vectorsin W. For examplejf (z,y) € R?, then(z,y) = z(1,0) 4+ 0(1,1) 4+ y(0, 1). Thusany vector
in R% can be written as a linear combinationof vectorsfrom W = {(1,0), (1,1), (0,1)}. Therefore,
S(W) = R2. Similarly, if U = {(1,0), (1,1)} and(z,y) € R?, then(z,y) = (z — y)(1,0) + y(1,1)
and, therefore,S(U) = R2. It follows that spansare not unique.

Closely relatedto the notion of a spanare the conceptsof basis and dimension To studentsof
science,the conceptof dimensionis a naturalone. They usually think of a line as one-dimensional,
a planeastwo-dimensional and the spacearoundthem as three-dimensionalThe following definition
makestheseconceptsmore precise.

3.7.6 Definition. A basisfor a vectorspaceV is a linearly independensetof vectorsof V which
spansV. If abasisfor V containsonly a finite numberof vectors,thenV is finite dimensional
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3.7.7 Example:

0) Letu; = (1,0,...,0), uz =(0,1,0,...,0),...,u, =(0,...,0,1), thenU = {uy, ..., u,}
is a basisfor R* since any vectorx = (zy, ..., z,) € R™ canbe uniquely expressedas
X = zyuy + 2ouy + --- + z,u, . U is called the standad basisfor R*, The dimensionof R"
is n, the numberof basisvectors.

(ii) Let
oo (L O o1y (o0 (000
X0 0/) 2 \o o) \1 o) 7\ 1)

Then B = {vy, va, v3, v4} is a basisfor M;x2(R). Any vector (Z 3) can be uniquely

written as (Z Z) = avy + bvy + ¢vs + dvy . Note that My«2(R) is of dimensionfour.

If V is avectorspacewith basis{vy, vq, ..., v, }, thenanyvectorv € V canbeuniquelyexpressed
7
as a linear combinationof the basisvectorsv = > a;v;. It follows thatv hasa uniquerepresentation
=1
asan n-tuple vectorv = (ay, ag, ..., a,) sincethe scalarsa; expressv uniquelyin termsof a linear
combinationwith respectto the basis{vy, va, ..., v, }.

We remindthereaderthatabasisfor avectorspaceas merelyoneof manykindsof basesncountered
in studyingvarious mathematicakystems.A basisfor a vector spaceportraysthe algebraicproperties
of the vector spaceandis intimately connectedwvith the linear algebraicpropertiesof the space.Oncea
basisfor a mathematicabystemhasbeenestablishedywe may proceedto describethe propertiesof the
systemunderinvestigationrelative to that basis. The particularform in which thesepropertiesmanifest
themselvesnay well dependuponwhat basiswe choseto studythem. The 2"—topologicalspaceZ™ has
differenttopologicalpropertieshanthe von NeumannspaceZ™. The mostimportantfactsabouta vector
spacebasiscan be summarizedasfollows. Let V be a vectorspaceand B = {vy, v2, ..., v,} C V.

1. If B is abasisfor V, theneveryvectorof V canbe expressediniquelyas a linear combinationof
the elementsof B.

2. If everyvectorof V canbe uniquely expressedis a linear combinationof the elementsof B, then
B is a basisfor V.

3. If B isabasisfor VandC C V with card(C) > card(B), thenC' is not linearly independent.

Statemen®. follows immediatelyfrom the observatiorthat the zero vectorhasa uniquerepresen-
tation in termsof the v;’s. Thus,the v;’'s mustbe linearly independent.Statemen®3. implies that the
numberof elementsin a basisof a vector spacemust be unique;thatis, everybasisof a vector space
hasthe samenumberof elements.With this in mind, we definethe dimensionof a vector spaceV as
the cardinality of any basisfor V.

3.8 Linear Transformations

In the study of vector spaceghe mostimportanttypesof mappingsare linear transformations.|t
should,therefore comeasno surprisethat linear transformationgrom onevectorspacento anotherplay
animportantrole in imagealgebrawhich is concernedvith the transformatiorof digital and continuous
images.
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3.8.1  Definition. A linear transformationor linear operator of a vector spaceV(F) into a vector
spaceW(F) is a function L : V(F) — W(F) which satisfies

Lla-u+p-v)=a-L(u)+ 6 L(v)

for all u,v € V(F) andfor all scalarsa, s € F.

If in addition L is both one-to-oneand onto, the L is called a vector spaceisomorphism If
L : V(F) — W(F) is a vector spaceisomorphism,then V and W are said to be isomorphicvector
spaces.

An equivalentdefinition of a linear transformationthat can be found in many text booksis given
by the following theorem.

3.8.2 Theorem. L : V(F)— W(F) is a linear transformation< for everya € F and for all

u, v ev
(i) L(au) = aL(u) and
(i) L(u+v) = L(u) + L(v)

Proof: Supposethat L is a linear transformation. Then by settingeither3 = 0 or v = 0
in Definition 3.8.1 we obtain that L(au) = aL(u). By settinga = 1 = 3, we obtain
L(u+v) = L(u) + L(v).

Conversely,supposethat conditions (i) and (i) hold. Let uy = au andv; = fv. Thenby
condition (i) we have that

(1) Llom+ fv) = L(uy + vy) = L(uy) + L(vy),
and from condition (i) we obtain
(2) L(uy) + L(vy) = L(au) + L(Bv) = aL(u) + SL(v).
Equations(1) and (2) imply
(3) L(au + pv) = al(u)+ SL(v).
Thus L is a linear transformation.
Q.E.D.

If L is alinear transformatiormappinga vector spaceV(F) into a vector spaceW(F), then
(i) L(0Oy) = Ow, whereOy and Oy arethe zerovectorsin V and W respectively.
@ii) If vq,...,v, areelementsof V anday,...,«a, arescalarsfrom F, then

Loy -vitag-vat+ ...t a,-vy)=a1-L(vi)+ag-L(ve) + ...+ a, - L(v,).

Statement(i) follows from the condition L(a.-u + f-v) = a - L(u) + - L(v) with a = 0 and
B = 0. Statement(ii) can be easily provenby mathematicainduction.

103



3.8.3
(i)

(ii)

(iii)

Examples:

Recall that the function » : R¥ — R"™ definedin Example 2.8.3 is one-to-oneand onto
wheneverX = {1,2,...,n}. Now supposehatk, k' € R and f,g € R¥. Then

vk f 4k g) = (k- f+ K -gl(L), [k 4K -], ... [k f+ K g](m))
=(k-f()+ kK -g(1), k- f(2)+ K -g(2), ..., k- f(n) + & -g(n))
= (k- f(1), k- f(2), ooy ko () + (K - g(1), K - g(2), ..., K - g(n)
=k (f(1), f(2), 0 F(0) + K - (9(1), 9(2), ..., g(n))
= k- v(f(1), £(2), .., () + K - w(g(1), g(2), ..., g(n))
=k-v(f)+k vig).
Thus, v is a vector spaceisomorphismandR* andR" areisomorphicvector spaces.
Let x = (z1,22) € R? anddefineL : R? — R? by
L(x) = (z2,21,21 + 22).
Thenfor y = (y1,92) € R? ande,3 € R
Lia-x+8-y) = L{(az1,azz) + (By1, By2)] = L(az1 + By1, azs + By2)
= (azy + By2, ary + By1, ary + Py + avy + By2)
= (azy, a1, azy + azz) + (By2, By1, By + By2)
=a-(z2, z1, 21+ 22)+ 8- (2, vy, ;1 + y2) = a- L(x)+ 6 - L(y).
Note that if we define the matrix a by

(0 11
a=\1 0 1)’

L(x)=xXa

then

for eachx € R2. In general,if a is anym x n real valuedmatrix, thenwe canalwaysdefine
a linear operatorL, : R™ — R"™ by

Li(x)=xxa
for eachx € R™. The operatorl, is linear since
La(o-x+f-y)=(a-x+ 8 y)xa
=(a-x)Xxa+(f-y)xa=a-(xxa)+ [ -(yxa)
=a-La(x)+ 0 La(y).
Thus,we canthink of eachm x n real valuedmatrix a asa linear operatorfrom R™ to R".
Considerthe mappingL : R* — R* defined by L(x) = (21, 2%). Now
L(x +y) = Li(z1,22) + (41, 52)]
= L(z1 +y1,22 + y2) = (21 + 91, (22 + 32)°)
while
L(x)+ L(y) = (z1,23) + (y1,93) = (21 + 91,25 + 93) -
Thus, L(x +y) # L(x) + L(y) and L is not a linear operator.
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(iv) Supposehat{vy, vy, ..., v, } is abasisfor V and? : {vy, vq, ..., v,} — V is afunction
definedby T : v; — u; for someelementsuy, uy, ..., u, of V. ThenT dedfinesa linear
transformationagaindenotedoy 7', of V intoitself. Thellneartransformatlons S|mplyaI|near
extensionof the original function definedas follows. Let u = Z a;v; andv = Z Bivi ,.

=1 =1
Now extendT by defining

(1) T: av—azavzeaZaul

=1

and

7

(2) T:u-l—v:Z(al-i—ﬁl v; —>Za u; + Zﬁluz.
=1 3 =1
Equations(1) and (2) imply that T(au) = o7'(u) andT(u+ v) = T(u) + T(v). Hence,
accordingto Theorem3.8.2 T is a linear transformation.

From Example3.8.3iv) onecaninfer thatany linear transformatiorof a vectorspaceinto itself can
be describedcompletelyby exhibiting its effect on the basisof the space.

SupposeT : V — W is a linear transformation. Then the set{v € V: T(v) = 0} is called the
kernelof 7" andis denotedby ker (7). SinceT(0) = T(0-v) = 0-T(v) = 0, 0 €ker(T). Also, if
u,v € ker(T), thenT(u+v)=T(u)+T(v) =04+0=0,andT(kv) = kT(v)=Fk-0 = 0. Hence
u + v and kv are elementsof ker(7T"). Accordingto 3.7.5 ker(T) is a subspaceof V. In a similar
fashionone canshowthatrange(T) is a subspacef W. We statetheseobservationsasa theorem.

3.84 Theorem. IfT :V — W is a linear transformation,then
(a) the kernelof T is a subspaceof V, and
(b) the range of T is a subspaceof W.

The dimensionof range(T) is calledthe rank of 7', andthe dimensionof the kernelof 7" is called
the nullity of 7. The importantrelationshipbetweenrank and nullity is given by the following theorem
known as the DimensionTheoem.

3.8.5 Theorem. If T:V — W is alinear transformationfrom an n-dimensionalvectorspace V to
a vector spaceW, then

rank(T) + nullity(T) = n.

A linear transformationT : V — W is nonsingularif and only if it is invertible; i.e., if andonly
if thereexistsa linear transformation” ! : range(T) — V suchthatT—'T = I, where denoteshe
identity transformation/(v) = I on V.

The nexttheoremestablisheshe relationshipsof the notionsof nonsingulardimension nullity, and
rank.
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3.8.6 Theorem. Let7 :V — W bea linear transformationfrom an n-dimensionalectorspace V
to an n-dimensionalectorspaceW. Thenthe following are equivalent:

(&) T is nonsingular
(b) T is one-to-one
(€) ker(T) = {0} and range(1) = W
(d) nullity(T) = 0 and rank(T) = n

Proof: The equivalenceof (a) and (b) follows immediatelyfrom Theorem2.5.12

(b) = (c). Supposehatv # 0 andv € ker(T). ThenT(v) = 0 and,hence,0 = T-1(0) =
T-1T(v) = I(v) = v, which is a contradiction. Therefore ker(7') = {0}. Moreover,T being
invertible implies that 7' is onto. Thus, range(T) = W.

() = (b). If I'(v) = 0, thenv = 0. Thus, when1'(u) = 7'(v), we must have that
T(v —u) = 0, which meansthatv = u. ThereforeT  is one-to-one.Also, if range(T) = W,
then T" is onto.

(c) = (a). This is obvious since we already have shown that (¢) == T is a one-to-one
correspondence.

(c) & (d). This follows immediatelyfrom the definition of nullity and rank.
Q.E.D.

This theoremimplies the following corollary:

3.8.7 Corollary. LetT : V — W. ThenT is one-to-ones ker(T) = {0}.

Nonsingularlinear transformationshavethe importantpropertyof mappingbasisinto basis.

3.8.8 Theorem. If T is a nonsingulartransformationfromV — W, thenT mapsany basisfor V
into a basisfor W.

Proof: Let {vy,vs,...,v,} beabasisfor V. Then

T(Z aivz-) = ZaiT(Vz-) € range(T) =W.

=1

Clearly, {T'(v1),T(v2),...,T(v,)} is a spanof W. Now supposehereexist constantd; £0
such that

Zn: b;T(v;)=0.
1=1

Then

T-1 (Zn: biT(VZ')> = Zn: bl-T_lT(vl.) — zn:bivz‘ _ T_I(O) —0.
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But thisis a contradictionsinceit meanshatthevectors{vy, vs,..., v, } arelinearly dependent.
Hence{7'(v1),1(v2),...,1(v,)} arelinearly independentaindform a basisfor W.
Q.E.D.

Compositionof linear transformationgprovidesthe fundamentalbperationfor the algebraof linear
transformations Of particularimportances the subalgebraf nonsingulartransformations Composition
of nonsingulartransformationds closedin the following sense:

3.8.9 Theorem. Supposé’ : V — W and S : range(T) — U. ThenS o T : V — U is nonsingular
if andonlyif S andT are nonsingular. Moreover,if S o T is nonsingular,then

(SoT)y ' =T"1o§ L
Proof: If S andT are nonsingularthen clearly
(T7'oS™Ho(SoT)=T1to (S 08)oT =T oloT=T"0T=1.

Thus, S o T hasaninverse,namely(S o T)‘1 =T 105! andis, therefore,invertible.
Conversely supposehat S o 7' is nonsingular.Then (5 o T)‘1 existsand

So|To(SoT) | =(SoT)o(SoT) " =1
and,hence, T o (S o T)’1 = S, Thus, S is invertible. Therefore,
To[(ToS)  oS]=[To(ToS)os§=8"o8=1

which meansthat 7! = (T 0 §) ' 0 5. Hence,T is invertible.
Q.E.D.

As an easyconsequencef this theoremwe have

3.8.10 Corollary. f T :V — W is nonsingular,thenT*1 is nonsingularand (T*l)_1 =T.

3.8.11 Example: Let T : R? — R? be definedby T'(z,y) = (z,y), where
x==xcosf +ysinf, y= —xsinf+ ycosh

and# somefixed angle. ThenT rotatesevery point (z,y) € R? throughan angle# aboutthe
origin as shown (Figure 3.8.1).
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Figure 3.8.1 Planarrotation throughan angle ¢
Since
[(kz)cos@+ (ky)sin@, —(ka)sinb + (ky)cos 0] = k(z cos + ysinf, —xsinf 4 ycosb),
we havethat T'[k(z,y)] = k(z,y) = kT(z,y). Furthermore,

Tl(x1,91) + (22, 92)] = T(21 + 22,91 + v2)

= [(#1 4+ z2)cos b + (y1 + y2)sinf, —(z1 4+ z2)sinf + (y1 + y2) cos b]
= [(#1 cos 0 4 y1sinf) + (z2cos 0 + yasinf), (—xy sin @ + yy cos ) + (—wasin  + y; cos 0)]
= (@1 cosf + yy sin @, —xy sinf + y; cos @) + (23 cosf + yasinf, —xsin 4 y, cos §)
= (Z1,41) + (T2, 92) = T(z1, y1) + T(@2, y2)-

This showsthat 7" is a linear transformation.
Defining 5 : R? — R? by S(z,y) = (z,y), where

x=2xcost —ysinf and y = xsinf + ycosh,

and usingthe abovemethodof proof, it is easyto showthat S is alsoa linear transformation.
To find the compositionS o T', we compute

(SoT)(z,y) = S(T(x,y)) = S(z,y) = (xcosf — ysinb,zsind + y cos f)

= [(zcosf + ysinf)cosf — (—xsinf + ycosf)sin b,

= (2 cosf + ysinf)sinf + (—x sin @ + y cos ) cos 0]

= (x cos? 0 + ysin? 6, ysin? 6 + y cos? 9) = [x (cos2 6 + sin? 9) , y(sin2 f + cos? 9)] = (z,y).

Therefore,S o T = I and,hence,S = T—1. ThusT is nonsingular.

In Example3.8.3 we observedhat any real valuedm x n matrix correspondgo a linear transfor-
mation R™ — R"™. This observationalso holds for m x n matriceswith entriesfrom any field F and
linear transformationd/(F) — W(F), whereV andW arevectorspacesoverF, respectively.Suppose,
for examplethatV hasbasis{vy,vs,...,v,, }, W hasbasis{w;,w,,...,w,} andthatT : V — W is
alinear transformation.Thenfor each: = 1,2,...,m, T(v;) canbe expressedsa linear combination
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of thebasisof W: T'(v;) = tywy + tigwe + - - - + t;,w,,, Wheret;; € F for eachj = 1,2,...,n. Now
letv =a1vy + - -+ an Vv, beanarbitraryvectorof V andlet 7'(v) = w. Then

T(v)= T(E aivi> = zaiT(vi) = zai Ztijo

m m m
= (E aitn) w1+ (Z aiti2> wy+ (Z aﬂm) W, = W.
=1 =1 =1
m m m
Thereforew = (> aitin, > aitin, ..., >, aitm). But this suggeststhat the transformation7” :
—~ —~ —
V—-Wis nothinglmore than the matrix p;roduct
i ti2 lin
lor  taz -+ t2p
((ll,...,dm) : : : = (bla---abn)v (381)
tml tm2 ot tmn
whereb; = > a;t;; for j = 1,2,...,n, and multiplication and addition are the appropriatefield

i=1

operationsin F.

It follows that the transformation?’ can be representedby the matrix (¢;;). Of course, the
representatioof 7" will bedifferentfor differentbasef V andW asthevectorsv andw arerepresented
in termsof linear combinationsof the basisvectors. If we changedone of the basis,thenthe question
is “What is the matrix representing’ relative to the new basis?"The answerto this questionis closely
linked to the notion of equivalentand similar transformations.

Whentwo vectorspacesareisomorphic,they are algebraicallythe same,andwe arefree to choose
the simplestonein which to performalgebraicoperationsor solve algebraicproblems.This observation
appliesjust as well to all the other algebraicsystemsusedin this treatise. It is particularly pertinent
when solving linear imagetransformproblems. It is thereforenaturalto inquire asto whentwo linear
transformationson vector spacesare essentiallythe same.

Considertwo linear transformations
S:U—=V and T :W — X.
Supposehat U andW areisomorphicandthatV andX are alsoisomorphic. Let
P:U—-W and @ :V — X.
denotetherespectivasomorphisms SinceP and() areone-to-oneandontofunctions,theyhaveinverses
P':W—-Uand Q':X—V.

Symbolically, this providesfor the following diagram:

S
U _— V
Pl P! QLo
w _ X
T
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ObviouslythefunctionsS‘ =Q7'TP:U—V and T = QSP~!:W — X arelinear transformations.
Here we follow the conventionof writing the compositionof two transformsin juxtapositionso that
TP =ToP.IfS=5 and T =T, thenS andT arealgebraicallythesamei.e., S(u) = (Q 'TP)(u),

which meanghattheresultof computing$(u) is exactlythe sameasthe resultobtainedwvhencomputing
(Q'TP)(u). A similar observatiorholdsfor the computationof T(w). If § = § and T = T, then
we say that the diagramcommutes We formulatethe notion of algebraicallysimilar asfollows.

3.8.12 Definition. Two linear transformations
S: U=V and T :W — X
are isomorphicallyequivalentif andonly if thereexistsisomorphisms
P:U—-W and Q:V — X

suchthat § = Q= '7P and 1T = QSPL.
Two linear transformations

S:U—=Uand T:W —-W
are similar if andonly if there existsan isomorphism
P:U—-W
such that

S =P TP and T= PSP!

Note that the notion of similar is simply a specialcaseof isomorphically equivalent. Whenever
U=V and W = X, and$ and7 areisomorphicallyequivalentthenthey are similar.

3.8.13 Example: Let C'(R!) denotethe setof all complex valued continuousfunctions on R!. If
f € C(R'), then f is said to vanishat infinity if Ve > 0 thereexistsa compactset K C R!
suchthat |f(z)| < € Vo ¢ K. Thenormof f is defined as

= [ 1f@)dz.

Now let
U={feCR") :[|f|| <o} and

V = {f e C(R") : f vanishes at infinity }

We leaveit to the readerto convincehimselfthatbothU and V satisfythe axiomsof a vector
space.ContinuougunctionsonR! with finite normareof speciaimportancen signalprocessing
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sincethe convolutionproductof suchfunctionsis againa continuousfunction with finite norm.
In particular,the convolutionproductg = f * h is definedby

71 h(z —y)d

The vector spaceU togetherwith this productforms an interestingalgebraicstructureknown
as a Banachalgebra [20].

Define the transformsS : U — Uand T : V — V by

= /gcf(y)€ (=

and

respectively.
The function 7 : U — V definedby F(f) = f, where

= 7}“(9:)6“’%:,

is calledthe Fourier transformof f. It is well known thatthe Fouriertransformis one-to-one,
onto, and preserveghe vector spaceoperations[20]. The inverse Fourier transformis given

by f = ]—"‘l(f), where

o0

1 R .
_ - 1y
f0)= 5= [ Fwe=ay.
By defining
_Je ™ if x>0
hz) = { 0 if 2<0
we seethat

/f “’dy—/f (z —y)d

Thus, S(f) computesthe convolution S(f) = f * k. Furthermore,

oo 1

—x 7m:y o
[F(h)](y /e de = iy
0
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Therefore,T(g) is simply the productT(g) = g - h. It now follows from the convolution
theoremg - h = g * h (see[20]) that

(F7ITF)(f) = (F~'1) (f) :f—l(f -/}) :f—l(f) *f_l(ﬁ> — feh=5(f).

A similar agumentshowsthat (FSF~') = T. Thus, S and7 aresimilar.

Sincelinear transformscan be expressedn termsof matrices,the useof terminologyfrom matrix
algebrais natural. Nonsingulartransformscorrespondo nonsingulamatriceswhile similar transforms
correspondo similar matrices. Recall that two n-squarematricesA and B with entriesfrom a field
F are similar over F providedthat there existsa nonsingularmatrix P with entriesfrom F suchthat
B = PAP~!. Eigenvaluesand eigenvectorsalso havetheir analogousnterpretationin linear transform
theory. In particular,if 7 : V — V is alinear transform,thenany vectorv € V with the propertythat

T(v) = Av for some scalar A

is calledaneigenvectoof 7. Thescalar is calledthe eigenvalueof 7" associatedvith the eigenvectow.

Supposehat T is representedby the matrix T = (¢;;), v is an eigenvectorof T representedy a
row vector (v,...,v,), relativeto a fixed basis,and X is the associatedigenvalue.Then

T(v)=Av,

(V1,0 0,0)T = Awg, .0, v0),

and
(v1,...,0,)(T = AI) = 0,

wherel denoteghe n-squareidentity matrix and O the zerovector. This is the matrix form of a system
of n linear homogeneougquations,and a nonzerosolution (vy, ..., v,) exists< T — Al is singular.
This occurs& det(T — AI) = 0. From our knowledgeof determinantsve seethat

t11 — A 112 . t1in
t thg — A ... t
det(T —\I) =| =+ %% o=
tn1 tn2 B

is a polynomial equationof degreen in A, say
(=) A"+ 0 A" by A+ b, =0,

wherethe b;’s are sumsof productsof thet;;’s. The polynomialdet(T — AI) is calledthe characteristic
polynomial of matrix T and also of the transformT. The equationdet(T — AI)= 0 is called the
characteristicequationof T and the roots of the characteristicequationare called the eigenvaluesf
the matrix T.

Our discussionhas establishedhe following result:

3.8.14 Theorem. The eigenvaluesof a matrix A are the eigenvaluesof the linear transformation
representecby A in any coodinate system.
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3.8.15 Theorem. If A and B are similar, then A and B havethe samecharacteristicpolynomialand
hencethe sameeigenvalues.

We presenttwo different proofs of this theorem,one formulatedin the languageof matrix theory
and the other in the languageof transformations.

Proof: (First method)If A = PBP™!, then

A-AMI =PBP '\l =P(B- P!
det(A — M) = (det P)det(B — AI)(det P~1) = det(B — AI).

(Secondmethod) If A and B are similar, then they representthe same transformation”’
relative to differentbases.The eigenvalueof 7" dependonly on 7" and are independenof the
coordinatesystem(Theorem3.8.149. HenceA and B havethe sameeigenvalues.Therefore,
their characteristigpolynomialsare alike exceptpossibly for a multiplicative constant. Thus,
det(A — AI) = k(B — AI) for all A. For A = 0 we havedet(A) = k(det(B)), sothatk = 1,
since similar matriceshave the samedeterminant.

Q.E.D.

We concludethis sectionwith the well-known fact that the diagonalelementsof a triangularmatrix
areits eigenvalues.The proof is straightforward and we leaveit asan exerciseto the reader.

3.8.16 Theorem. Theeigenvalue®f a triangular matrix are the diagonalelements.In particular, the
eigenvalueof a diagonal matrix are the diagonal elements.

3.9 Linear Algebras

Oneway of viewing linear transformationss as operatorghat transformvectorsof one spaceinto
vectorsof the samespaceor a different space.New insight into the behaviorof linear transformations
can be gainedby viewing them as operandsinsteadof operators. If L denotesthe set of all linear
transformation®f a vectorspaceV(F) into itself, thenwe definean additionandmultiplicationon L by

T+S : (T+S)v)=T(v)+S(v), veV(F)
and
ToS : (ToS)v)=T(S(v)), veV(F)
for all S,T € L.

Thesetwo operationsendowl with a rich algebraicstructure. First note that (L, +) is an abelian
group. The additive zerois the transformO € L dedfinedby O(v) = 0, where0 denoteshe zerovector
in V. If T € L, thenits additive inverseis the transform—7" definedby —T'(v) = —(T'(v)). Also,
for R, S, T € L we have

(T +95)(v)=TH)+5(v)=5V)+T(v) = (5+T)(v)
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and
(B+(S+T)(v)=R(v)+(5+T)(v)=R(v)+(5(v)+T(v))
) =

= (B(v)+5(v)+T(v) = ((R+5)(V) +T(v) = (R+ )+ T)(v).
This provescommutativity and associativity.
Defining scalar multiplication on L by
al ¢ (aT)(v)=a(T(v)), veV(F)
forall T € L anda € F, we obtain

[a(S + T)](v) = al($ + T)(¥)] =
— o(S(v)) + o(T(v)) = (a$)(v)

ofS(v) + T(v)
+(aT)(v) = (aS + aT)(v)

and
[(a+ B)T)(v) = (a+ B)T(v)) = a(T(v)) + B(T(v)) = (T + T)(v).
This showsthat
a(S+T)=aS+aTl and (a+ B)T =aol + pT.

Theseobservationgprovide us with the next theorem.

3.9.1 Theorem. L is a vectorspaceoverF.

In our observationsve have not takenthe multiplication 7" o S' into account. As remarkedin the
previoussection,multiplication,whichis definedascompositionjs afundamentabperatiorin thealgebra
of linear transformations.The importanceof this multiplication is establishedy the following fact.

3.9.2 Theorem. (L,+,0) is a ring.

Proof: We alreadyknow that (L, +) is an abeliangroup. Multiplication is clearly associative
(but in generalnot commutative). To completethe proof that L is a ring we prove the left
distributive law

To(§54R)=(ToS)+(ToR)
and leavethe right distributivity to the reader. We have

[To (S + R))(v) =T[(5+ R)(v)] = T(S(v) + R(v))

= T(S(v)) + T(R(v)) = (T 0 $)(v) + (T o R)(v) = [(T 0 §) + (T o B)](v).

Q.E.D.

Restrictingour attentionto non-singulartransformationsye canmakean evenstrongercasefor the
operationof multiplication. Let ™t ={T € L : T is non—singular}.
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3.9.3 Theorem. (1,0) is a group.

Proof: It follows from Theorem3.8.9that )1 is closedundermultiplication. The associative
law holdsin 91 sinceit holdsin L. Let I € L be theidentity mapI(v) = v. Evidently [ is
non-singularand, hence,a memberof 1. It is the multiplicative identity since

(LoT)(v)=I(T(v)) =T(v)=TU(v)) = (Tol)(v).

SinceeachT € M is a one-to-onemapping,it hasaninverseT~! definedby 7-}(T(v)) = v.
Obviously,(T-t o T)(v) =TT (v)) = v =T(T7Y(v)) = (T o T71)(v). Also, theinverse
of a one-to-onefunction is one-to-oneand, hence,7-! € M. ThereforeMN is a multiplicative
group.

Q.E.D.

Vectorspaceslinear transformationsand matrix operationsare so vital in applicationsthatthey are
usuallystudiedunderoneparasocommonlyknownaslinear algebra In the previoussectionwe observed
thatlinear transformationand matricesare algebraicallyequivalententities,while Theorem3.9.1shows
thatthe setof lineartransformation®n a vectorspaces itself a vectorspace.Theseobservationsictually
provide the basisfor a formal definition of the somehowfuzzy conceptof linear algebra. Specifically,
a linear algebraover a field F is definedas a set £ having addition and multiplication, togetherwith
scalarmultiplication by elementsof F suchthat the following axiomsare satidied:

Iy Under addition and scalarmultiplication, £ is a vector space£(F) overF
Lo Multiplication is associative

Ls Multiplication is both left and right distributive over addition

Ly £ hasa multiplicative identity element

Ls (av) *w =v*(aw)=oa(vsw) Vv,we £ and YaeF

In axiom L5 the symbol- corresponds$o scalarmultiplicationand x to the multiplication definedon
£. It follows thata linear algebraf overF consistsof two setstogetherwith five distinct operations

2(":) = {23":7—"7 Xv'i‘v'v*};

where{£,F, +,x, },-} is a vector space. Here + and x denotethe field operationsof addition and
multiplicationonF, + denotesvectoradditionin £, and- denotesnultiplication of a vectorby a scalar.
Of course we follow the conventionabbuseof notationandlet + denotevectoraswell asscalaraddition
and- denoteboth multiplication on F aswell asscalarmultiplication of a vector. Indeed,in many cases
we shall evendispensewith the symbol- entirely and simply write av in orderto denotea - v. This
abuseof notationcausesvery little confusionas the type of operationan authorhasin mind is usually
apparentfrom the contextin which it is used.

3.9.5 Examples:
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(i)

(ii)

(iii)

The field C of complex numbersis a linear algebraof dimension2 over the field R of real
numbers.C(R) is a vector spaceof dimension2 that satisfiesaxioms L, through Ls.

L(F) is a linear algebra. This follows from Theorems3.9.1and 3.9.2 If L is the setof all
linear transformationsof a vector spaceV(F) of dimensionn, thenL(F) is of dimensionn?.
Hencethe algebrai,,(F) of all » x n matricesoverF is alsoa linear algebra.

An importantexampleof alinearalgebraof dimensiorfour wasgivena centuryagoby Hamilton.

Theelementof thisalgebraarecalledquaternionsandthescalarsarerealnumbers Historically,

the algebraof quaternionsan be consideredasthe forerunnerof matrix algebra.A quaternion
is an expressionof form

a1l + asi + asj + ask.

The 4—tuple(1,1i,j,k) is a basiselementanda; € R for i = 1,...,4. Let ) denotethe set
all quaternions.As an additive group we may view ¢} as (R“, +), where additionis defined
component-wiseln particular,renamingthe componentf the basiselementsby

1 =(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0), and k = (0,0,0,1)
and agreeingto let
a; = (a1,0,0,0), azi=(0,a3,0,0), asj = (0,0,as,0), and ask = (0,0,0,a4),
thenit follows from our definition that
(a1,az2,as3,a4) = a3 + azi+ asj + ask.

Thus, . . . .

(a1 + azi+ asj + ask) + (by 4 bai + b3j + bak)

= (a3 + b1) + (az + b2)i + (az + b3)j + (as + by) k.
Defining scalarmultiplication by

a-(ay + azi + asj + ask) = (aay) + (aay)i+ (aa3)j + (aaq)k

turns Q into a vector spaceover R.
Multiplication on @) is definedin termsof the componentf the basiselements:
al =la=a Yac@, i?=j=k*= -1, and
ij=k, jJk=1, ki=}, ji= -k, kj= —i, and ik= —j.
To insurethat the distributive law holds, we define
(a1 + azi + asj + aqk)(by + bai + bsj + bsk)
= (@101 — azby — asbs — asbs) + (a1bs + azbt + asbs — asb3)i
+ (a1b3 — az2bs + asbi + asb2)j + (a1bs + a2bs — azbs + asby )k .
Obviously, sinceij = k # —k = ji, multiplication in ¢) is not commutative. However, if
a = ay + ai + asj + ask # 0, then
a

ﬂ-azl, where a = a; — asi —asj — ask, and |a| = a] + a3 + a5 +ai.
a
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Therefore everynonzeroelementof ¢) hasa multiplicative inverse. Fromthis we may conclude
that ¢) is a non-commutativedivision ring that satisfiesaxioms L, through L5. In 1878,
Froboeniugprovedthat ¢) is the only non-commutativdinear division algebraover R.

The linear algebraof Example3.9.5ii) playsasimportanta role in the theory of linear algebraas
the symmetricgroup 5,, doesin grouptheory. In Section3.4 we remarkedthat every group of ordern
is isomorphicto somesubgroupof 5,,. Analogously,any linear algebraof dimensionn is isomorphicto
a subalgebraof L(F) (or M,x,(F)). This fact providesa concreterepresentatiomf any suchabstract
linear algebraand a striking illustration of the generalityof linear transformationsand their importance
in linear algebra.

3.10 Group Algebras

Cyclic convolutions which amountto polynomialmultiplication (3.6), area specialcaseof multipli-
cationin a group algebra.PaulD. Gader[12] and D. Wenzel[22] werethe first to note the connection
betweengroup algebras,image algebra,and group algebraapplicationsto image processing. In this
sectionwe briefly discusssomeof the backgroundof group algebras.

Let G = {g) : A € A} beanymultiplicative groupand R be any commutativering with unity. Let
R(G) denotethe setof all formal sumsof form

> g,

AEA

wherery € R, g\ € G, and ry = 0 for all but a finite numberof indicesA. If a € R(G) with
a = Yyear)g), thenthery’s arecalledthe coeficientsof a. If 8 € R(G) with 8 = Yyecasag), then
we define addition by

a-l-ﬂ:Z(TA-I-SA)gA-

AEA

It is clearthatr) 4+ s, = 0 exceptfor afinite numberof indicesA, soa+ 3 € R(G). Theadditiveidentity
is givenby 0 = XycA0g,. SinceR is a commutativering, we haveas an immediateconsequencéhat
(R(G),+) is an abeliangroup.

Multiplication of two elementsof R(G) is definedby

axf= (Z 7'/\9>\> (Z SA9A> =30 > ruse|on.

AEA AEA AEA \9v9ge=9xr

Observethat the productof two elements;,, g¢ € G is someelementy, = g, g: € G. Thus,naively, we
formally distributethesumX,carygy overthesumcasygy andrenamethetermr, g, s¢gs by r.s¢gx,
whereg, = g,g¢ in . Sincer, ands, are0 for all but a finite numberof \’s, the sum



containsonly a finite numberof nonzerosummands, s € R and,hence,is an elementof E. Clearly,

againat mosta finite numberof suchsums > r,s; arenonzero.Therefore,a x 5 € R(G).
gvge=9dx

The multiplication * is called group convolutionand the distributive laws of multiplication over
addition follow at once from the definition of addition and multiplication. For the associativity of
multiplication we have

(o) (o) (o)) - (50 [ (2]

AEA \9uGv9e=4ga
(X e )a| (Do)
L AEA \9ugv=9xr AEA

() (zom) | (Zon)

3.10.1 Theorem. If G is any multiplicativegroup,then(R(G), +, x) is a ring whichis commutativef
and only if G is a commutativegroup.

Thus, we have proven the following theorem.

Rings havethe two primitive operationsnecessaryor defining the elementsof R(G). Any more
specializedstructurehaving thesering operationssuchas a field, can of coursebe usedaswell.

3.10.2 Definition. Thering R((') definedaboveis calledthe groupring of GG over R. If F is afield,
then F(G') is called the group algebraof G' over F.

3.10.3 Examples:

0] Let G beacyclic groupwith generator: definedby the operationz-z/ = z*, wherei, j, k € Z
andk = i+ j. ThenG = {2' : i €Z} and

F(G) = {Zux’ : 7; = 0 for all but finitely many i € Z } .

€L

The polynomialsare a subsetof this group algebradue to the constraintr; = 0 for : < 0.
The multiplication of this group algebracorrespondgo linear convolutionswhen restrictedto
polynomials. Also note that (& is isomorphicto Z and, therefore,F(G) ~ F(Z).

(i) Let G,, = {«' : i€ Z,} with multiplication definedby 2° - y/ = 2(+))m2d"  Then cyclic
convolutioncorrespond$o multiplication in the groupalgebraF(G,,) ~ F(Z,).
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(iii)

Let G = 73 = {(0,0), (0,1), (1,0),(1,1)} and let multiplication of elementsof G be
definedin terms of the exclusive or (xor); e.g., (0,0) - (0,0) = (0,0), (1,0)-(1,1) =
(0,1), (0,1)-(0,0) = (0,1), etc. Renamingthe elementsof G by g¢o, g1, g2, and g3, we
obtain the group algebra

F(G)=F(23) = {Zrigi LT € F}.

i€Z,
Moregenerally let G = Z5* andsupposeve havedenotedheelementof G by gg, g1,...,gam-1.
Thenif ¢; = (o, ..., tm—1) @andg; = (Jo, ..., jm-1), Whereiy, j. € {0,1} for k =
0,1,...,m—1,we deﬁnegi ‘g = 9k & gk = (i07 tre im—l) : (j07 s 7jm—1)- Again,

multiplication is definedcomponent-wisén termsof the usualexclusiveor of binary numbers.
The group convolution* of the groupalgebraR(Z%") is called the Walsh convolution.

For eachgroupelementa € F(G) andeache € F we definethe scalarproductca by

ca = C(Z mgA> = Z (er))gn -

AEA AEA

It is easily shownthat this scalarmultiplication satisfiesaxioms V; through Vs (Section3.7). Thus,
(F(G), +) togetherwith scalarmultiplication is a vector spaceover F.

From our previousdiscussiorwe also know that F((7) satisfiesaxioms Ly, L, and Ls. Suppose

1 and e representthe multiplicative identities of F and GG, respectively. Considernow the element
v € F(G) definedby

L:Zr/\g/\7

AEA

wherer, = 0 for all but one ), say Ag, andr), = 1 while g,, = e. It thenfollows that

axt=1xa=a Va e F(G).

This showsthat F( () also satisfiesaxiom Ly. Axiom Ls is atrivial consequencef the definitions of
scalarmultiplication and group convolution. This establisheghe following

3.10.4 Theorem. A group algebratogetherwith scalar multiplicationis a linear algebra.

3.11 Lattice Algebra

The conceptof latticeswasformedwith a view to generalizeand unify certainrelationshipbetween

subsetf a set, betweensubstructure®f an algebraicstructuresuchas groups,andbetweengeometric
structuressuchastopologicalspaces.The developmenbf the theory of latticesstartedabout1930and
was influencedby the work of GarrettBirkhoff [3].
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Let Y be a partially orderedset with partial order <. An upperbound (if it exists)of a subset
X of Y is anelementy € Y suchthatz < y Va2 € X. The leastupperboundof X, denotedby
lubX or supX, is anupperboundy, € Y of X suchthaty, < y for everyupperboundy of X. By
the anti-symmetryproperty of partially orderedsets,supX is uniqueif it exists. The notionsof lower
boundand greatestlower bound denotedby ¢/bX or :nfX, are defined dually asin 2.10 Again by
anti-symmetry,:n f X is uniqueif it exists.

3.11.1 Definition. A lattice is a partially orderedset L. any two of whoseelementsz, y havea glb,
denotedby = A y, anda [ub, denotedby = V y. A sublatticeof a lattice L is a subsetX of
L, suchthat for eachpair 2, y € X we havethata Vy € X anda Ay € X. A lattice L is
completewheneverfor eachof its subsetsX, infX andsupX exists.

Setting X = L, we seethat any non-emptycompletelattice L containsa leastelementO and a
greatestelement/. Theseelementsare commonlycalled the universalboundsof L. It is alsoobvious
that the dual of any lattice is a lattice, and that the dual of any completelattice is a completelattice
with ¢glb and [ub interchanged.

3.11.2 Examples:

0] In 3.1 we observedthat R togetherwith the relation of lessor equal (<) is a totally ordered
set. If z Vy = maz{z, y} andz A y = min{z, y} Vz,y € R, thenR togetherwith the
operationsof vV and A is a lattice. However, (R, Vv, A) is not a completelattice asthereis no
largest and smallestnumber.

(i) Let Ry, = RU {—o0, >}, the setof real numberswith the symbols—cc and oo adjoined.
Define 00 < ¢ < o0 Yz € Rand -0 < 2 < oo Vo € {—00,0}. Then(Riw, V, A) is
a completelattice with largestelementoo and smallestelement—oc. The dual of this lattice
is obtainedby replacing< with the relation of greateror equal>. Obviously, (R, v, A) is a
sublatticeof (Riw, V, A).

(iii) The powerset2X togetherwith the orderrelation C of setinclusionis a completelattice with
largestelementX and smallestelementd. For any family A = {S) : A € A} of subsetsof
X, an.A = ﬂ S, and sup.A = U S.

NeA AEA
(V)  ThesetR2® = Rt U {0, oo} with the relation < is a completelattice. Here0 is the smallest
elementand oo the largest element. (Hg?, vV, /\) is a sublatticeof (Ri., V, A) but not of

(R, V, A).
v) We partially orderRX by f < g < f(z) < g(z) Ve € X anddefineh = f V g by

f f(z) ifg(x) < f(w)
”(””")‘{g@c) if f(x) < glz)

andk = f Ag by



Then (RX, vV, /\) is a lattice which is not complete. However, (Rfoo, V, A) is a complete
lattice with smallestelementhe constanfunction ¢ definedby ¢(z) = —oo Va € X andlargest
elementthe constantfunction I definedby I(z) = oo Va € X.

The binary operationsA and v on lattices have severalimportantproperties,someof them being
analogouso thoseof ordinarymultiplicationandaddition. Thefollowing propertiesareeasilyverified[3].

3.11.3 Theorem. If (X, <) is a partially orderedset,thentheoperationsof v and A satisfythefollowing
equations(whenevetthe expessionsreferred to exist):

)zAz=2, cVae ==1c (idempotent)

@QazAy=yAz, eVy=yVae (commutative)
B)zA(yAz)y=(zAy)Az, a2V (yVz)=(xVy)Vz (associative)
@A zA(zVy) =2V (zAy) =2z (absorption)

B)e Ry & zAhy=2, 2y & zVy=y (consistency)

(6) If X hasaleastelement), thenO Az =0 and OVae =2 YereX
(7) If X hasalargestelement/,then/ Az =2 and IVae =1 VxeX

Observethat in the abovetheoremwe do not require that the partially orderedset be a lattice.
In fact, Dedekind[11] usedproperties(1) through (4) to define lattices, and Birkhoff [3] provedthat
thesepropertiescompletelycharacterizdattices. For lattices,we havethe following additionalalgebraic
relationships.

3.11.4 Theorem. If (L,V, A) is a lattice with partial ordering <, then
WDy=xz = sAhy=<2Az and 2Vy 3 2Vz (isotone)
2z <22z = a2V(yAz) 2 (zVy)Az  (modularity)

B) zA(yVz)=alzAy)V(zAz) (A distributivity)
4) ev(yAnz) 2 (zVy) A(zVz) (Vv distributivity)

Proof: We shall only prove property(2). The remainingpropertiesare just as easyor follow
directly from Theorem3.11.3

(2) Obviously, z <X 2 V y and, by hypothesis,z2 < z. Hence,z <X (zVy)A z. Also,
yAz Ry 2zVyandyVz < z. Thus,yAz < (z Vy)Azand,hencezV(y Az) = (zVy)Az.
Q.E.D.

It is often convenienand muchsimplerto dealwith only oneof the operationsof v or A andobtain
equivalentrelationsfor the other throughduality. For this, the following notionis helpful.

3.11.5 Definition. A semilatticeis a commutativesemigroup(.S, () which satidies the idempotent
law 2 Oz = 2.

121



It follows from Theorem3.11.3that every partially orderedset X for which the operationz V y is
definedfor eachpair z, y € X is a semilattice. Converselyunderthe relation definedby

r2y & 2Qy=y,

any semilatticewith binary operation() becomes partially orderedsetin which z O y = lub{z, y}.

3.11.6 Example: (R, V) is a semilatticewith dual (R, A). If R, = RU {0}, andR_., = RU { -0},
then (R_.,,V) is a semilatticewith dual (R.,,A). Note that the semilattice(R_..,V) is a
monoidwith zeroelement—oo sincerV(— o) = (—0)Vr =r Vre R_. Similarly, (Rs, A)
is a monoid with zero elementoc.

As mentionedearlier,the operationf v andA in alattice areanalogougo the arithmeticoperations
of + and x. This analogyis most striking in distributive lattices.

3.11.7 Definition. A lattice (L, v, A) is a distributive lattice if and only if the following equality
holdsin L:

(i) axA(yvz)=(zAy)V(zAz).
This equationexpresseghe similarity with the distributive law z(y + z) = zy + zz of ordinary
arithmetic. All latticesin Example3.11.2aredistributivelattices. Note alsothat by duality we havethat
(it) zV(yAz)=(zVy) A(zV2)

in any distributive lattice. Now if < z, thenz = 2 v z. Thus,substitutingz for 2 v z in (ii) we have
that any distributive lattice satisfiesthe following law:

(it1) 22 = zV(yAz)=(zVyAz.

Any lattice satisfyingcondition (7:7) is calleda modularlattice. Although every distributive lattice
is modular, not every modularlattice is a distributive lattice.

3.11.8 Example: Let L = {0, a,b,c,I} havepartial orderdefinedby O <« < I, O <b <1, and
O < ¢ < 1. Then

aN(bVe)=aANlI=a#0=0VO=(aAb)V(ahc).

Thus L is not a distributive lattice. However, wheneverz < z in L, then (ii7) holds. For
example,a < I and

aV(bAI)y=aVvb=I=IANI=(aVbAI.

Therefore, L is a modular lattice.

Supposel is a lattice with smallestelementO andlargestelementl, andz € L. If 32’e L such
thatz’ Az = O anda’ vV ¢ = I, thenz’ is calledthe complemenbf z. Now if L is a distributivelattice
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andif chz =cAyandeVae =cVy thenz =z A(cVe)=2A(cVy) = (zAc)V(zAy) =
(ehy)V(zAy) = (ecvVa)Ay = (eVy) Ay = y. Therefore,a = y. Thus,if 2’ and Z are two
complementof z sothatz Az’ = O = 2 A d andz vV 2’ = I = 2 V &, thenby our analysiswe have
thatz’ = &. Thatis, complementsare uniquein distributive lattices.

We saythat a lattice is complemented andonly if all its elementshavea complement.

Modular and complementedatticesare of specialinterestfor applicationsto probability theory,in-
cluding ergodictheoryand multiplicative processedp linear algebra,computerscienceandengineering.
For example the set L of all subspacesf R™ is a complementednodularlattice. Here the orthogonal
complementS+ of any subspaces satisfiesSt NS = @ and S+ U § = R™. Also, by ddinition, a
Booleanlattice is a complementedlistributive lattice. The usesof Booleanalgebrasn computerscience
andengineeringaremanifold andrangefrom the designof electricalnetworksto the theoryof computing.

For Booleanlattices we have the following:

3.11.9 Theorem. In any Booleanlattice, eachelementx hasa uniquecomplement:’. Furthermoe,
complementatiorsatisfiesthe following equations
(1) tANz' =0 andzva =1
(2) () ==

(3) (zAy) =2'Vvy and(zVy) =2’ Ay

For a proof we refer the readerto [3]. Complementatiorshouldnot be confusedwith conjugation
or duality. Forinstance,f for everyr € R.., we defineits dual or conjugater* by »* = —r, where
—(—o0) = oo, then

(2) () = r

(3" (rat)y" =r*vitrand(rvie) = r* At
Equations(2’) and (3’) have the appearancef statementg2) and (3) of Theorem3.11.9 However,
rAr* = —oo andr Vv r* = oo if andonly if r = co or r = —oc.

Sincecomplementsn a Booleanlattice 1. are unique,we canview complementatioras a function
L — L thatmapsz — 2’. From this point of view, complementations a unary operation. If L is a
Booleanlattice, thenthe algebra( L, v, A, ') determinedby the two binary operationsv andA, andthe
unary operationof complementon L is called a Booleanalgebra.
3.11.10 Examples:

0] It follows from the laws of operationson sets(2.2.9), that (2%, U, N, /) is aBooleanalgebra.

(i) Let f € Z¥ anddefineh = f Vv g by

[ f(@) i g(a) < f(x)
hle) = {g(x> it f(e) < g(a)

andk = f Ag by



Define complementatiorof f asthe function f’ : X — Z,, where

, 1 i f(z) =0
f(x):{o it f(a) = 1.

The leastelementis the zero function O : X — Z, definedasO(z) = 0 V2 € X andthe
largestelementis the constantfunction I : X — Z, definedby I(z) = 1 Vz € X. Itis
now easyto showthat (Z%‘, V, A, ’) is a Booleanalgebra. This algebraprovidesa rigorous
mathematicabasisfor the descriptionof a wide rangeof Booleanimagetransformations.

(iii) The lattice (R¥.,, v, A) of Example3.11.2 (v) is a distributive lattice with minimal and
maximalelements.Only the functions¢ and I havecomplementsnamely!’ = ¢ and¢’ = I.

In addition to being a distributive lattice, the set of real numbersis also a ring, and our early
experiencen elementaryalgebrahastaughtus the useful properties

Py r2>2y=>z+c2>2z2+y
P x>0 and y > 0= zy >0
P; z2>0=z(axzVy)=z2xVzy and z(zAy) = zz A zy,

wherez, y, z € R. Thesepropertiesexhibit the interplay betweenthe lattice and ring operations.The
guestionnaturally arisesas to whetheror not thesepropertieshold in any ring (or semigroup,group,
etc.) which is also a lattice. For the remainderof this sectionwe will be mainly concernedwith this
guestionand examinepropertiesof semigroup,groups, rings, and other algebraicstructureswhich at
the sametime are lattices. While many propertiescan be couchedin termsof lattice-relatedconcepts,
the main purposeof approachinghesestructuresfrom a generalalgebraicviewpoint is to developan
anologyto linear operatortheory.

SupposelF is a set with binary operation x and partial order <, and supposethat the system
(F, <, x) satisfiesthe following property:

P, r=y=>axexbaxyxb VabekF.

If (F, x) is a semigroup,then
1. F is called a partially ordered semigoup or po-semigoup.
2. If (F, x) is agroup,thenF is called a partially ordered group or po-group.

3. If (F, v) is a semilatticeand (F, x) a semigroup thenF is called a semilatticeordered semigoup
or sl-semigoup.

4. If (F, v) is a semilatticeand (F, x) a group, thenF is called a semilatticeordered group or sl-
group.
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5. If (F, Vv, A) is alattice and (F, x) a semigroup,thenF is called a lattice ordered semigoup or
I-semigoup

6. If (F, v, A) is alatticeand(F, x) agroup,thenF is calleda lattice ordered group or I-group.

Obviously, (R, Vv, A, +) is anl-groupsince P, = P;. On the otherhand, (R, v, A, x) is notan
I-semigroupsince Py doesnot hold for multiplication. However,(R*, v, A, x) is anl-group.

An sl-semigroupF has an identity elementunder x if there existsan element¢ in F such that
pxa=ax¢=a forallaceF.Ithasanullelement)if yVa = eandypxa=axny=1n forallaecF.
If the sl-semigroup(F,Vv, x) is also an sl-semigroup(F,A, x”) undera semilatticeoperationA and a
semigroupoperationx’ and satisfies

aVbAha)y=aAN(bVa)=a ¥V a,beF,

then we say that F is an sl-semigoup with duality. If the operationsx and x’ coincide, then the
operationx is called self-dual An sl-semigroupwith duality and self-dual multiplication is simply a
lattice-orderedsemigroup. The I-group (R,V, A, +) hasthe identity elementO but no null element,as
there is no “smallest” elementin R. As anotherexample,the I-semigroup(R_~,V, A, +), where +
denotesthe extendedreal additiona + (—) = —00 + ¢ = —x Va € R_.,, hasthe null element—oco
but hasno identity element,as —oo hasno inverseunderextendedreal addition.

It hasbeenshown (Birkhoff [3]) that exceptin the trivial casewhereF = {0} a partially ordered
group cannothaveuniversalbounds.Thusan |-group cannotbe a completelattice (unlessit is {0}), that
is, eachsubsetl/ of F cannothavealub andaglb in F. In particular,thel-group(R,Vv, A, +), cannotbe
a completelattice. Our particularinterestsfocuson the extensionof anl-groupin a well-definedmanner
to includethe universalbounds—oc and oo, andhencethe resultingstructurewill not be asstrongasan
[-group. Note thatif we adjointhe element—oo (or +o0) to the l-groupF, the structure(F_., vV, A, X)
(or (Fw, V, A, x)) degenerate® an I-semigroupsincethe element—oc (or +o0) cannothavea inverse
underx. Here,F_., =F U {—o} andF., = F U {+0c}. This doesnot turn out to be asmuchof a
disadvantagasone might think, asan arbitraryl-groupF canbe extendedo includethe elements-oo
and+oo in awell-definedmannerunderboth operationsv and x in the following way. Let (F,v, A, X)
be anl-group,andlet Fy,, = F U {4+0o0,0}, where—oc < @ < oo ¥V a € F. The group operation
x is extendedn the following manner.If a,b € F, thena x b is alreadydefined. Let x’ = x bethe
self-dual multiplication on elementsof F, that is,

ax'b=axb Va,beF.

Otherwise,we have

aX —00=-—00Xa=—00 acF_o
aX 00 =00Xa=00 a€Fy
ax' —o0=—-00x"a=-x acF_
ax'co=00x"a=0o a € Fg
(—00) X 00 = 00 X (—00) = —00

(—0) x 00 =00 X' (=) = o
Hence the element—oo actsasa null elementin the system(F ..., V, x) andthe elementt oo actsasa
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null elementn thesystemF ., A, X"). However,asshownby thelasttwo equationsthe multiplications
x and x’ introducean asymmetrybetween—oo and +oc. The resultantstructure(F 1., V, A, X, X')
is called a boundedI-group, and, in fact, is a distributive lattice. Note that this extensionis valid
for any arbitrary I-group. Two familiar examplesof boundedI-groupsare (Ry.,V,A,+,+') and
(RI..,V,A, x,x').Here,RT_ = RtU{-00,00} = {r e R:r > 0}U{—00,0}. Notethat(R, V, A, +)
is isomorphicto (R*,V, A, x) both as a group and as a lattice, and hencetheir extensiongo I-groups
will be isomorphicaswell. Theseextensionsplay a key role in lattice spacegSection3.12 and have
importantconsequenceis the decompositiorof templatesand structuringelementgChapter?).

We now returnto our original questionconcerningrings that are partially ordered.

3.11.12 Definition. A partially ordered ring or po-ring is aring R which is also a partially ordered
setundera relation = which satisfiespropertiesP; and P,. A lattice ordered ring or I-ring
is a po-ring R which is a lattice definedby .

3.11.13 Example: Since(R,V, A, +, x) satisfiesP; and P2, R is anl-ring.

As anotherexampleconsiderM,, « . (F), thesetof all n x n matriceswith entriesfromF. If F is
a totally orderedfield with order >, thenby defininga > b & a; > b; Vi,j=1,2,...,n,
with a,b € M, x,(F), it is easyto seethat M, . (F) satisfiesP; and P;.

If R is aporing, then R is a po-group with respectto its additive operation. Supposex > 0 and
y = z. SinceR is apo-group,z > 0 andy = z istrue < z > 0 andy — z > 0. Applying P, to the
latter statementye obtainz(y — z) = 0 and,hencexy — zz = 0 or equivalentlyzy > zz. Conversely,
if zy = 2z, thenzy — 2z = 0 andhencez(y — z) = 0. Thus,if our original hypothesisz = 0 and
y = z impliesthatzy > zz, thenit follows thatz > 0 andy — z = 0 impliesz(y — z) = 0. We
have just proven the following:

3.11.14 Theorem. In any po-ring property P, is equivalentto property
P . x>0 and y = 2z = 2y = 2xz

Sincexz Vy > z,y andx,y = z A y, Theorem3.11.14hasthe following consequence:

3.11.15 Corollary. In anyl-ring
Ps : z»0 = z(aVy)=zzVzy and zz Azy = z(x Ay).

This is the bestwe canachievefor generall-rings. However,in totally orderedringsthe inequalities
in P; can be replacedby equalities.

3.11.16 Corollary. Property Ps holdsin any totally ordered ring R.

Proof: Since R is totally ordered,eitherz Vy = 2z orzVvVy = y. If z Vy = z, then
zx = z(x Vy) = zz V zy and,therefore,z(z V y) = zz V zy. Thecasez V y = y andthe
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remainderof the proof are just as simple.
Q.E.D.

In order for P; to hold, total order, although sufiicient, is not a necessarycondition; the I-ring
(RX,v, A, +, x) satisfiesPs but is not totally ordered.

3.12 Minimax Algebra

In recentyearslattice basedmatrix operationshavefound widespreadpplicationdn the engineering
scienceslIn theseapplicationsthe usualmatrix operationsof additionand multiplication arereplacedoy
correspondindattice operations.For example,given the boundedl-group (F 1., V, x) and A = (a;;),
B = (b;;) two m x n matriceswith entriesin F,, thenthe pointwisemaximum A v B, of A and B,
is the m x n matrix C' definedby

AV B =C, where ¢;; = a;; Vb;;.

If Aism x pandB is p x n, thenthe maxproductof A and B is thematrix C' = A x B, where

p

Cij = \/ (aik X bkj).

k=1
Observethat this productis analogougo the usual matrix product

P

cij = ) (aix x by;)

k=1

with the symbol )" replacedby \/. Since\/ replaces) in our definition, the pointwisemaximumcan
be thought of as matrix addition.

3.12.1 Example:

0) Considerthe boundedl-group (R+s,V,+). Then
—00 6 -2 2 2 7 +00 -0 2 7 +o0 2
7 -5 10 -4 —00 0 8 0 7 0 10 0
8 4 40 9|V |-3 6 12 4 |=|8 6 +4oo 9 |,
-3 - 1 -7 -1 -0 2 -3 -1 -0 2 =3
-1 1 0 5 -2 1 -1 6 -1 1 0 6
which providesan illustration of the pointwise maximumof two 5 x 4 matriceswith entries
from Ry
(i) For anillustration of the maxproductwe usea 5 x 4 anda 4 x 3 matrix with entriesfrom R, :
-0 6 -2 2 6 5 13 3 16
7 -5 10 -4 = 18 14 21
8 4 11 9 | x g T 19 15 22
-3 40 1 =7 1 1 0 +00 4+ 400
-1 1 0 5 8 6 11
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Here
P

Cij = \/ (@ix + brj) .

k=1

If (Fioo,A,x’) isthedualof (Fi.,V, x), thenthe dual or min productof A and B is the matrix
C = A x' B, where

p

Ci; = /\ (aik X'bkj) .

k=1

Similarly, the pointwiseminimumA A B of two matricesof the samesizeis definedas
ANB =C, where ¢;; = a;; Ab;j.

Lattice inducedmatrix operationslead to an entirely different perspectiveof a classof nonlinear
transformations.Theseideaswereappliedby Shimbel[21] to communicationsetworks,andto machine
schedulingby Cuninghame-Greefi7, 8] and Giffler [13]. Othershave discussedheir usefulnessn
applicationsto shortestpath problemsin graphs[18, 2, 6, 1]. Additional examplesare given in [9],
primarily in the field of operationsresearch. Another useful applicationto image processingwas
developedby Ritter and Davidson,[19] and [10].

While lattice theoryandlattice-orderedyroupshaveonly maginal connectiongo the computational
aspectof linear algebra,Cuninghame-Greedevelopeda novel nonlinearmatrix calculusbasedon the
min and max product,called minimaxalgebra which is very reminiscentof linear algebra[9]. Problems
notated using the minimax products take on the flavor of problemsin linear algebra. By allowing
for the minimax matrix productsto take on the characterof the familiar matrix products, concepts
analogousto thosein linear algebrasuchas solutionsto systemsof equationslinear dependenceand
independencerank, seminorms eigenvaluesand eigenvectorsspectralinequalities,and invertible and
equivalentmatrices,canbe formulated. Originally, many of theseconceptsvere developedprimarily to
help solveoperationgesearctiypesof problems.Our interestin thesenotionsis dueto their applicability
to image processingproblems.

An sl-semigroup(F,V, x) satisfyingthe axioms
By rx (yVz)=(zxy V(rxz)

By (yvz)xez =(yxz)V(zxz)

Vz,y,z € F is calleda belt Viewing x as multiplication and v as addition providesF with a ring
like appearancehencethe name“belt.” If, in addition,F is a lattice with anothersemigroupoperation
x' satisfying

B e x'"(ynz) = (zx"y)A(zx'z)

B, (ynz)x'z = (yx'z) A (z x"2),

thenF is called a belt with duality.

If the multiplication x andthe dual multiplication x”" coincide,thenwe call the multiplication self-
dual. Obviously, any I-semigroupis a belt with self-duality. If the I-semigroupis actually an |-group,
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then eachelementz € F hasa unique multiplicative inversez~'; by analogywith division rings, we
call such a belt a division belt

Let (Fy,v) and (F2,V) be two semilattices. A function f : F; — F» is called a semilattice
homomorphismif

flavb) = fla)Vv f(b)

for all a,b in Fy. If (Fq,v,x) and (Fa,v,x) aretwo beltsand f : F; — F, is a semilattice
homomorphismthat satisfies

flaxb)= f(a)x f(b), ¥V a,beF,

then f is called a belt homomorphism.A belt (or semilattice)isomorphismor automorphismis given
the usual meaning.

3.12.4 Example:

Definef : R — Rt by f(z) = ¢*. Thenf(zVy)= f(z)V f(y) and f(z + y) = f(z) X f(y).
It is trivial to showthat f is a belt isomorphism. FurthermoreR and RT are commutative
belts, that is, the multiplication x commutes.

Let (F,v, A, x) be anl-groupwith identity ¢ andlet (T, V) be a semilattice. Supposewe havea
right multiplication of elementsof T by elementsof F:

tXxAeT VzeT, andVAeF.

We call (T, V) a (right) semilatticespaceover F if the following four conditionsare satisfiedfor all
z,y € T andfor all A, u € F:

(e X A)Xp=ax(Axpu)
(zVy)xA=(zxA)V(yxA)
eX(AVp)=(xxA)V(rxp)

rXop=cz.

A right semilatticespaceis also called a right s-lattice spaceor simply a spaceoverF. If T andF
are known, then shall simply saythat T is a space. A subspacds a subsetof a spacewhich itself is
a spaceover F.

Semilatticespaceslay the role of vector spacesn the minimax theory. For example,if T = R"
and F = R, and we define

axr=>b, whereb; =a; +r,i1=1,...,n

thenit is easily verified that x satisfiesthe abovefour axioms. Here, (R", V) is a semilatticeunder
coordinate-wisenaximum. Thuswe canregardR™ asa right semilatticespaceoverR. Similarly, we can
define a left semilatticespaceover F, usingthe left versionsof the abovefour conditions. A two-sided
spaceis a triple (L, T,F) satisfyingthe following three axioms:
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St : L isabeltandT is a left spaceover L
Syt L isabeltand T is a right spaceover L
83 : ax(zxpf)=(axz)xf Yael,VeeT, and Vg € F.

Let (F,v, x) be a belt. An importantclassof spacesoverF is the classof function spaces.Here
the s-lattice (T, V) is replacedby the lattice (FX, v). Such spacesare naturally two-sided. We shall
only be interestedin the casewere card(X) = n < oo. Thuswe canview (F*,V) asthe spaceof
n-tuples (F", V).

When discussingconjugacyin linear operatortheory, two approachesare commonly used. One
definesthe conjugateof a given spaceS as a specialsetS* of linear scalar-valuedunctions defined
on S. The otherinvolves defining an involution (a one-to-onefunction) taking z € S to z* € S* that
satisfiescertainproperties.The situationis slightly more complicatedin the caseof lattice transforms.

Let (F,v, x) and(T,A, x") be two belts. We saythat(T,A, x') is conjugateto (F,v, x) if thereis
a one-to-onecorrespondence : F — T satisfyingthe following two conditions:

Vo,y €F, g(zVy)=g(x)Agly)
Ve,y e F, gz xy)=g(z)x g(y).

In lattice theory, g is called a dual isomorphism Note that conjugacyis a symmetricrelation. If
(F,v,A) is an sattice with duality andg : F — F satisfying

Ve,y e F, glzVy)=g(z)Ag(y),

then we say that F is self-conjugate If (F,v, x,A, x’) is a belt with duality, we say that F is self-
conjugatewhenever(F,A, x’) is conjugateto (F,V, x).

In particular,everydivision beltis self-conjugatainderthe one-to-oneorrespondence* = =1, and
everybounded-groupis self-conjugatainderthe one-to-onecorrespondence-oc)* = 0o, 0o* = —o0,
andz* = z~! if 2 is finite. Thus,if F1., is a multiplicative boundedl-groupandr € F.,, thenthe
additive conjugateof r is the unique elementr* definedby

r~l ifreF
r* = —x ifr=+c- (3121)
4o ifr=—-

Here, r—! is the inverseof r underthe group operation x. Therefore,(r*)* = r. This gives the

following relation for all 7,u in Fi., :
rAu=(r*vu)".
If (F,v, x,A, x’)isabeltwith duality, thenwe saythatthespace T, V) overF hasadualityif adual
addition A is definedsuchthat(T, v, A) is ans-latticewith duality and(T, A) is a spaceover (F,A, x”).

We now returnto the nonlinearmatrix algebrainducedby belts. Let M,,«,(F) denotethe setof all
n X p matriceswith valuesin the belt F. The following are somebasicdefinitionsand properties:

(1) Scalarmultiplication of a matrix A by an element\ € F is definedby
(aij) X A = (aij X A)
A X (a;;) = (X x a;;)
forall A = (a;;) € Muxo(F), XA €F;
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(2) (M,x,(F),V) is an s-lattice and a function spaceover (F,v, x);
(3) (Mnxn(F),V, x) is a belt;

4) (M,x,(F),V) is aleft spaceover the belt (M,,x,(F),V, X) ;
(5) Forall A € M,.x,(F), B, C € Mpxn(F), XA eF,

AX(BVvC)=(AxB)vV(AxC(C)
Ax (BxA)=(AxB)xA.

The proofs of thesepropertiesare straightforward and can be found in [9].

Sincethe s-attice (M, x1(F), V) is isomorphicto the s-lattice F*, we havethat F" is a function
spaceover F aswell as a spaceover M, x»(F). This mimics the classicalrole of matricesas linear
transformationof spacesof n-tuples.

As in realor complexvaluedmatrix theory,two matricesof primeimportancen minimaxtheoryare
theidentity matrix andthe null matrix. Supposehatthe beltF hasidentity andnull elementsp and —oo,
respectively. We definethe identity matrix I € M, x.(F) by

¢ —oo - . —00
—o ¢
I = . .
— 00
—00 -0
and the null matrix @ € M, ,(F) by
— 00 — 00
— o0
P =
— o0 — o0

Thuswe have VA€ M, x,(F),

IXA=AxI = A
AV = dVv A=A
AXDP= Ox A=0.

In the boundedl-group Ry, we have

0 — 00 —00
—00 0
I =
. -0
—00 -0 0
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andin RI__ we have

1 —00 —00
—00 1
I =
. —00
-0 -0 1

Conjugacyextendsto matricesif the underlying value setis itself a self-conjugatebelt. This is
statedin the next theorem.

3.12.7 Theorem. (Cunninghame-Greend9]) If (F,v,x,A,x’) is a self-conjugatebelt, then
(M,xn(F),V, x, A, X'} is a self-conjugatebelt.

Herethe conjugateof a matrix A = (a;;) with entriesin F or F 4, is the matrix A* = (b;;), where
b;; = [a;;]" and[aj;]" is the additiveconjugateof a;; defined earlier. The notionsof pointwiseminimum
and dual productcould have beendefinedin termsof conjugationsince

ANB = (A"V B*)"

and
AX'B=(B"x A*)"

for appropriatelysized matrices.

While semilatticespacesover I-groupsplay the role of vector spacesin minimax theory, linear
homomorphism®f semilatticespacedake on the role of linear transformations.

3.12.8 Definition. Let (L, V) and(T, V) be givenspacesvera belt (F,v, x). An s-latticehomomor-
phismg : (L,Vv) — (T,V) is calledright linear (over F) if

gz xA)=g(z)x A Ve el, VAeF.

We denotethe setof all right linear homomorphismd$rom L to T overF by Homg(L, T).
In linearalgebrawe characterizdineartransformation®f vectorspace®ntirelyin termsof matrices.

A naturalguestiono askis whetheror nota similar classificatiorholdsin minimaxalgebra.Thefollowing
resultsgive necessaryand sufficient conditionsfor this to be the case.

3.12.9 Theorem. (Cunninghame-Green®]) If F is a beltwhich hasan identity elementp anda null
element— oo, thenfor all integersm, n > 1, M,,x,(F) is isomorphicto Homg(F™, F™).

The belt operationsof vV and x on Homg(F"™, F™) arethe naturally inducedoperationsfrom the
beltF™ definedby (f V g)(z) = f(2)Vg(z) and (f x g)(z) = f(z)x g(z)Vf, g € Homg(F™, F™).
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3.12.10 Corollary: Suppose: € Z withn > 1. If F is a belt, thena necessaryand sufficientcondition
that M., x(F) isisomorphicto H omg(F™, F™) for all integersm > 1 is thatF hasanidentity
elementp with respectto x and a null element—oo with respectto V.

We call a matrix A € M,,x,(F) a lattice transform. Since Homg(F", F™) is isomorphicto
M xn(F), we shall usually referto f € Homg(F™, F™) as a lattice transforminsteadof a right
linear homomorphism.In particular, lattice transformsare to minimax algebrawhat linear transforms
are to linear algebra.

Much of what hasbeenestablishedn this sectioncan be expressedn the contextof dual lattice-
orderedsemigroups. However, we wish to study thesestructuresfrom a different perspective. The
extensionof the belt operationdo matricesallows usto view matricesasoperatoroon spacef n-tuples
in a way similar to vector-spacdransformation®eventhoughtheseoperatorsare non-lineardue to the
lattice structureof the underlyingsetF. This pointof view will be especiallyusefulwhenoneis interested
in optimizing non-linearimagetransformsthat correspondo lattice transforms(Chapter7).

The minimaxalgebrathatwe will be mostly concernedvith is basedon the two isomorphicbounded
I-groups (Rioo, V, A, +,+') and (R, V, A, x, x’). The substructure({—oc,0,00},V, A, +,+') of
(Rieo, V, A, +,4'), which is a 3—elementounded-group, is of particularinterestin Booleanimage
processing. The sublattice({—o0,0},V,A) of the 3—elementboundedI-group is a Boolean algebra
with complementation—oc)’ = 0 and 0’ = —oco. By settingOR = V, AND = A, FALSE =
—o0, and TRUE = 0, we obtainthe Booleanalgebracommonlyusedin computerscience.

3.13 HeterogeneousAlgebras

In the previoussectionswe consideredseveralalgebraicsystemspr algebras suchasgroups,rings,
linear algebrasJattice algebras,and minimax algebras. Thesealgebrasare all specialcasesof a more
generalconceptknown as a hetepngeneouslgebra Imagealgebrais a particularly applicableexample
of a heterogeneouslgebra.

Our basicdefinition of a heterogeneoualgebrais due to Birkhoff and Lipson [4].

3.13.1 Definition. An algebra A is a pair A = (F,0), where

(1) F = {F1},¢a is afamily of non-emptysetsof differenttypesof elementsandthe subscripts
A are membersof someindexing set A, and

(2) O = {O«} ek is asetof finitary operationgfor someindexingsetK), whereeachQ, € O
is a mappingof the Cartesianproductof someof the F,’s to another;thatis,

On . H ":)\;(x) - ":/\(ﬂ) ;
=1

andeachF,, /, Fy, € F.

In this definition the notationn,, A(x), andi(x) meansthat the indexing dependn the operation
Ok. In particular,

Okt (Bripys -+ 5 Truy o) = Tagr) € Fag) -
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The operation(), is unary if n, = 1, binary if n, = 2, ternary if n, = 3, etc. The elements
F. of F are called the setsof operandsof .4, and the elements(), € O are called the operatorsof
(or operationson) A.

An algebraA is called a homogeneousr single valuedalgebraif F containsonly one element—
i.e., F = {F}, otherwiseA is called a hetengeneousor manyvaluedalgebra. If A is single valued,
we simply write (F, O) insteadof ({F}, ©) andif the operationsare tacitly understoodye write F in
place of ({F},O).

If A= (F,0)andB = (G,U) aretwo algebraswith 7 = {F,} andG = {G,}, thenB is calleda
subalgebraof A if andonly if 4 C O andfor eachG, € G thereexistsaF, € F suchthatG, C F, .

3.13.2 Examples:

() A linearalgebral(F) = (F, O), whereF = {£,F} consistsof aset{ of vectorsanda setF of
scalarsandO = 0y U Oy U O3 (seeSection3.9). The scalarsform a field underthe operations
0 = {+, x} andthe setL formsaring underthe operationsO; = {4, «}. In addition, there
is a fifth operationF x £ — L of scalarmultiplication, 05 = {-}, satisfyingthe vector space
axiomsV; throughVs (3.7) andthe linear algebraaxiom Ls. Sincecard(F) > 1, L(F) is a
heterogeneoualgebra.Note thatthering {£, 4, *} is a homogeneousubalgebraf L(F).

(i) A finite statemachine({5,7,0},{f,¢}) is a heterogeneoualgebra.Here
S = set of states,
I = setof input symbols,
O = setof output symbols,
f: 8 xI — S is the statetransition function, and
g+ 5 — O is the stateoutput function.

If A= ({Fx},0)andB; = ({Gj.},0) is afamily of subalgebrasvith G, , C F, for everyindex
A, thenthe intersection B; = ({N;G; ..}, O). Higgins provedthe following theorem[14].
J

3.13.3 Theorem. Any intersectionof subalgebraof A is a subalgebraof A.

Another consequencef the definition of subalgebra®f an algebrais that the subalgebra®f an
algebraform a completelattice [3].

The notion of a homomorphismbetweenalgebraicsystemsas definedin the previoussectionshas
its natural generalizationto heterogeneoualgebras.

3.13.4 Definition. Let A = ({F,},0) and B = ({G,}, ') be two algebras. A homomorphism
¥ A — Bis asetof functionsy, : Fy — G, (onefor eachF,) suchthatfor any operation

O [[Frew — Faw
=1
in O thereexistsan (), € ', with

O; : H G)\,(K) - G/\(n) ’

i=1
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such that the composition

¢A(H) o OH = O:@ © (¢A,(1) ) lb/\,(z); ) "b)\,(n“)
holds.

As usual,homomorphismghat are one-to-oneand onto — meaningy, : Fy — G, is one-to-one
andontofor eachA — arecalledisomorphismsForinstancejf X is afinite setwith card(X) = n, then
(IRX,IR,Ol) and(R", R, O,) areisomorphic.Here O; andO; denotethe setof vectorspaceoperations
for RY andR", respectively. The isomorphisme : (IRX,IR,Ol) — (R™,R, O,) consistsof the map
v : RY — R" givenin Example2.8.3 andthe identity map 1z : R — R.

3.14 Generalized Matrix Products

The commonmatrix product,the tensoror Kroneckerproduct,the outer and inner vector product,
andthe minimax matrix productdiscussedn Section3.12, areall specialcasef a moregeneralmatrix
productassociatedvith heterogeneousalgebras.

Following theideasof Section3.12we notethata semigroupF, ) induces for any pair of positive
integersm andn, asemigroupof matrice M, «x..(F), 7). Theinducedoperationonthematrix semigroup
is definedcomponentwise. More precisely,if A = (a;;) and B = (bi;),,,, areelementsof
M, xn(F), then

nxXm

where

A’YB = E = (eij)nXm’ (3 14 1)
eij = a;vbij, Vi=1,2,....n, j=1,2,...,m. o

We cantakethis concepta stepfurther. If O : E x G — F is anybinary operationthen() induces
a binary operation

O : Muxm(E) X Myxm(G) = Muxm(F) (3.14.2)

defined by

AOB=F = (e , Where
O (€3 )nsem (3.14.3)

ei; =a; Ob;, Vi=1,2,...,n,j=1,2,....,m.

The componentwiseproduct definedby Egs. 3.14.2 and 3.14.3is called the generalizedHadamad
product

In the specialcasewhereE = G = F, the algebraicstructure(F, O, v) inducesa matrix structure
(Mxm(F),O,v) that behavesvery muchlike the structure(F, O,~). For example,if O distributes
overy in F, then() distributesover in M, x.(F). Similar commentscanbe madefor commutativity
and associativity.

In the subsequerdiscussiorwe follow the conventionof lettingF™ = M «,,,(F) andviewF™ asthe
setof m-dimensionakow vectorswith entriesfrom F. Similarly, if m = 1, then(F"*)’ = (M1x.(F))" =
M, «1(F) denoteshe setof n-dimensionalcolumnvectorswith entriesfrom F. Our goalis to definea
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classof matrix productsthatallow usto multiply matricesfrom M;y ., (E) with matricesfrom M, ,(G),
wherem is not necessarilyequalto n.

Supposep € Zt which dividesboth m andn. Note that suchan integerp alwaysexists, namely
p = 1. We shall establishthe following two one-to-onecorrespondences:

Zf X1}, — I x I}, x I} and Z} x 2}, x I} < I} xI},

wherethe doublearrow “ " denotesthe appropriateone-to-onecorrespondenceObservethat the last
factorin the 3—fold Cartesiarproductof the first correspondencis Z, which is alsothe first factorin
the 3—fold Cartesiarmproductof the secondcorrespondencerl his commonfactoris the key ingredientin
the definition of the generalmatrix productof order p.

We definethefirst correspondencg;” x Z, — Zj x Z;/p x 2 in termsof the row scanningmap
rp:Z;;/p XZ;' — 7}
where r,(i,k) = (1 — 1)p + k, (3.14.49)
I1<k<pand 1<i<m/p.

Sincer,(i, k) < r,(i',k') i <i or i = ¢ and k < k', r, linearizesthe arraij;/p x Z} usingthe

row scanningorder (seealso Example3.1.5 as shown:

- 1 2 k p 1

(1,1) (1,2) (1,k) (1,p)
p+1 p+2 pt+k 2p
(2,1) (2,2) (2,k) (2,p)
(i—1)p+1 (i-1)p+k ip
(i,1) (4.2) (i) (¢,p)
((m/p)-1)p+1 (m/p)p=m
- (m/p,1) (m/p2) - (m/pk) - (m/p,p) -

It follows that the row-scanningorder on Z;/p X Z;r is given by
(i, k) < (', K) & rp(i k) < (i, K)
or, equivalently, by
(i,k)y< ({',k) e i<i ori=14¢ andk <K.
We define the one-to-onecorrespondence
for2f x 28, x 27 — 7 x 17,
by fo:(2,9,2) = (2,75(y,2))

The one-to-onecorrespondencallows us to re-indexthe entriesof a matrix A = (as;) € My, (E) in
termsof a triple index a, (; r) by using the convention

s (i k) = Usp & 1p(2,k) =1,

, (3.14.5)
where 1 <i<m/pand 1<k<p.

136



3.14.1 Example: Supposd =2, m =6 and p=2. Thenm/p=3, 1 <k<p=2, and 1 <<
m/p = 3. Hencefor A = (a,:) € Maxs(E), we have

The factor Z; of the Cartesianproduct Z} x Z} is decomposedn a similar fashion. Here the
row-scanningmap is given by
(i Z;’ X Z:/p — 7
where ¢p(k,j) = (k= 1)(n/p) + J, (3.14.6)
1<j<n/p, and 1 <k <p.
This allows us to re-indexthe entriesof a matrix B = (b;:) € M, x,(G) in termsof a triple index
bk,;),: by using the convention

b(k,j),t = bs,t < Cp(kuj) =S,

. (3.14.7)
where 1 <k<pand 1 <j<n/p.

3.14.2 Example: Supposer =4, ¢ =3 and p=2. Thenn/p=2, 1 <k<p=2, and 1 <j <
n/p = 2. Hencefor B = (b,+) € M,x,(G), we have

bir b1z b3 bana banez bans
B bai b2 baz | _ | ban buzz bazs
bar b3z b33 bent ben2 bengs
bar b4z b3 b1 be22 be2)s

The induced operation() in Egq. 3.14.2is a componentwiseoperationdefinedonly for matri-
ces of the samedimension. The p-productis definedfor matricesof possibly different dimension-
ality and extendsthe common notions of vector and matrix products. In general, we start with a
heterogeneouslgebra A = ({E,F, G}, {0, 7v}), where O is a binary operation() : Ex G — F
and (F,~) is a commutativesemigroup. For eachquadruplel, m, n, and q of positive integersand
eachfixed p € Z* that divides both m and n, we constructan induced heterogeneousnatrix alge-
braA, = ({Mlxm([E), Mz 24(F), Mnxq(G)} A®D,. 7}) , Where (M;%X%q([lz) ,7) is the induced
matrix semigroupdefinedby Eqg. 3.14.1and

®p : Mle([E) X Man(G) — Ml%x%q(":) (3148)

is a binary operationinducedby (O and . The operation @), is called the generalmatrix product
of order p or simply the p-product and is definedas follows: Supposed = (a;:) € M;x»(E) and
B = (bs;) € M,x,(G). Re-indexA andB using the rule

A= (as,(i,k))le & r(i,k) =1, and
B = (b)), & olk,j)=s.
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We now define the matrix

C=AQ,B¢ Mlﬁx%q(lF) (3.14.9)
by
p
i) = T (%0 Obuge) = (60 O b v - 15 O b)) (3.14.10)
k=1
wherec ;)¢ IS theentryin the (s,))-row and(i,t)-columnof C'. Herewe usethe lexicographicalorder
(s,j) < (s,j) & s< s orif s =3¢, 75 < j'. Thus,the matrix C hasthe following form:
cany e L)L) caney o Do - CLDGEY  SLL)(m/pa)
L2y - C12)(Lg) a2 - G229 - CL2)GEH o C(L2)(m/pa)
Cin/p)(1,1) -+ Cn/p)(Le) C(Ln/pX21) - CLn/p)(29) - Cn/p)it) - C(Ln()(m/p,g)
Cney - G2l Ceney - fenEe o CenEy o G2(m/pa)
C2n/p)(1,1) - C2n/p)(lg) C2in/p)20) o C2n/p)(2,49) - C2n/p)Et) - C(2n/p)(m/p.g)
Cli)r) e Csg)(1e) Clsi)z1) -0 S e S o Csg)m/pig)
.y e (L) conEy e ane e DGy o CLL)(m/pa)
Cn/p)1,1) - Cn/p)(le)  CUn/p)21) - ClUn/p)29) o CUn/p)Et) -0 Cln/p)(m/pg)

Theentry ¢, ),y in the (s,)-row and (i,t)-columnis underlinedfor emphasis.

3.14.3 Example: Supposd= = F = G = R and~y denotesaddition(+), while () denotesmultiplication
in the abovedescription.If [ = 2, m = 6, n = 4, and ¢ = 3, thenfor p = 2, one obtains
m/p =3, n/p=2 and 1 <k < 2. Now let

ai; a2 @13 G114 415 Q1
A= ( ) € Mixm(R) = Maxs(R)
Q21 @G22 Q23 Q24 Q25 Q26

and

by by b
B=|,"" 7 P € My, (R) = Myxs(R).

Thenthe (2,1)-row and (2,3)-columnelemente(z 1)(,3) Of the matrix
=4 ®2B € Mln/px(m/p)q(H) = M4X9(H)

is given by
2

C(2,1)(2,3) = 202,(2,k) 'b(k,1),3

k=1
=ay,2,1) b3t 2,22 b@21)3
= a3 - b1z + a4 - b33.
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Thus, in orderto computec, 1)(2 3), the two underlinedelementsof A are combinedwith the
two underlinedelementsof B asillustrated:

a11 a2 @13 414 G15 4aie bai  baa ba3
Q21 Q22 Q23 G24 Q25 Qa2

bana banz bangs
_ (al, 1,1y %1,(1,2) %1,2,1) 9,2,2) %1,3,1) @1,(3,2 ) ®, b(l 2),1 b(1,2),2 b(1,2),3
@2,(1,1) @2,(1,2) @2,(2,1) @2,2,2) 942,31 @4 b(2,1),1 b(2,1),2 b(2,1),3
baaa be2e be2)s
C(1,1)(1,1) €(1,1)(1,2) T C(1,1)(2,3) €(1,1)(3,3) €11 €12 -+ €6 " C19
_ | Cy €,2)(1,2) T C(1,2)(2,3) €(1,2)3,3) | _ | €21 €22 -+ C26 ' C29
C2,1)(1,1)  €(2,1)(1,2) T C2,1)(2,3) €(2,1)(3,3) €31 €32 -+ C3 -+ C39
€(2,2)(1,1)  €(2,2)(1,2) T C(2,2)(2,3) €(2,2)(3,3) €41 C42 -+ C46 - C49

Thenotation (), is completein thatit involvesall the building blocksof the p-product;the subscript
p providesuswith thecommondivisor of mandn, () remindsusof thebinaryoperation() : E x G — F,
andtheoperationy inscribedby the circle definegheglobalreduceoperationl’ of Eq. 3.14.100f elements
of F. We makethe conventionof usinga circle, O, if the binary operationE x G — F is viewedasa
multiplicative operatioranda square[, if it is viewedasanadditiveoperation.Thusif E=F =G = R
and~y denotesaddition (+), while () denoteamultiplication, thenEqgs. 3.14.9and 3.14.10haveform

C=A@,B € Mzyn,(R) (3.14.11)

and

P
Cs,7)(5,t) = Z (as,rP(i,k) 'bcp(k,j),t) = (as,r,,(i,l) 'bcp(l,j),t) + ...+ (asﬂ«?(i,p) 'bc,,(p,j),t) , (3.14.12)
k=1

respectively.On the otherhand,if v denotegshe maximum,V, of two numbersand() denotesaddition,
then Eqgs. 3.14.9and 3.14.10have form

C = AMPB € Mlzxﬂq(R) (31413)

and

(as’(i,k) + b(k,j),t) = (as,(iyl) + b(l,j),t) V...V (a’s,(i,P) + b(P,j),t) , (3.14.14)
1

P
C(sd)(it) =

k=
respectively.

As mentionedearlier, the p-productincludesthe commonlyusedmatrix andvector products. These
productsare obtainedwhen substituting certain specfic valuesfor p. We concludethis section by
consideringthese specific cases.
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3.14.4 The casep = 1.

If p =1, thenm/p = m, n/p = n and k = 1. Therefore,the entry in the (s,)-row and (i,t)-
column of the matrix C' = A@QB € Myuxmq(F) is given by c( i = @s,,1) O b1,5- Since
T‘l(i, ].) =1 and Cl(l,j) = j, C(s,7)(it) is of form C(s,j)(it) = Qsi O b]'t. Hence,

a1 OB a:20OB -+ an OB
anB  apOB - @, OB

where
Qgi O biv - ag O blq
as; OB = .
Gg; O bnl st Ogg O bnq

This is the Kroneckeror tensorproductfor heterogeneoualgebras.For this reasonwhenevery and ()
are understoodwe let ), be denotedby ®.

If bothp =1 andm = 1, then A is a columnvector of length| and

a a; OB
A® B = :2 ®1B = : € Mln)(q(":)a
ar ar QB

which correspondgo the tensorproductof a columnvectorand a matrix.

If insteadof m, n = 1, thenwe obtain the heterogeneousersion of the tensorproductof a row
vector and a matrix:

(a1, ag, -+, @) @B =(a1 OB, a; OB, 8, O B) € Muxmq(F).
If both! =1 andq = 1, thenwe obtainthe tensorproductof a row vectoranda columnvector:
A®B:(G’IOB7 a?OBv 7amOB)'

aiby  azby - anb
a1by  azby -+ apb

_ 1. 2 2. 2 . 2 € My (F).
a1b, asb, --- a,b,

Observethat if m = n, thenthis generaltensorproductcorrespondgo the outer product of two row
vectors.

If m =1andn =1, thenA € M 1(E), B € Mi4,(G) and

aq ay OB
aeB=|"|oB= “293
a.l aj O B
aiby aiby --- apb,

_ (Zg:bl (12:1)2 . aQ:bq € Mgy (F).
al.bl al.bg oo agbg
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It follows from the lasttwo caseshatif O : E x G — F is commutativethen(B’ ® A’) = A® B,
where A" € Mixi(E) and B’ € Myx1(G) arethe transposeof A € Mix1(E) and B € Mix4(G),
respectively.

If Il =1 = nandm = ¢, thenr(i,k) = r(:,1) = ¢, ¢o(k,j) = ¢(1,1) = 1, and
C(s,j)(i,t) = 6(171)(2-,15) = Cl,(i,t) = C(i,t)1 WherEC(i’t) = a; O bt- ThUS,

A ® B=C= (C(l,l)u C(1,2)7 T, C(l,m)v 6(2,1)7 Tt 76(2,m)7 ) C(m,m))

:(CI,CQ,"',Cmvcm+1,"',CQm,"',sz)
and @ : E™ x 6™ — F™’,

3.14.5 The casep = m = n.

In this casem/p = n/p = 1. Sincel < i < m/p=1 and 1 < j < n/p =1, we have
that 1 < 7,(¢,k) = k = ¢,(k,5) < m. Therefore,@,, : Mixm(E) X Myxq(G) — Mx,(F), where
C = AQ),,B is definedby

e = T e O b (3.14.15)
k=1
Herewe setc(; ;i) = cst Since(s,j) = (s,1) = s and (i,t) = (1,t) = t. We alsodefine® = @,
wheneverm = n = p.
Replacingl’ with ¥, we seethat 3.14.15hasthe form of the usualmatrix product. For this reason
we refer to () asthe generalizedmatrix product
If I =1,then @) : E™ X My,xq(G) — F? andC = AQ)B is definedby

c= T ar O b (3.14.16)
k=1
sincein this casec; ;i) = ¢yt = ¢ andl < ry(4,k) = rp(1,k) = k = ¢, (k, 1) = ¢,(k, ) < m.
An analogousaseoccurswheng = 1. In thiscase®) : Mix,(E) x (G™)" — ([Fl)' andC' = AQB
is defined by

¢s= T as O by. (3.14.17)
k=1
Equations3.14.15,3.14.16,and 3.14.17play a centralrole in imagealgebraand correspondo the
generaltemplateproduct,the generalbackwardiransform(or backwardimage-templat@roduct),andthe
generalforward transform(or forward image-templatgroduct), respectively.
Anotherimportant productoccurswheneverl = ¢ = 1. In thiscase() : E™ x G™ — F. Thus,
C' = AQB is ascalarvaluein F. Sincec; ;i1 = ¢(1,1)(1,1) = ¢11, We S€tc = ¢(; ;)(;,1) and notethat

c= 1 arObs. (3.14.18)
k=1

Again, replacingT’ with 3, we seethat 3.14.18hasthe form of the usualinner or dot product of
two vectors. For this reasonwe call A Q) B the generalizeddot productandsetA Q) B = A e B.
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CHAPTER 4
IMAGE ALGEBRA

The goal of this chapterlis to familiarize the reademwith the basicconceptghatdefineimagealgebra.
Sincethe primary operandsof image algebraare imagesand templates,we begin our discussionwith
their characterization.

4.1 Images and Templates

In the designandanalysisof computervision algorithmsit is not only convenientput alsonecessary
to mathematicallycharacterizeéhe imagesto be manipulated.

In Section2.18 we discussedhe notion of a digital image. Accordingto Definition 2.18.3 digital
imagesarequantizedversionsof continuousntensityfunctionsoversomespatialdomainX. Specifically,
digital imageswere definedas functionswith domaina rectangularsubsetof Z? and rangesomesubset
of Z,«. Although mostdigital imagesassumethis type of format, the definition doesnot cover various
typesof imagesmanipulatedoy currentdigital and optical devices.For instance digital computershave
two major forms of numericrepresentationsintegerandreal. Integernumbersrangefrom 0 to some
maximumvalue2* — 1. In a 32—bit computer for example the maximumpositive integeris 232 — 1. If
an integerarithmeticoperationresultsin a fractional part, the remainderis simply truncated. Thus, for
example,the ratio % is representecsthe integer5 without a trailing decimalpoint. With real number
computationthe fractionalpartof an operationis retainedup to the numericalaccuracyof the computer.
Theratio of therealnumbers% is representedsb5.33 - - - 33. Mostimageprocessingechniquesnvolve
realor floating point arithmetic,thusnecessitatingeal-valuedmagerepresentationFurthermoreyarious
imagetransformationssuchas edgedetectiontransformsand the Fourier transform,introducenegative
and complexvalues. Also, when modelingimagesand image transformsin the continuousdomain, a
continuumof valuesis usually requiredfor the rangeof an imagefunction. Thus,the setZ,» doesnot
suffice to characterizémage valuesand image processingransforms.

Three-dimensionaimages,i.e., imageswith domainin 7Z° or R®, are often generatedcomputed)
from multiple cameraviews, motion, millimeter waveradar(MMWR), X-ray tomographyor laser-range
data. Therefore,the needfor domainsotherthan rectangularsubsetof 7?2 is alsoobvious. In orderto
provide a mathematicallyrigorousdsdfinition of animagethat coversthis plethoraof differentimages,it
becomesvidentthat an image mustbe definedin generalterms,with minimum specfication.

4.1.1 Definition. LetF beahomogeneoualgebraandX atopologicalspace.An F—valuedimageon
X is any elementof FX. GivenanF-valuedimagea € FX, thenF is calledthe setof possible
rangevaluesof a and X the spatial domainof a.

It is often convenientto let the graphof animagea € FX represent. The graphof animageis
alsoreferredto asthe datastructure representatiof the image. Given the datastructurerepresentation
a = {(x,a(x)) : x € X}, thenan element(x, a(x)) of the datastructureis called a picture element
or pixel The first coordinatex of a pixel is called the pixel location or image point, and the second
coordinatea(x) is called the pixel value of a at location x.
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Obviously, Definition 4.1.1 coversall mathematicaimageson topological spaceswith rangein an
algebraicsystem.RequiringX to beatopologicalspaceprovidesuswith the notion of nearnes®f pixels.
Since X is not directly specifiedwe may substituteany spacerequiredfor the analysisof animageor
imposedby a particularsensorand scene.For example X couldbe a subsetof Z* or R? with x € X of
form x = (2, y,t), wherethe first coordinateg z, y) denotespatiallocationandt a time variable.

Similarly, replacingthe unspedied valuesetF with Zox or F = (Zyx, Zam , Z3+) providesus with
digital integer-valuedanddigital vector-valuedmages respectively.An implication of theseobservations
is that4.1.1alsocharacterizesny type of discreteor continuousphysicalimage. The commonmodelof
aphysicalimageis in termsof a continuousenegy function E(x, A), wherel is avariableassociatedvith
enepgy at space/timdocationx. In the contextof visualimagesA\ refersto wavelengthandx may be of
formx = (z,y), x = (2,y,t), orx = (z,y,2,t), where(z,y) and(z, y, z) represenspatialcoordinates
andt thetime variable. Physicalimaging systemsamposea restrictionon the maximumbrightnessof an
imageand sincelight intensityis a real positive quantity, it is assumedhat

0< E(x,A)<B,

where B denotesthe maximum brightness. In addition, the spatialdomainis limited in extentby the
imaging systemand the systemoperatesonly over a finite time interval so that |x| < L. Thus,E is a
boundediunctionon X x [0, 00), whereX is compactx € X, and X € [0, o0). In manyimagingsystems
the imagedoesnot changewith time so that X represent®nly the setof spatialdomainvariables.

The observedmagefield is modeledas a spectrallyweightedinterval

o0

a(x) = /E(x, Ns(A)dA,

where s(\) denotesthe spectralresponseof the sensorused. In a multispectralimaging systemthe
observedimage field is given by

a(x) = (a(x), ..., a,(x)),

where

(o)

ai(x) = /E(x, N)si(A)dA,
0
ands;(x) denoteghe responsef the ith sensor.For example,in an arbitraryred-green-blueoordinate
system,

where
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ands;(\), sz(A), and s3(X) arespectratristimulusvaluesfor thesetof red,green,andblue primaries,
respectively.

Although theseexamplesare presentedn the contextof visual images,other multidimensionaktime
varying signals have similar representationsind can always be viewed as boundedfunctions from a
compactsetX to anappropriatevaluesetF. The sampledquantized)versionsof thesefunctionsremain,
of course,boundediunctionson compactsetsasfinite discretesetsare alwayscompact.Therefore both
continuousand quantizedimagerepresentationsf physicalimagesareincludedin Definition 4.1.1

Even though Definition 4.1.1 providesa generalframework for specifyingimageswith particular
point and value sets,the definition doesnot provide for moreinsight into understandingmage content;
the functionalform of the imagea is almostneverknown. The inability to relatechangesn x to those
in a(x) presentone of the greatestifficulties in imageunderstandingln addition,4.1.1 providesonly
for a deterministicimagerepresentationit definesa mathematicalmagefunction with point properties.
It is often convenientto regardan image as a sampleof a stochasticprocess. The image function
a(x) = a(z,y,2,t) (ora(x) = a(z,y,t)) is assumedo be a memberof a continuousfour-dimensional
stochastigprocesswith spacevariable(z,y, ) andtime variablet. A discrete(quantized)imagearray
can be completely characterizedstatistically by its joint probability density. The extensionof image
algebrato include stochasticmodelsis given in Section?.

A more abstractclassof imagesis providedby templates. Templatesareimageswhosevaluesare
images.In termsof imageprocessingapplications templateseign supremeitemplateoperationgplay a
dominantrole in mostalgorithmsandprovidefor brevity of code. They arethe essencef imagealgebra.
Thenotionof atemplate asusedin imagealgebraunifiesandgeneralizeshe usualconceptf templates,
maskswindows,andneighborhoodunctionsinto onegeneraimathematicaéntity. In addition,templates
generalizethe notion of structuringelementsas usedin mathematicamorphology|[5, 4].

4.1.2 Definition. A templateis an image whosepixel valuesare images(functions). In particular,
an F—valuedtemplatefrom Y to X is a functiont : Y — FX. Thus,t € (FX)Y andt is an
FX_—valuedimageon Y.

For notationalconvenienceve define ty = t(y) Vy € Y. Theimaget, hasrepresentation

ty = {(x,ty(x)) : x € X}.

The pixel valuesty (x) of this imageare called the weightsof the templateat pointy.

From a set theoretic point of view the set ([FX)Y of all F—valuedtemplatesfrom Y to X and
the set FX*Y are equivalent. Defining for eacht ¢ ([FX)Y a correspondingunctiont € FX*Y by
t(x,y) = ty(x), andvice versa,providesfor the necessarpne-to-onecorrespondenceConceptually,
however thereis a greatdistinctionbetweerthe elementsof ([FX)Y andthoseof FXXY | For the former
we obtainfor eachpointy € Y anF—-valuedimaget, on X while for the latter we obtainfor eachpoint
(x,y) € X x Y avaluet(x,y) € F. It is this conceptof associatingvith eachpointy € Y animage
ty that providestemplateswith their great utility.

If t is areal or complex-valuedemplatefrom Y to X, thenthe supportof t, is denotedby S(ty )
and is definedas

S(ty) = {x € X : ty(x) #0}.
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For extendedreal-valuedtemplateswe also definethe following supportsat infinity:

Yoolty) = {x € X 1 ty(x) # o0},
Ioolty) ={x € X : ty(x) # —oc},

and
Stoo(ty) ={x € X : ty(x)# +oo}.

If X is aspacewith anoperationt suchthat(X, +) is agroup,thenatemplatet € (IFX)X is saidto
betranslationinvariant (with respecto the operationt) if andonly if for eachtriple x,y, z € X we have
thatty, (x) = ty4.(x + z). Templateshat are not translationinvariant are called translationvariant or,
simply, varianttemplates.A large classof translationinvarianttemplateswith finite supporthavethe nice
propertythatthey canbe definedpictorially. For examplejet X = 7? andy = (x,y) be anarbitrary point
of X. Setxy = (z,y— 1), xa = (¢ + 1,y), and x3 = (2 + 1,y — 1). Definet € (RX)X by defining
the weightsty(y) = 1, ty(x1) = 3, ty(x2) = 2, ty(x3) = 4, and ty(x) = 0 wheneverx is not an
elementof {y,x;,x2,x3}. Notethatit follows from the definition of t that S(ty) = {y,x1,x2,x3}.
Thus, at any arbitrary point y, the configurationof the supportand weightsof t, is asshownin Figure
4.1.1 The shadedcell in the pictorial representatiof t, indicatesthe locationof the pointy.

Figure 4.1.1 Pictorial representatiomf a translationinvariant template

Therearecertaincollectionsof templatedhat canbe defined explicitly in termsof parametersThese
parameterizedemplatesare of greatpracticalimportance.

4.1.3 Definition. A parameterized-—valuedtemplatefromY to X with parametersn P is a function
of formt : P — (IFX)Y. The setP is calledthe setof parametersandeachp € P is called
a parameterof t.

Thus, a parameterizedr—valuedtemplatefrom Y to X givesrise to a family of regularF—valued
templatesfrom Y to X, namely{t(p) e FX)Y: pe P}.
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Figure 4.2.1 An exampleof an explicitly specifiedcoordinaterestriction.

4.2 Functional Specfication of Image ProcessingTechniques

The basic conceptsof elementaryfunction theory discussedn Sections2.5 and 2.6 provide the
underlying foundationof a functional specificationof image processingtechniques. This is a direct
consequenc®f viewing imagesas functions; since imagesare functions, the notation and concepts
discussedn 2.5, 2.6, andsubsequendectionscanbe usedto furnishthe functionalnotationfor specifying
image processingalgorithms. In orderto emphasizehe fact that eventhe most elementaryconceptsof
functiontheoryhaveimportantapplicationsn imageprocessingye beginthe developmenof afunctional
notationby focusingour attentionon the notionsof domain,range restriction,andextensiorof afunction.

Image restrictionsand extensionsare usedto restrictimagesto regionsof particularinterestand
to embedimagesinto larger images, respectively. Following the notation usedin Section2.5, the
restrictionof a € FX to a subsetZ of X is denotedby alz, anddefinedby a|z = an(Z x F). Thus,
a|z € FZ. In practice the usermay specify Z explicitly by providing boundsfor the coordinatesof the
points of Z. For example,the imagea on the left of Figure4.2.1represents digital image on the set
X = {(i,j) €7?:1<i<512,1<j5< 512}, while the image on the right representshe restriction
a|{(i,j)ex: 85<i<485,15<5<380} -

Thereis nothing magicalaboutrestrictinga to a subsetZ of its domain X. We can just as well
definerestrictionsof imagesto subsetf the rangevalues. Specifically,if S ¢ F anda € FX, thenthe
restriction of a to S is denotedby a||s and definedas

alls =an(XxJ9).

In termsof the pixel representatiorof al|s we havea|ls = {(x,a(x)) : a(x) € S}. The double-bar
notationis usedto focus attentionon the fact that the restrictionis applied to the secondcoordinate
ofa ¢ X xF.

Imagerestrictionsin termsof subsetof the value setF is an extremelyusefulconceptin computer
vision as many image processingtasksare restrictedto image domainsover which the image values
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Figure 4.2.2 Exampleof a rangerestriction.

satisfy certain properties. Of course,one can always write this type of restrictionin termsof a first

coordinaterestrictionby settingZ = {x € X : a(x) € S} sothatal|s = a|z. However, writing a

programstatemensuchasb := a|z is of little value sinceZ is implicitly specifiedin termsof S i.e.,

Z must be determinedin termsof the property“a(x) € 5.” Thus,Z would haveto be precomputed,
adding to the computationaloverheadas well asincreasedcode. In contrast,direct restriction of the

secondcoordinatevaluesto an explicitly specifiedset S avoidstheseproblemsand providesfor easier
implementation.

As mentioned restrictionsto the rangeset provide a usefultool for expressingvariousalgorithmic
procedures.For instance,if a € RX and Sis the interval (k,00) C R, wherek denotessomegiven
thresholdvalue,thena||(kloo) denoteghe imagea restrictedto all thosepointsof X wherea(x) exceeds
the valuek. In orderto reducenotation,we definea||x = a||(x,)- Similarly,

all>k = alljroo)s all<k = all(-ook), allk =allgy, and all<x = all(con-

Figure4.2.2 providesan exampleof sucha restriction. In this example the input a is shownon the left
(it is identicalto the explicitly restrictedimageshownon the right of Figure4.2.7), while the implicitly
specifiedimagea||ss is shownon the right.

A more generalform of range restriction is given when S correspondsto a set-valuedimage
S e (2'F)X; i.e.,, S(x) C F ¥x € X. In this casewe define

alls = {(x,a(x)) : a(x) € 5(x)}.

For example,given an imageb € RX, we may define a function Scp 1 X — 2R py Scp(x) =
{reR : r <b(x)}. Thena|ls.,, = {(x,a(x)) : a(x) < b(x)}. Again, in orderto reducenotational
baggagewe definea||<1, = al|s.,. Similarly, we define

all<b =1{(x,a(x)) + a(x) <b(x)}, afb = {(x,a(x)) : a(x) = b(x)},

all>p = {(x,a(x)) : a(x) > b(x)}, af>p ={(x,a(x)) :
and allzp = {(x,a(x)) : a(x) # b(x)}.

/\

Combining the conceptsof first and secondcoordinate(domain and range) restrictions providesthe
generaldefinition of an image restriction.
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4.2.1 Definition. If a € FX, Z c X, andS C F, thenthe restrictionof a to Z and Sis definedas

a|(z,5) =anl (Z X S)

It follows thata|(z ) = {(x,a(x)) : x € Z and a(x) € S}, alx,s) = al|s, andalz ) = alz.
The extensionof a € FX to b € FY onY, whereX andY are subsetsof the sametopological
space,is denotedby a|® and definedby

_Ja(x) if xeX
a°(x) = {b(x) if xeY\X.

In actual practice,the userwill haveto specify the function b. Figure 4.2.3 providesan exampleof
such an extension. Here we extendedthe imagec = al|s5 (displayedon the right of Fig. 4.2.2
with domainZ = {x € X : a(x) > 5} to the imaged = c|® shownon the right. In this example,
Y = {(i,j) € Z* : 1 <i<512, 1 <j<512}, andb is theimagedisplayedon the left of Fig. 4.2.3

Figure 4.2.3 An exampleof an image extension.

Two of the mostimportantconceptsissociatedvith a functionareits domainandrange(Section2.6).
In the field of imageunderstandingit is conveniento view theseconceptsasfunctionsthat mapimages
to setsassociatedvith certainimageproperties.Specifically,we view the conceptof rangeasa function

range : FX — ofF
defined by range(a) = a(X). Similarly, the conceptof domainis viewed as the function
domain : FY — 2%,

definedby domain(a) = a (F), whereY is a subspaceof some larger spaceX. In particular, if
a € FY, then domain(a) = Y.
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Thesemappingscanbe usedto extractpoint setsandvalue setsfrom regionsof imagesof particular
interest. For example,the statement

s := domain(a||>) (4.2.1)

yields the setof all points (pixel locations)wherea(x) exceedsk, namelys = {x € X : a(x) > k}.
ReplacingEgs. 4.2.1 by

s:= range(al|>x) (4.2.2)

resultsin a subsetof R insteadof X.

Restriction,extensiondomain,andrangearesomeof the elementaryconceptaisedin the functional
specificationof imageprocessingechniques.In subsequensectionswe shall encountemmany others.

4.3 Induced Operations on Images

Manipulatingimage data using the conceptsof restriction, extension,domain, and rangedoesnot
involve the algebraicstructureof the underlyingvalue set; the statements := range(al|;) doesnot
referencethe arithmetic operationsof addition and multiplication associatedvith R. However,it is the
operationsassociatedavith the value setF thataregenerallyusedin processing-—valuedimages.In this
sectionwe describehow the operationson F inducecorrespondingperationson F—valuedimages.

Operationson and betweenF—valuedimagesare the natural induced operationsof the algebraic
systemF. For example,if v is a binary operationon F, then~ inducesa binary operation— again
denotedby v — on FX definedas follows:

Let a,b € FX. Then
avb = {(x,¢(x)) : c(x) = a(x)yb(x), x € X}. (4.3.1)

Inducedunary operationsare definedin a likewise fashion;any unaryoperationf : F — F induces
a unary operationf : FX — FX definedby

fla) ={(x,¢c(x)) : e(x) = f(a(x)), x € X}. (4.3.2)

Note thatin this definition we view the compositionf o a asa unary operationon FX with operanda.
This subtledistinction hasthe importantconsequencéhatf is viewed asa unary operation— namelya
function from FX to FX — and a as an argumentof f.

The operationsdefinedby Eqgs. 4.3.1and 4.3.2 are called inducedpixel level operations. They are
alsoreferredto as grey level basedoperationsas they operateprincipally on the pixel or grey values
of an image.

In additionto the binary operatiordefinedby Eq. 4.3.1,v alsoinduceghefollowing scalaroperations
on images:

Fork € F and a € FX,

kya = {(x,c(x)) : ¢(x) = kya(x), x € X}, (4.3.3)
and

avk = {(x,c(x)) : ¢(x) = a(x)7k, x € X}. (4.3.4)
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4.3.1 Examples:

0] Choosingthe I-ring (R, V, A, +, -) as our value set and applying Eq. 4.3.1, we obtain the
following basic binary operationson real-valuedimages:

If a, b € RX, then

a+b = {(x,c(x) : e(x) = a(x) + b(x), x € X},
a-b={(x,c(x)) : c(x)=a(x)-b(x), x € X}, (4.3.5)
aVb={(x,c(x)): e(x)=a(x)Vb(x), x e X},

and

aAb={(x,c(x)) : e(x)=a(x)Ab(x), x e X}. (4.3.6)

Obviously, all four operationsare commutativeand associative.

(i) For k € R, we obtainthe following scalarmultiplication and addition of real-valuedmages:
k-a={(x,¢c(x)): c(x)=Fk-a(x), x € X} (4.3.7)
and
k+a={(x,¢c(x)): ¢(x)=k+a(x), x€X}. (4.3.8)

It follows from the commutativity of real numbersthat,

k-a=a-kand E+a=a+k.

(iif) Following Eq. 4.3.2,we notethatany function f : R — R inducesa function f : RX — RX.
For example,using the sine function we obtain

sin(a) = {(x,¢(x)) : e(x) = sin(a(x)), x € X}.

As anotherexample,considerthe characteristidunction

X (r):{l if r>k

zk 0 otherwise
Thenfor anya € RX, y ,, (a) is the boolean(two-valued)imageon X with value1 at location
x if a(x) > k andvalueO if a(x) < k. This type of operationis referredto as thresholding
and k is called the thresholdvalue or thresholdlevel Figure 4.3.1 showsan exampleof a
thresholdoperation. The imagea shownon the left is a 512 x 512 integer-valuedmage;i.e.,
X = Z512 X Z512 C Z*. Theimageon theright is the thresholdedmagey ,,,,(a).
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Figure 4.3.1 Application of the characteristidunction.

In somethresholdoperationst is desiredto retain the original valuesthat passthe threshold.
This operationis accomplishedy setting

c:a'sz(a)

for thenc(x) = a(x) whenevera(x) > k andc(x) = 0 whenevera(x) < k.

Thefunctiony ,, givenin theaboveexampleis atypical characteristicfunctionon the realnumbers.
In general given someuniversalsetU and S C U, thenthe function x . : U — {0,1} definedby
(1 ifzxeks
Xs(2) = { 0 otherwise
is called the characteristicfunctionon S In the aboveexample,Ul = R and S = {r e R: r > 115}.
Thereis a useful generalizationof the conceptof a characteristicfunction. Supposea € FX and
s e (2F)% e, S(x) CF Vx € X. We define
X s(a) = {(x,c(x)): c(x) = 1if a(x) € §(x), otherwise ¢(x) = 0}. (4.3.9)
Obviously,if S : X — oF is a constantfunction, i.e., S returnsthe sameset Sx) for eachx € X,

then x . representshe usualcharacteristidunction. Also notethat x ., returnsa boolean-valuedmage
regardlessof the type of value setF used.

4.3.2 Example: Pixel level imagecomparisorprovidesa simple applicationexampleof the general-
ized characteristidunction. Given the imageb € RX, we defineSc, € (2“)X by S<n(x) =
{r e R: r <b(x)}. ThefunctionsS<y, S—p, S>b, Ssb, Szb areddined analogously.
Thus, for example,S=, = {r e R: r = b(x)} and Ssp(x) = {r e R: r > b(x)}. Substi-
tuting theseset functionsfor S in Eq. 4.3.9yields

Xsg, (a) = {(x,¢e(x)) : ¢(x) = 1if a(x) < b(x), otherwise ¢(x) =0}
Xs,, (@) = {(x,e(x)) : e(x) =1if a(x) < b(x), otherwise ¢(x) = 0}
Xs_, (a) ={(x,¢(x)): ¢(x) = 1if a(x) = b(x), otherwise ¢(x) =0}
X sy, (a) = {(x,¢(x)): e(x) = 1if a(x) > b(x), otherwise ¢(x) = 0} (4.3.10)
Xs,, (@) = {(x,e(x)) : e(x) =1if a(x) > b(x), otherwise ¢(x) = 0}
X s, (a) = {(x,¢c(x)): e(x) = 1if a(x) # b(x), otherwise ¢(x) = 0}.
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Here, of course,a € RX. In orderto reduceand simplify notation,we define

XSJa)zisb(a% Xal(@) =X, (a), Xu(a) =X, (a); (4.3.11)

(@) o (8) = X (8), and X (8) = x o (8).

The characteristidunction definedby Eq. 4.3.9is not a naturally inducedoperation;it is not an
operationon FX, butan operationfrom FX to {0, 1}X. However,aswill be shownin the next section,
generalizedcharacteristidunctions can neverthelesde derivedfrom the elementarynaturally induced
operations. Another operationthat mapsimagesto a different domainis given by the global reduce
operation. If v is an associativeand commutativebinary operationon F (i.e., (F,~) is a commutative
semigroup)and X is finite, sayX = {xy,xz, ..., X,}, theny inducesa unary operation

r:FX-F
called the global reduceoperationinducedby -, which is definedas
Fa=T a(x) =L a(x) = a(x1)7a(x2)7 -+~ ya(x,). (4.3.12)

Thus,for examplejf F = R andy is theoperationof addition(y = +), thenl' = ¥ and}_ a = )  a(x).
xeX
In all, thelattice(R, +, -, V, A) providesfor four basicglobalreduceoperationspamely>_ a, [[a, V a,

and A a.

4.3.3 Examples:

Q) Area. If ais abooleanimage,a € {0,1}*, whereX denotessomerectangulasubsebf Z?, then
Y a= ) a(x) countsthe numberof pixels havingvaluea(x) = 1. This countcorrespondso
xeX

a rough estimateof the areaoccupiedby the black objectsin the imagea. Hereblack objects
are definedas the connecteccomponentgsee Section2.20 of X with the propertythatx is a
memberof a component< a(x) = 1.

(i) Imagemaximum.If F =R andy = v, thenT = \/ and\/a = \/ a(x) denoteshe maximum
xeX
value of the imagea € RX.

(iii) Image histogram. SupposeX is a rectangularm x n array (subsetof 72), Y =
{j eN: 0 <j < K} for somefixedintegerK, and P = {a € NX : range(a) C Y }. Define

a parameterizedemplate
t: P — (NY)*

by defining for eacha € NX the templatet with parameten, i.e., t(a) € (NY)X, by

ani) = { ) Mot =)

0 otherwise.
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The imageh € RY obtainedfrom the code
h = ¥t(a)

is the histogramof a. This follows from the observationthat since > t(a) = Y t(a),,
xeX
h(j) = Z t(a),(7) = the numberof pixels having valuej.

Figure 4.3.2 providesan exampleof the processh := Xt(a). The left image representshe
inputimagea andthe right imagethe graphof the histogramimageh, resultingfrom reducing
the parameterizedemplatet.

If one is interestedin the histogramof only one particular value j, then it would be more
efficient to use the statement
=3 ()

since ) x,(a) representsthe number of pixels having value j ; i.e., since ) x;(a) =

x%:XXj(a(X)) andy,(a(x)) =1 & a(x) = j.
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T
"hi stograml" —

25000
20000
15000 |

2-4"¢a°' PN
©O'CA. ]
40 '82 e

Figure 4.3.2 An image and its histogram.

Note thatin the first two examplesthe global reduceoperationresultedin reducingan imageto a
singlenumericalvalue. In the histogramexample however,we havet(a) € FX, whereF = NY. Thus,
by definition " t(a) € F = NY is an integer-valuedmageon Y.

Although in imageprocessingy computerthe spatialdomainX is alwaysfinite, the global reduce
operationI’ neednot be restrictedto finite sets. Natural extensiongo infinite setsare usually inherent
for differentbinary operationsyalue sets,and point sets. For example,if X is a compactsubsetof R™
anda € RX, thenthe formulasfor areaand maximumgiven in Example4.3.3 havethe form

/a_/ x)dx and \/a_ \/a(x):sup{a(x): x € X},

xeX

respectively. That theseare well definedfollows from Theorems2.11.7and2.11.8
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4.4 Properties of FX

The algebraF togetherwith the inducedalgebraFX is calledanimagealgebra It follows from the
definition of the inducedoperationgEgs. 4.3.1and4.3.2) that the algebraF* inherits most, if not all,
of the algebraicpropertiesof the valuesetF. As an example,considerthe setof real-valuedimageson
X. The commutativegroup (R, +) inducesa commutativegroup (RX, +). The zero of the group RX
is the zeio image denotedby 0 anddefinedas0 = {(x,0): x € X}. Clearly,

a+0=0+a=a

Va € RX. Also, eacha € RX hasan additiveinverse —a definedby —a = {(x,—a(x)): x € X}.
Obviously,
a+(—a)=(—a)+a=0.

Thereis nothing specialaboutthe groupR in this agument. The sameargumentcan be madefor
any group F. This establisheghe following theorem:

4.4.1 Theorem. If (F, +) is a (commutativegroup,then (F*, +) is a (commutativelgroup

If, insteadof a group, F is a ring thenwe also have

4.4.2 Theorem. If (F, +, ) is a (commutative)ing, then (FX, +, -) is a (commutativeying.
Furthermoe, if F is a ring with unity, thensois FX.

The proof is straightforward;we alreadyknow from Theorem4.4.1 that FX is an additive group
andit is an elementaryexerciseto verify that multiplication is associativeand distributesover addition.
Thus, FX is aring. The unitimage of FX is definedas1 = {(x,1): x € X}, wherel denotesthe
multiplicative identity of F. Obviously,

Va € FX. Thus,if F is aring with unity, thenso is FX.

In Section3.7 (Example3.7.2 we notedthatRX is a vector spaceover R. Again, thereis nothing
specialaboutthe field R; the sameargumentcan be madefor any field F. By Theorem4.4.1, FX is
a group, and using the inducedscalarmultiplication (Eq. 4.3.3),it is easyto seethat the vector space
axiomsV; through Vs are satisfied. This establisheghe following

4.4.3 Theorem. If F is a field, thenFX is a vector spaceover F. Furthermoe, if card(X) = n
(n € N), then FX is isomorphicto F".

The secondpart of the theorem follows from Example 3.8.3i) by defining v: FX — F™ by
v(a) = (a(xy), a(x2), ..., a(xy,)), whereX = {xy, x2, ..., X}, andthen usingthe exactsamear-
gumentas in 3.8.3i).

It follows from Theorem4.4.2 that the ring (RX, +, ) of real-valuedimagesbehavessery much
like thering (R, +, - ) of realnumbers.In view of the fact thatthe operationdetweerreal-valuedmages

155



areinducedby the operationshetweenreal numbers this shouldcomeasno greatsurprise. Therefore,
manipulatingreal-valuedmagesis analogougo manipulatingreal numbers andour familiarity with the
real numbersystemprovidesus with instantfamiliarity of the inducedsystemRX. More generally,if
we know the systemF, thenwe know the inducedsystemFX. In imagealgebrait is alwaysassumed
that the algebraicsystemF is known and that the algebraicpropertiesof FX arethen derivedfrom this
knowledge. It is importantto note,however that eventhoughthe algebraicpropertiesof FX arederived
from thoseof F, the overall mathematicastructureof FX is quitedistinctfrom thatof F; elementsf FX
carry spatialinformation while thoseof F generallydo not. Furthermorethe inducedalgebra(FX,y)
is structurallynot identicalto the algebra(F, v); the inducedalgebraicstructureis usually weakerthan
the original structure. The succeedingliscussionrdemonstratethis for the I-ring of real-valuedimages.

The operationdefinedby Eqgs. 4.3.5and4.3.6in Example4.3.1arethe basicor elementarybinary
operationson real-valuedimages. Analogousto the developmento the algebraof real numbers,other
binary (and unary) operationson real-valuedimagescan be derived either directly or in termsof series
expansiondrom thesebasic pixel level operations.However,insteadof reinventingthe wheel, we let
the remainingoperationson RX againbe inducedby the correspondingperationson R. Two of these
operationscommonly usedin image processingare exponentiatiorand the computationof logarithms.
In particular,if a and b are real-valuedimageson X, then

ab = {(x,c(x)) e(x) = a(x)b(x), X € X}. (4.4.1)

Sincewe are dealingwith real-valuedimages,we follow the rules of arithmeticand restrictthis binary
operationto thosepairs of real-valuedimagesfor which a(x)b(x) € R vx € X. This avoidscreation
of complex, undefined,and indeterminatepixel valuessuch as(—l)é, 01—2, and 0°, respectively. If
we considersuchsubsetsasZ* = Zt UZ or Rt of R , then exponentiationis defined for all
a,b € (Z£)* or a,b € (RH)*.

The inverseof exponentiatioris definedin the usualway by taking logarithms. Specifically,

logha = {(x,¢(x)) : ¢(x) = logpx)a(x), x € X}. (4.4.2)

As for real numbers/ogpa is defined only for positiveimages; i.e.,a, b € (R+)X.

If k € FX is a constantfunction, thenk is calleda constantimage We havealreadyencountered
two importantreal-valuedconstantimages,namelythe zero image O and the unit image1. It follows
from Egs. 4.3.1 and 4.3.3 that

0+a=0+a=-a=1l-a=1l-aand 0ra=0-a=0.
More generally,if k € FX is the constantmagek(x) = k Vx € X, then
kva = kvya..
Thus, for F = R we havethat
k+a=k+a,k-a=k-a, kVva=kVa,and kAa=kAa.

The observationthat scalaroperationson imagescan be expressedn termsof binary operations
betweenimagesmay be usedto definethe following unary operations:

a’ =ak k=K and logia = logka. (4.4.3)
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Theseoperationsare alreadyinherentin Eq. 4.3.2. For example,usingthe function f(r) = } provides
for exponentiationby £ = —1 and yields the inversea™! = f(a). In contrast,Eq. 4.4.1 doesnot
follow from Eq. 4.3.2.

Many other unary operationscould have been defined directly in terms of elementarybinary
operationswithout the use of Eq. 4.3.2. For instance,the absolutevalue function abs : R — R
inducesthe function abs : RX — RX definedby

abs(a) = {(x,¢(x)) : e(x) = [a(x)], x € X} = |a].
However,we could just as easily have defined
al =aV(—a).

As alludedto earlier,the generalizedharacteristidunction could havealsobeendefinedin termsof
elementarybinary operations.In orderto demonstratehis, we needto take a closerlook at the induced
structureRX. Recallthat the operationof exponentiationEq. 4.4.1)is not definedfor all real-valued
images.In particular,if a # 0 but for somex € X a(x) = 0, thena~! doesnot exist. Thus,in contrast
to (R, +, -), thering (HX, +, ) is not a division ring. However,everya € RX hasa multiplicative
pseudoinversea € RX definedby

a = {(x,a(x)) : a(x) = a(x) if a(x) = 0, otherwise a(x) = 1/a(x), x € X}. (4.4.4)

Clearly,

Thus (R*, +, -) is a von Neumannring.

Although, in general a - a neednot equalthe unitimagel, a - a is alwaysa booleanimage. Keeping
theseobservationsn mind, it is easyto seethatif ¢ = (a —b) v 0 , then the booleanimagec - ¢
satisfiesthe equation

X)b(a):é.c'

Thus, the characteristidunction y ., canbe readily expressedn termsof elementarybinary operations.
Thefunctiony _, canbe definedin a similar mannerandthe remainingcharacteristidunctionsarethen
derivedfrom x ., andy _, by useof Booleancomplementatiorand multiplication. Defining

a’=1-a-a, (4.4.5)
we obtain

X o (@) =[x, ()],
Xo(a) = X o) Xy,
This verifies our earlier claim.
Suppose # 0 butfor somex € X a(x) = 0. Settingb = 1 — a-a, we havea -b = 0 while neither
a # 0 norb # 0. Thereforea andb aredivisorsof zero,which saysthatR* is not anintegraldomain.
Of coursewe havealreadynotedthat RX is not a division ring. The obviousquestionthenis asto how
closely the inducedstructureF* resembleshe basestructureF. In particular,if F is a division ring or

field, how closeis F* to beinga division ring or field? From our abovediscussionit is easilyinferred
that the following theoremis the bestwe can hopefor.

X (@) =[x, (@)
(a), and x,,(a) =[x, (a)]"
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4.4.4 Theorem. If (F, +, -) is a (commutative)ivision ring, then (FX, +, -) is a (commutative)
von Neumannring.

The proof is elementary.Accordingto Theorem4.4.2 FX is aring andif F is a commutativering,
thensois FX. Pseudainversesare ddined in the exactsameway as pseudoinversesfor elementsof
RX (Eq. 4.4.4) by replacingthe number0 with the additive identity of F.

Sincefor anyimagea # 0 with the propertythatfor somex € X a(x) = 0, we areunableto obtain
aninverse,FX cannotbe a divisionring. HenceF andFX canstructurallyneverbe the same— except
in the trivial casecard(X) = 1. However,sinceFX is a von Neumannring, it is almosta division ring
in that every non-zeroelementhasalmosta multiplicative inverse,namelya pseudoinverse.

If insteadof usinggroup,ring, or vectorspaceoperationswe considefattice operationave encounter
similar observationsThelattice (RX, vV, /\) behavewery muchlike thelattice(R, Vv, A ). Forexample,
the equality

aAb=—(-aV-b)

holds in both lattices. Inequalitiesfor imagescan be definedin terms of the semigroupoperationv
(or A) by

a<b & avb=b (ora<b & aAb=a)

However,if X containsmore than one point, thenit is possibleto havetwo real-valuedimagesa and
b with a #aVv b and b # aVv b. Thuswe haveimagesa andb suchthat neitherstatement < b

norb < a is true. Hencethe lattice RX is only partially orderedand can, therefore structurallynot be
identicalto the lattice R. This corroboratesour earlier claim that the inducedstructureFX is somewhat
weakerthan the basestructureF.

We now addressthe questionof functionality of the induced operationsfor expressingimage
processingalgorithms. The procedureof combininga finite numberof imagesusing a finite number
of elementarnjinducedimageoperationgesultsin somenewimageor othervalue,suchasa scalar. The
resultof writing downsucha procedurés calledanimagealgebraexpession A transformr : FX — FY
definedin termsof animagealgebraexpressions called animagealgebratransform Thus(a) is an
image algebraexpressiorfor eacha € FX. For example,the transformsr, p : RX — R* defined by
T(a) =aV (—a) andp(a) = a- b + a - a arebothimagealgebratransforms.In the secondtransform
we assumehat b is somefixed given image,and a the variable. We concludethis sectionby showing
that any algorithm — or, in fact, any transformation— that transformsa digital image into a digital,
floating point, or any other type of real-valuedimage, can be realizedby an image algebraexpression
with operationsonsistingonly of the inducedelementaryoperationsof additionand multiplication. The
main ingredientin proving this claim is the following interpolationtheorem.

4.45 Theorem. (Lagrangelnterpolation).For eachintegerj = 0,1,...,m ther existsa polynomial
h;(z) suchthat

1 ifi=g
hf(’)_{o if it



Proof: Let L;(z) = [[ (z—1); ie.,
1=0,1#]

Li(z)=z(e-1)(e=2)--- (=G -D)z -G +1) - (z—m)

ThenL;(i) = 0if ¢ # 7, and L;(i) # 0 wheneveri = j. Now define

Q.E.D.

For theremainderof this sectionwe supposehat X is afinite pointset,sayX = {x¢, X1, ... ,Xm }.
Now if p € R[zo, 1, ..., 2] IS apolynomialin m + 1 variables thenp givesrise to a transformation

p : RX — RX ddined by
p(a) = pa(xg) - 1,a(x1) -1, ...,a(xy) - 1),

whereadditionandmultiplicationin p(zo , 21, ... , ;) arenow interpretedasthe inducedadditionand
multiplication in RX. Thus,p(a) is an expressionin the imagealgebra(RX, +, -).

Defining for eachintegerj the constantimagej = j - 1, we obtain the following interpretationof
Theorem4.4.5

4.4.6 Corollary. (Imagelnterpolation). For eachconstantimagej = 0,1, ..., m, there existsan
imagealgebraexpession;(a) in (RX, +, ) suchthat

_ 1 ifi=j
h’J(‘)—{o if i

m

Proof: Defining Lj(a) = ][] (a—1i), we notethattheimagec; = L;(j) hasthe property
i=0,i%j
that c;(x) # 0 Vx € X. Thus (I/j(j))71 = %m existsfor j = 0,1, ..., m. It is also

obviousthat Lj(i) = 0 wheneveri # j. Thus, the expression;(a) = [L;(§)] " - [Z;(a)]
hasthe desiredproperties.
Q.E.D.

We concludeby proving that the aIgebra(RX, +, ) is sufficient for expressingall digital imageto
real-valuedimage transformations.

4.4.7  Theorem. Supposey : (Zgn)x — RX is any transformation. Thenthere existsan expessionr
in theimagealgebra (RX, +, -) suchthat r(a) = ¢(a) Va € (Zz)*.

Proof: Since card(Zy)* = 27m+1) we may assumewithout loss of generality that
(22")X = {a1 , A2, ..., 34}1 where( = gn(m+1)

Foreachk =1,2,...,(, letpx € R[zg,2y, ...,2,] be definedas follows:
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Let

ko = agp(xo), k1 = ar(x1), ..., km = ar(xm)
andsetk; = k; -1, wherej = 0, 1, ..., m. Now define
Pe(To, 21, oo s Tm) = A (2o) g, (1) - By, (20),
where h,(z) is the polynomialin Theorem4.4.5
Obviously,
pr(ak) = pr(ar(xo) - 1,ap(x1) -1, ... ,ak(Xpy) - 1)

= pr(ko, ki, ... , k)
= hi, (ko) - hi, (k1) -+« hi,, (km) = 1.
Now considerpi(a;), wherej # k. Thena; # a; and, therefore,a;(x;) # ax(x;) for atleast
onepointx; € X. Thus,j; # k; and, hence,hy,(j;) = 0.
Therefore,
1 if =k
pr(a;) = {0 if j#k )
Foreachk = 1,2,...,(, let by = ¢(ar) anddefiner by
T(a) = ﬁl(a) -by + ﬁg(a) by 4+ --- +ﬁ¢(a) . bc .
It now follows from Eq. (I) that(a;) = »(a;) and,therefore,r(a) = ¢(a) Ya € (Z3n)*.
Q.E.D.

The theoremis primarily of theoreticalinterestasit providesno practicalmethodfor determining
T from ¢. Of course,the hypothesisof the theoremis generalenoughto cover all image-to—image
transformationghat occurin practiceasonly finitely many grey valuescanbe represented.

4.4.8 Corollary. Suppos& andY are twofinite pointsets.If ¢ : (Zgn)X — RY isanytransformation,
then there existsan expessionr in the image algebra (R, RX, +, -, %) suchthat r(a) =
o(a) Va € (Zyn)*.

Proof: Let py, p2, ..., pc be polynomialssuchthat
_ 1 if j=kF
p“%)‘{o if j#k

Again, let by = ¢(a), whereby, is now animageon Y. Finally, definer by

ﬂ@:[}:(mil-mmﬂ]4n+-~+[§:(5%7-m®0]4%-

Thent(ay) = [Z (mLH -ﬁk(ak)>] -br = b = ¢(ax), and,therefore,7(a) = p(a) Va €
(2 )™,

Q.E.D.

The corollary is usefulwhen consideringtransformationof imagesto imagesdefinedon different
spatial domains.
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4.5 Spatial Operations

Examplesof spatialbasedimagetransformationsare affine and perspectiveiransforms.Thesetype
of transformsare commonlyusedin imageregistrationand rectification. The needfor registrationand
rectificationarisesin digital image processingvhen the positionsof someor all image pixel locations
are significantly displacedfrom their true locationson a uniformly scaledgrid. For example,objectsin
magneticresonancemagery (MRI) are displacedbecauseof the warping effects of the magneticfield
andraster-scannesatelliteimagesof the earthexhibit the phenomenonhat adjacentscanlines areoffset
slightly with respecto oneanothelbecausehe earthrotatesassuccessivdines of animagearerecorded.
Sincethe inducedimage operationsrepresentedy Eqgs. 4.3.1through4.3.4 are grey level based the
inducedalgebraicstructuredoesnot provide for either intuitive or simple expression®f thesetypesof
transforms.The purposeof this sectionis to resolvethis difficulty by providing a seamles®&xtensionof
the image algebradefined in the previoussections.

Viewing animagea € FX asa function from X to F, we note that the inducedunary operation
4.3.2is actuallythe compositionf oa = f(a) of theimagefunctiona with thefunctionf from F to F as
shownin Fig. 4.5.1 Takingthe sameviewpoint, but usinga functionf betweenspatialdomainsinstead,

a foa

Figure 4.5.1 Theinducedgrey level transformf oa = f(a).

providesa schemefor realizing naturally inducedoperationsfor spatialmanipulationof imagedata. In
particular,if f:Y — X anda € FX, thenwe definethe inducedimagea o f € FY by

aof={(y,a(f(y)) : ye Y}. (4.5.1)

Thus, the operationdefinedby Eq. 4.5.1 transformsan F—valued image defined over the spaceX
into an F—valuedimage defined over the spaceY. Figure 4.5.2 providesa visual interpretationof this
compositionoperation.
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X
A
<

aof

A A
F

Figure 4.5.2 The spatial transforma o f.

In Section4.8, it will becomeevidentthat the inducedimage canjust as easily be obtainedby use
of an image—templat@peration. However,in various caseskq. 4.5.1 providesfor a more translucent
expressiorand computationallymore efficient methodthan an image-templatgroduct.

45.1
()

Examples:

One sidedreflection. Supposea € RX, where X C 7? is a rectangularm x n array. If
1<k<Zandf:X — X is definedas

2
(=) if k<u
flw,y) = {(2k—m,y) if o<k’

thena o f is a onesidedreflectionof a acrossthe line = k. Figure 4.5.3illustratessucha
reflectionon a 512 x 512 image acrossthe line & = 180.

Figure 4.5.3 One sided reflectionacrossa line.
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(i) Magnificationby replication. For » € R, let [r] denotethe smallestintegergreateror equalto
r;ie, [r] =1 < r < [r], where[r] € Z. For a given pair of real numbersy = (yi,y2),
let [y] = ([v1],[y2]). Now let a and X be asin the previousexample,and let Y be a
km x kn array, wherek is somepositive integer. Define f : Y — X by f(y) = [ty]; i.e.,
f(y1,92) = (z1,22), wherez; = [%yl] Thenao f representshe magnificationof a by afactor
of k. Figure 4.5.4represent@an exampleof a magnfication by a factor of £ = 2. Here each
pixel wasreplicatedfour times,two timesin the x directionandtwo timesin the y direction.

Figure 4.5.4 Magnification by replication.

Note that in both, image reflection and image magnification, the function f can be viewed as a
function on Z? into Z?%; thatis, asa function preservingintegral coordinates.The generaldefinition for
geometricoperationsin the planeR? is in termsof a function f : R* — R? with

f(z,y) = (filz,9), falz,v)), (4.5.2)

resulting in the expression

b(z,y) = a(e',y’) = a(fi(z,y), fa(z,9)), (45.3)

wherea denotesthe inputimage,b the outputimage,z’ = fi(z,y), andy’ = f2(2,y). In digital image
processingthe grey level valuesof the input image are definedonly at integral valuesof 2’ and y'.
However, restrictingf to somerectangularsubsetY of Z2 C R?, it is obviousthat for most functions
f, range(f) ¢ Z2. This situationis illustratedin Figure 4.5.5 where an output location is mappedto
a position betweenfour input pixels. For example,if f denotesthe rotation aboutthe origin, then the
coordinates

¢’ = fi(z,y) = zcosh — ysind and ¢y = fo(z,y) = zsind + ycosh (4.5.4)
do not, in general correspondo integralcoordinatedbut will lie betweenan adjacenintegerpair. Thus,
the formulation given by Eqg. 4.5.1 can usually not be useddirectly in digital image processing.One
way of solving this problemis by simply reddining f as f(z,y) = [f(z,y)]. Thatis,

~

Fay) = ([ W]) & flay) = ("y),
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where [r] denotesthe roundingof r to the nearestinteger. Then the imageb = a of is saidto be
obtainedfrom a by using the neaestneighbor or zeio-order interpolation In this case,the grey level
of the outputpixel is takento be that of the input pixel nearesto the positionto which it maps. This
is computationallyefficient and,in many casesproducesacceptablaesults. On the negativeside, this
simpleinterpolationschemecanintroduceartifactsin imageswhosegreylevelschangesignificantlyover
one unit of pixel spacing. Figure 4.5.6 showsan exampleof rotating an image using nearestneighbor
interpolation. The resultsshow a sawtootheffect at the edges.

/f\\»o/
xy')

x.y)

Figure 4.5.5 Mapping of integral to non-integralcoordinates.

As mentionedpreviously,the output pixels map to non-integralpositionsof the input imagearray,
generallyfalling betweenfour pixels, and simple nearestheighborcomputationcan produceundesirable
artifacts. Thus, higher order interpolationschemesare often necessaryo determinethe pixel valuesof
the outputimage. The methodof choiceis first-order or bilinear interpolation. First-orderinterpolation
producesmore desirableresultswith only a modestincreasein computationakcomplexity.

Figure 4.5.6 Rotationusing nearestieighborinterpolation.

Suppose
X = {(xl,acz) 1< <m, 1 <ay<n, (21,22) € ZQ}
and
X' = {(z},2}) : 1<a] <m, 1<a}<n, (2f,2)) € R*}.
Givena € RX, we extenda to a functiona’ ¢ (H)W as follows:
First setbotha(zy, ;) = 0 anda/(zq, z3) = 0 whenever(zy,z3) € R*\X'. For (z/,z}) € X/, set
a'(z],2y) = a(zy,v2) + [a(zr + 1,22) — a2y, 22)] (2] — 21)
+ [a(zy,22 + 1) — a(zq, 22)](2h — 22) (4.5.5)
+ [a(z1 + L,z2+ 1) + a(21,22) — a(zy, 22 + 1) — a2y + 1,1‘2)]($/1 - xl) (:C'2 — xz),
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(3
r; <zl <w; 4 1,anda’(z], 2}) = a(xy, 22) wheneverz, = zf andz, = 2}. Thus,a’ is a continuous
extensionof a to X’ with the four cornervaluesof a agreeingwith thoseof a’ (Fig. 4.5.7).

where z; = |z}] and |z!] denotesthe largest integer with the property [z!| < z!. Note that

a'(xy,x5)

a(xy,X,) 1/ g i a(X1+1,X2+1)

a(xy,X,+1)
Figure 4.5.7 The bilinear interpolationof a.

Now given a transformationf : R?> — R? and an output array Y, we view f as restrictedto
f: Y — R? and set

b=a'of (4.5.6)

in orderto obtain the desiredspatialtransformationof a. In particular,the valuesof z! for i = 1,2 in
Eq. 4.5.5arenow replacedby the coordinatefunctions f;(y1,y2) of f. Figure4.5.8illustratesa rotation
using first order interpolation. Note that in comparisonto the rotation using zero-orderinterpolation
(Fig. 4.5.9, the boundaryof the small interior rectanglehasa smootherappearancehe sawtootheffect

has disappeared.The outer boundaryof the rotatedimage retainsthe sawtoothappearancesince no
interpolationoccurson points (2}, z5) € R? \ X'.

Figure 4.5.8 Rotationusing first-order interpolation.
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The computationakcomplexity of the bilinear interpolation(Eq. 4.5.5) canbe improvedif we first
interpolatealongone directiontwice andthenalongthe otherdirectiononce. Specifically,Eq. 4.5.5can
be decomposeds follows. For a given point (zf,2}) € X’ compute

a’l(x’l,xg) =a(zy,z2) + [alzr + 1,22) — a(zq, 23)] (97,1 - "Tl)

alongthe line segmentwith endpoints(zy,z2) and (zy + 1,23), and
a'Q(a:'l, zo + 1) =a(zy, 20+ 1)+ [a(zy + 1,22+ 1) —a(zy, 22 + 1)](3:'1 - :1:1)
alongthe line segmentwith endpoints(z1,z2 + 1) and (21 + 1,22 + 1) . Thenset
a’(z],2y) = aj (2], 22) + [ay (2], 22 + 1) — af (2], z2)] (2} — 22).
This reducesthe four multiplications and eight additionsor subtractiongnherentin Eq. 4.5.5to only

three multiplications and six additions/subtractions.

Although Eq. 4.5.6 representsa functional specificationof a spatial image transformation,it is
somewhatdeceiving;the imagea’ in the equationwas derived using typical algorithmic notation (Eq.
4.5.5). To obtaina functional specificationfor the interpolatedimagea’ we canspecifyits valuesusing
three spatialtransformationsfy, fi, and f, mappingX’ — X, definedby

folar,eh) = ([24], [#2])
iz, ) = {(ijiJ +L17 |25]) if [2f] <m

(lz7], [25]) otherwise

and , —
R e A et

(lz1], [25]) otherwise ’

and two real-valuedimagesfunctionswy,ws € RX' definedby

wy (1'1,:6'2) =i - [x'lj

and

wo (2, 2h) = af — 2.

We now define

a'=aofo+(aofi—aofy)-wi+(aofz—aofy) wy
+(aofiofy+aofy—aofi—aofo) wy-ws.

A nice featureof this specificationis that the interpolatedimagea’ is only definedover the region of
interestX’ and not over all of RZ.

Sincef : Y — R?, it is very likely that f(Y) ¢ X’. This meansthatthe imageb = a’ o f may
containmany zero values,and— if Y is not properly chosen— not all valuesof a will be utilized in
the computationof b. The latter phenomenoris called loss of information dueto clipping. A simple
rotation of animage aboutits centerprovidesan exampleof both, the introduction of zero valuesand
loss of information due to clipping, if we chooseY = X. Figure 4.5.9illustratesthis case. Here the
left image representghe input image a and the right image the outputimageb = a’ o f. Note that
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the value b(yy, y2) is zerosince f(y1,y2) = (2], 2}) ¢ X'. Also, the cornerareasof a after rotation
have beenclipped sincethey do not fit into Y. Of course,for rotationsthe problemclipping is easily
resolvedby choosingY sufficiently large.

o[(V1Y2)

*(x1,X2)

Figure 4.5.9 Rotationwithin the samearray. The left image
is the input image and the right imageis the outputimage.

Thedefinitionof theinterpolatedextensiom’ requiresmagesto be specifiedascomputationabbjects
ratherthanenumeratedbjects(suchasthe inputimagea). Oncethe spatialtransformf = (fi, f2) has
beenchosenthe dummyvariablesz; andz! arereplacedvy | f;(y;)| and f;(y;), respectively.Eachpixel
valueof b = a’ o f canthenbe determinedpixel by pixel, line by line, or in parallel.

The spatialtransformatiorof a digital imageasexhibitedby Eq. 4.5.6represents& generalscheme.
It is not restrictedto bilinear interpolation; any extensiona’ of a to a point set X’ containingthe
rangeof f may be substituted.This is desirableeventhoughbilinear interpolationand nearesieighbor
approximationare the most widely used interpolation techniques. Similar to zero-order,first-order
interpolationhasits own drawbacks.The surfacegiven by the graphof a’ is not smooth;whenadjacent
four pixel neighborhoodsare interpolated,the resulting surfacesmatchin amplitudeat the boundaries
but do not match in slope. The derivativeshave, in general, discontinuitiesat the boundaries. In
many applications thesediscontinuitiesproduceundesirableeffects. In thesecasesthe extraadditional
computationalcost of higher order interpolationschemeamay be justified. Examplesof higher order
interpolationfunctionsare cubic splines,Legendreinterpolation,and %sznm Higher orderinterpolation
is usually implementedby an image-templateoperation.

The generalformulation of spatialtransformationgiven by Eq. 4.5.2 includesthe classof affine
transformationanentionedat the beginningof this section.

4.5.2  Definition. A transformationf : R?> — R? of the form

flyr,y2) = (ayr + byz + v1, cyr + dy2 + v2),

wherea, b, d, v{, and v, are constantsjs calleda (2—dimensionalgffine transformation

Observethat an equivalentdefinition of an affine transformationis given by

fly)=y -A+v, (4.5.7)
where
a C
y:(y17y2)7 A= (b d), and V:(Ul,vg).
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The matrix A can always be written in the form

a ¢\ [ ricosfy rysinf

b d)  \—=rysinfy rycosfy )’
where(ry,6;) and (r2,92 + g) correspondto the points (a,c) and (b,d) expressedn polar form. In
particular,if r, = r9, 61 = 65, andv = 0, thenEq. 4.5.7 correspondgo a rotation aboutthe origin. If
A is the identity matrix andv # 0, then Eqg. 4.5.7 represents translation.

Variouscombinationsf affine transformationganbe usedto producehighly complexpatternsfrom
simple patterns.

45.3 Examples:

(i) 1o
Let fi(y) = y- A, whereA = (3 1
If « > 1, thenao f; represents magnﬁicationof a by thefactora (seealsoExample4.5.1). On
the otherhand,if 0 < a < 1, thena o f; represents contraction(shrinking) of a by the factor
a. Figure4.5.10illustratesa contractionusingthe factor o = % Herethe inputimagea, shown
on the left, containsa trapezoidof baselength| and angleof inclination . The outputimage
a o f1 is shownon the right of the figure, with pixels having zerovaluesdisplayedin black.

Figure 4.5.10 Image contractionusing an affine map.

Suppose

fz(y)zy((l] 2) + [(a— 1)%,(&—1)%‘5&110 .

Then f, representsa shift in the direction. Composinga o f; with f; resultsin the image
(ao f1) o fo shownon the left of Figure 4.5.11

The compositionof two affine transformationds againan affine transformation.In particular,

by setting f = fi o f2, it is obviousthat(a o f;) o f> could havebeenobtainedfrom a single
affine transformation,namely

(ao fi)ofao=ao(fiofy)=aof.
Now iterating the processby using the algorithm

b:=b+bof
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(ii)

with initial b = a, resultsin the railr oad to infinity shownon the right of Figure4.5.11

Figure 4.5.11 A railroad to infinity.

Another exampleof iterating affine transformationsn orderto creategeometricpatternsfrom
simple building blocksis the constructionof a brick wall from a single brick. In this example,
let w andl denotethe width andlengthof the brick shownon the left of Figure4.5.12 Suppose
further that we want the cementlayer betweenan adjacentpair of bricks to be of thicknesst.
A simple way of building the wall is to usetwo affine transformationd and g, wheref is a
horizontal shift by an amount!/ + ¢, and g is composedof a horizontal shift in the opposite
directionof f by the amount(/ + t)/2 anda vertical shift by the amountw + ¢t. Specfically, if

fly,2) = (y1 — (L + 1), 92)
and
gy, y2) = (i + (L +1)/2, y2 — (w + 1)),
then iterating the algorithm
a:=aV(aof)V(aog)
will generatea brick wall whosesize will dependon the numberof iterations. The imageon

the right of Figure 4.5.12was obtainedby using the iteration
repeat

a:=aV(aof)V(aog)

until ¢ = a

Figure 4.5.12 Generationof a brick wall from a single brick.
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4.6 Set-theortic Operations

Thetwo prime conceptsassociateavith afunctionareits domainandrange. Sincethesetwo notions
are viewed as mappingsfrom FY to 2Y andFY to 2F, they provide a link betweenimagesand their
underlying point and value sets. The outputsof the domainand rangefunctions,however,are setsand
not individual points or values. In variouscomputervision tasksit is often necessaryo extractsingle
points or valuesfrom an image,or to know the numberof elementsin a particularvalue or point set.
Thesetaskscan be accomplishedy using two fundamentalconceptsfrom elementarysettheory. The
two conceptsare the choicefunction and the cardinality of a set.

The choice function, whoseexistenceis guaranteedy axiomatic set theory [3], is not obtainable
from previously definedoperations. We shall view the choice function as a mappingof 2¥ — Y (or
2F — F) which, whenappliedto asetZ C Y, returnsarandomlychoserelementof A. Thus,if a € NY
and k € range(a), then the statement

choice[domain(a||;)]

denotesa randomlychosenpixel locationwhosepixel valueis k. This exampleillustrateshow we can
get from an imagebackto a point in its domain. More generally,we havethe following commutative
diagram:

[FY

domai

Y . Y
2 choice

The dottedarrow in the diagramdenotesthe compositionchoice o domain. The choicefunction s, of
course,not the only function from 2F to F. For example,if (F, v) is a commutativesemigroupand
P(F) = {X €2F : card(X) < oo}, then againwe have a global reduceoperationr : P(F) — F
inducedby v anddedfinedby T' (X) = zyyzay --- y2,, WhereX = {21, ..., 2,}. In particular,if X is
a finite subsetof R, then\/ (X') correspondgo the largestnumberin X.
Thecardinalityof asetwasdiscussedh Section2.7. Forfinite setsthe cardinalityof asetcorresponds

to the numberof elementdn thatset. Thus,whenour discussioris restrictedto digital images,we shall
view the conceptof cardinality as a function

card : 2F U2Y & N.
For example,f k is aninteger,Y afinite subsetof 7", anda € NY thenthe numbern in the statement

n := card[domain(a||t)]
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correspondgo the numberof pixels having value k. Obviously, if no pixel of a hasvalue k, then
domain(al|y) = @ andn = 0.

Note that an alternativealgorithm for obtainingn is given by the statement

n:i= sz(a)7

and doesnot involve operationsdefinedin this section.

The cardinality of a set and the choice function are unary operationsfrom 2Y to N andto Y,
respectively(or from 2 to N andF, respectively). They do not provide for operationson 2Y or 2F.
However,thereare numerouscomputervision algorithmsandtasksthat requiremanipulatingwhole sets
of pixel locationsaswell assetsof pixel values.In orderto provide a coherentmathematicatheoryin
which to expressthesetypes of operationsmore readily, we needto incorporatethe Booleanalgebras
(2Y,u, n,’) and (2F, U, N, ') as part of image algebra.

The laws governingthe operationson setsweregivenin Section2.2 (Fig. 2.2.1). The operationsof
union, intersectionandcomplementatiomanbe combinedto definevariousotherset-theoretioperations.
For instance,set subtractioncan be definedas

A\B=AnNB,

and the symmetricdifferencebetweentwo setsas

A[\]B = (AUB)\(ANB).

It follows that A[\]B = (AUB)N(ANB) = (AUB)N (A’ UB).

4.6.1 Example:

Let A and B be the two point setsin the cellular spaceC? shownin Fig. 4.6.1 (a) and (b),
respectively. Thus,the setA consistof the cellswhoseunionformstheletter“A”, while the set
B consistsf cellsforming theletter“B”. Theresultof the setoperationof union, intersection,
set subtraction,and symmetricdifferenceon thesetwo setsare shownin Fig. 4.6.1(c), (d),
(e), and (f), respectively.
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(d) (€) (f)

Figure 4.6.1 (a) The setA. (b) The setB. (c) The setA U B.
(d) ThesetANB. (e) ThesetA\B. (f) The setA[\|B.

Since (2Y, U, n, ) and (2F, U, N, /) are homogeneousilgebras,one obviousimplication is that
the algebradiscussedn Section4.3 providesfor the manipulationof set-valuedimagesa : X — 2Y
(ora : X — 2F): the operationson set-valuedmagesare thoseinducedby the Booleanalgebras.For
example,if a,b ¢ (QY)X, then

aUb = {(x,c(x)) : ¢(x)=
anb = {(x,c(x)) : ¢(x)=a(x)Nb(x), xe X},
and
a' = {(x,¢e(x)) : e(x) = [a(x)], x € X},
where [a(x)]" = Y\a(x).
TheBooleanimagealgebra((QY)X,U, n, ’) hasanaturaldualstructurenamely((QX)Y,U, n, ’).

This canbe ascertainedrom the observatiorthat any functiona : X — 2Y hasa dual (often referred
to asan inverseor transposga ! : Y — 2% definedby

al(y)={x: x€Xandy € a(x)}.

The functiona~! is a dual (or aninverseor transpose)n the sensethat (a—l)*1 = a.

4.6.2  Theorem. Thefunctiony : (2¥)* — (2X)Y definedby p(a) = a~! Va € (2¥)™ isan
isomorphism.

Proof: Supposehatfor somepair of functionsa andb with a # b, we havethaty(a) = ¢(b).
Thena # b = dx; € X suchthata(xg) # b(xp). Thus, not both a(xg) andb(xg) canbe
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empty. Supposewithout loss of generality,thata(xg) # &. Sincea(xg) # b(xg), 3y € Y
suchthaty € a(xo) andy & b(xo). Butthenx, € a='(y) andx, ¢ b~1(y), contraryto our
assumptiorthata ! = b~!. This showsthat ¢ is one-to-one.
 is obviouslyonto. Thusall that remainsto be shownis that ¢ is a homomorphism.To show
that o(a U b) = (a) U ¢(b) is equivalentto showingthat(aUb) * =a~ ! Ub~!. Now
(aUub) Hy)={xe X : ye (aUb)(x)}

={xeX: yea(x)Ub(x)}

={xeX:ycax)}u{xeX:yebx)}

= a_l(y) u b_l(y) .

-1

In a likewise fashionwe canshowthat(anb)™" = a~! nb~1. Finally we have

[a’]_l(y) ={xeX: yeal(x)}
- (xeX:y¢a)
={xeX:yecakx)}

= [a7(y)]’,

/

which showsthat p(a’) = ¢(a)’.
Q.E.D.

Sincetypically, Y (or F) is well structured— a topologicalspace metric space,vector space etc.
(or a semigroup ring, field, etc.) — it makessenseto try preservethis structureby viewing a(x) asa
setin Y (or F) insteadof a pointin 2Y. This changeof perspectivehasfruitful consequencesyhile the
theory of set-valuedunctions(Section2.6) canstill be applied,intuition is maintainedand propertiesof
Y are not forced into hyper propertiesof 2Y.

Borrowing from the idea of induced set-valuedfunctions, recall that given f : Y — X, then
f inducesa set-valuedfunction f : 2¥Y — 2X  which is definedas f(A) = {f(x) : x € A}; i.e.,
f(A) = range(f|a). In addition, thereis an inverse f~! : 2X — 2Y definedby f (B) =
{y : y e Y and f(y) € B}. Pictorially, we havethe following interestingdiagramof functions:

v f - X
al a
v ¥-1 v

The obvious questionthat may ariseis as to whetheror notao f = f~! oa~!. It canbe easily
verified that this is false evenin the simple casewhereX = Y and f = Ix. However,we do have

the following theorem:
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4.6.3 Theorem. (aof) ! = floal

Proof:
(ao /) y)={y' €Y :ye(aof)y)}

Q.E.D.

Sincey is anisomorphismit follows thatthetwo imagesao f andf~'oa~! areBooleanequivalents.
Every set-valuedmagea : X — 2Y inducesanotherset-valuedunctiona : 2% — 2Y definedby

aw)= [ a(x).

xeW

4.6.4 Example: Leta : 72 — 22° be given by
a(i,7) = {(2¢,27), (20 +1,25), (2,27 + 1), (20 + 1,25 + 1)} .
Then
aW)=|J a(i,j), for Wcz*.
(1,j)EW
Figure4.6.2illustratesthe differencebetweerthe set-valuedunctionsa anda. Note thatin the
illustration we view 72 in termsof the cellular spaceC?. Thefigure alsoillustratesthe possible
applicationsof set-valuedunctionsfor imageanalysisin differently scaledspaces.

avard

a(ij) | 7 aw)

Figure 4.6.2 The set-valuedfunction a and the inducedfunction a.

The function a is saidto inducea partition on Y if the following two conditionsare satisfied:

() x1 # x2 = a(xy)Na(xy) = D
(i)Y = U a(x).

xeX

Onerelationshipbetweena, a~!, anda is given by the next theorem.
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4.6.5 Theorem. If ainducesa partition onY, then

If only condition (i) is satisfied,then

ao a*I(Y) C a(X).

Theproofof thetheorentollows directly from the definitionsof theinducedfunctionsa ! anda, and
the observatiorthat conditions(i) and(ii) for a functionallyinducedpartition areequivalento conditions

(") Yy € Y 3 at mostonex s.t. y € a(x)
(i) Vx € X J atleastoney s.t. y € a(x),

respectively.
The following exampleshowsthat, in generala oa'(Y) ¢ a(X).

4.6.6 Example: Let X = {1,2, 3} = Y anda : X — 2Y Dbe definedby

{1,2} ifi=1
a(i):{{2,3} if i=2.

& if i=3
Then
{1y  ifi=1
a'(i)y=1¢{1,2} ifi=2.
{2} ifi=3

Hence,a(X) = {{1, 2}, {2, 3}, @}. Buta~'(Y) = {{1}, {1, 2}, {2}} sothat

ala '(Y)) = [Jala'(»)
€Y
=a({1})ua({1,2})va({2})
= {1} u{{1, 2,3}y u {{2, 3}}
= {{1}7 {17 2, 3}7 {27 3}} :

4.7 Operations Between Differ ent Valued Images

The algebraFX inducedby F is a homogeneousnage algebra the algebraicoperationsact on
imagesof the samevalue type. To provide the capability of combiningimagesof possibly different
valuetypes,we needto extendthe operationsdefinedon FX to a moregeneralclassof operations.This
classof operationsis basedon the theory of generalizedmatrix products. Observethat Eq. 4.3.1is
practicallyidenticalto Eqg. 3.14.1. The inducedoperationy is a componenir pixelwise operation the
only differenceis thatin Eq. 3.14.1we aredealingwith finite dimensionalmatrices.In a similar fashion
we may borrow Eq. 3.14.3,the componentwisgroductof two matricesof differenttypes,in orderto
definethe pixel level operationbetweenimagesof differentvalue types.

175



SupposeE, F, and G arethree,not necessarilydistinct, value setsand O : E x G — F a binary
operation. Then () inducesa binary operation

O:EX*x6* - FX
definedas follows: for eacha € EX andeachb € GX, define
c=a(QbeFX* (4.7.1)
by
c(x) =a(x) O b(x). (4.7.2)

Generalizedunary operationsare definedin a likewise fashion;any function f : E — F inducesa
unary operationf : EX — FX definedby

fla) = {(x,e(x)) : e(x) = fla(x)), x € X}. (4.7.3)

As an example,supposen € RX and f : R — R? is definedby f(r) = (r,|r|). Then

f(a) = {(x,e(x)) = e(x) = (a(x), a(x)]), x € X}.

Whenever(F,~) is acommutativesemigroupandX is finite, sayX = {x1, x2, ... , X, }, we define
the hetepgeneousmagedot product of two imagesas

aesb=T(a(Qb),
where

I'(aOb) =L a(x) Ob(x) = (a(x1) O b(x1))y(a(x2) O b(x2))7 - -~ 7(a(xa) O b(x4)). (4.7.4)
Sincethe dot productinvolvesthe global reduceoperationr, it is a binary operationwhoseresultantis
ascalar, i.e., o : EX x GX — F.

Although theseheterogeneousperationsseemsomewhagrtificial, they provide a versatileenviron-
mentfor the specificationof a wide variety of image processingasks.

4.7.1 Example: (Imagecentoid) Suppos&X = {(z1,22) € Z* : 1 < a1 <m, 1 <z <n},E=R,
G =72, and(F,7) = (R%,+). If O : R x Z* — R? denotesscalarmultiplication of points of
72 by real numbersithena ¢ b € R? , wherea € RX andb ¢ (Z2)X.

As a particular application example,we computethe centroid of an image. Recall that the
coordinatef the centerof gravity (z,y) of a continuousreal-valuedfunction f on a compact
set A c R? are given by

| [z f(e,y)dyde [ [ yf(z,y)dyda
A A

[T dde ™ = Tt payde -
A A

r =

Fora € RX, the discreteapproximationof theseintegralsis given by

in: i ria(zy, x3) i Zr: zoa(wy,r2)

17121 .’172:1 17121 17221
and 29 =

S 3 a(er, ) S aen,m)

z1=1x=1 r1=1x5=1

r1 =
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Consideringtheseformulas, it is not difficult to ascertairthat the imagecentroidx = (z1, Z2)
is given by the simple image algebrastatement

ael
X = S a ,
wherei : X — 7% denotesthe inclusion mapi(z1,z3) = (z1,22). Figure4.7.1 providesan
illustration of an imagecentroid. The Booleansourceimagea, which showsthe sillhouetteof

an SR71spy plane,is shownon the left. The image on the right showsthe location of the
centroidwhich is in the centerof the von Neumannconfiguration.

Figure 4.7.1 Exampleof animagecentroid;the sourceimagea is on the left, the location of
the centroidis the centerof the von Neumannconfigurationin the imageon the right.

4.8 Image-Template Products

Image-templatgroductsare one of the mostusefulconsequencesf the conceptof a heterogeneous
imageproduct,they providetherulesfor combiningimageswith templatesandtemplatesvith templates.
Theseproductsincludethe usualcorrelationand convolutionproductsusedin digital signal processing.

If t € (GX)Y, thenfor eachy € Y, t, € GX. Thus,if a € EX, thenaccordingto Egs. 4.7.1,
4.7.2,and4.7.4,a Oty € FX andT(aOty) € F. It follows that the binary operationsQ) and vy
induce a binary operation

@ :EX x (6%)Y

—~ FY ,
where
b=a@teFY
is defined by
b(y)=T(aOty) =L (ax) O ty(x))
= (a(x1) O ty(x1))y(alx2) O ty(x2))7 -+ 7(a(xn) O ty(xn)).

The expressiora M)t is calledthe right productof a with t. Note thatEq. 4.8.1is essentiallyEq.
3.14.16with x andy replacingk andt, respectively.

(4.8.1)
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Everytemplates € (GY)™ hasatranspose’ € (6X)Y whichis defineds!, (x) = sx(y). Obviously,
(s')’ = s ands’ reverseshe mappingorderfrom X — GY to Y — GX. If we alsoreversethe order
of E and G in our previousdiscussionby assuming) : G x E — F, thenwe haves, O a € FX

andT (s}, Oa) € F, fora € EX ands ¢ (GY)X. Hencethe binary operations() and~ inducea
binary operation

@ : (6Y)F xEX - FY,
where
b=s@acFY
is defined by
b(y) = F(s;, O a) :xgx (s;(x) Oa(x)). (4.8.2)

The expressiors ()a is calledthe left productof a with s. HereEq. 4.8.2is the analogueof Eq. 3.14.17.
Observethat for both the left and the right product,the sourceimage a is an E—valuedimage on X,
while the transformedmageb is anF—valuedimageon Y. It follows thatimage—templat@roductsare
capableof performingboth pixel level andspatiallevel imagetransformationsimageswith certainrange
valuesdefinedover a given point set are transformedinto imageswith entirely different rangevalues
over point setsof possibly different spaces.

When computings §)a, it is not necessaryo usethe transpose’ since

T (sy(x) Oax) =L (sx(y) Oalx)) . (4.8.3)
This allows us to redefinethe transformationb = s ¢)a as
b(y) =L (sx(y) Oa(x)) . (4.8.4)

Image—templat@roductsare computationintensive. For example,if X is anm x m arrayof points
andY of sizen x n, thenaccordingto Eq. 4.8.1,the computationof eachimage value b(y) requires
m? operationsof type () andm? — 1 operationsof type v, for a total of 2m? — 1 operations.Thus, in
orderto constructthe imageb, a total numberof n?(2m? — 1) arerequired. For standard512 x 512
or 1024 x 1024 size imagescomputationsof such magnitudewould be prohibitive even on todays
supercomputersFortunately,in mostcasegF,v) is a monoid. Hence,whenevera(x;) O ty(x;) = 0,
where 0 denotesthe zero of (F,~), the two vy operations

(a(xi-1) O ty(xi-1))v(a(x:) O ty (xi))v(alxipr) O ty(Xit1))
collapseinto a singley operationsince

(a(xi-1) O ty(xi—1))v(a(x:) O ty(x:))y(a(xir1) O ty(xit1))
= (a(x;-1) O ty(xi-1))v(alxit1) O ty(xi1)) -

For the remainderof this sectionwe assumethat (F,~) is a monoidand let O denotethe zero of
F underthe operationy. Supposea € EX andt ¢ (GZ) , WwhereX andZ are subsetsof the same
topologicalspace.SinceF is a monoid, the operator §) canbe extendedo a mapping

@ EXx (6%)Y = FY,
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whereb = a @t is definedby
b(y) = {Fx (a(x) O ty(x)) if XNZ#O (4.8.5)
0 if XNZ=9g.

The left products ()a is definedin a similar fashion. Subsequenexampleswill demonstratehat the
ability of replacingX with Z greatly simplifies the useof templatesn algorithm development.

Significantreductionin the numberof computationsnvolving the image—templatgroductcan be
achievedf E = G = F is amonoidand(F, v, () is a commutativesemiring. If t € (FZ)Y, thenthe
supportoft atapointy € Y withrespecto theoperationy is definedasSo(ty ) = {x € Z : ty(x) # 0}.
Sincety(x) = 0 wheneverx ¢ Sy(ty), we havethata(x) O ty(x) = 0 wheneverx ¢ Syp(ty) and,
therefore,

L @Oty (x) =L (a(x) O ty(x)). (4.8.6)

It follows that the computationof the new pixel value b(y) doesnot dependon the size of X, but on
the size of Sy(ty ). Therefore,if k£ = card(X N Sy(ty)), thenthe computationof b(y) requiresa total
of 2k — 1 operationsof typey and (). If m and n are as above,and k is small, thenn?(2k — 1) is
significantly smaller than n? (m? — 1).

Substitutionof different value setsand specific binary operationsfor v and () resultsin a wide
variety of differentimagetransforms. Our prime exampleswill be thering (R, +, -) and the bounded
l-groups(R+o0,V, A, +,+') and (RZY,V, A, x, x’). Here we substituteRZ® = R* U {0, oo} for the
boundedI-group (R, Vv, A, x,x’) discussedn Section3.12 by replacingthe symbol —oc with 0.
From a mathematicalperspectivethis amountsonly to an interchangeof symbols. However, from a
practicalstandpointthis interchangeallows for the manipulationof non-negativereal-valuedmagesthat
may contain zero values.

Replacing(F,v, O) by (R, +, -) changesb = a @t into

b=a®t,

where

by)= Y (a®) ty(x)), (4.8.7)

xeXNS(ty)

a € RX, andt ¢ (RZ)Y. The left productis definedin a similar fashion. In digital imageprocessingX
andY areusuallyarraysof form {(¢,7) : 1 <: <m, 1 <j < n}. In this casethe relationshipbetween
the right and left productcan be statedin terms of transposes:

a@®t = (t' (—Da’)',
wherea’(¢,j) = a(j,?).

4.8.1 Example: (Local Averaging Let a be a real-valuedimageon a rectangulararray X ¢ Z* and
t e (IRW)Z the translationinvariant3 x 3 neighborhoodemplatedefinedby
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The image b obtainedfrom the code

b:= %(a Pt)

representshe imageobtainedfrom a by local averagingsincethe new pixel valueb(y) is given
by

xeXNS(ty) xeXNS(ty)

Figure 4.8.1illustratesthe effect of local averaging.The sourceimagea is on the left andthe
locally averagedmageis on the right.

Figure 4.8.1 Effect of local averaging. The sourceimage
is displayedon the left and the averagedmage on the right.

It is importantto distinguishbetweenthe mathematicakqualityb = a (t andthe programcode
representatiom := a @t. The former denotesequalityof two images,while the latter meansto replace
b by a®t. In Example4.8.1 the image%(a @t) is, by definition, an imageon all of Z* with zero
valuesoutsidethearrayX C Z2. Thisis nota problemif we represen%(a @t) asafunction. However,
if we represen%(a @t) asadatastructure suchasanarrayof numbersthenwe run into the problemof
storinganinfinite arrayon afinite machine.Also, in practice oneis only interestedn theimage%(a @t)
restrictedto the array'Y (in our particularexampleY = X) on which b is defined,thatis (a ®t)|y.

This problem could be solved as follows: Lets € (RX)X be defined by sy = (ty)|x for each
y € X, wheret is the templatedefinedin Example4.8.1. Then %(a @®s) providesthe desireddigital
imagesincea ®s = (a @t)|x. Thuswe may ask “why not definet simply asa templatefrom X to
X insteadfrom 72 to Z2?” The answeris that by defining the local averagingtemplateas we did, the
templatecanbe usedfor smoothingany two-dimensionalmage,independenon the dimensionof X. The
reasonfor this is thatwhendeiining animageb in a program,oneusually hasto declareits dimensions,
i.e., the size of its underlyingarray. In particular,if b is declaredto be animageon Y, thenthe image
algebrapseudocodeb := a Ot meango replaceb pointwiseby a @t suchthatthe valueof b at point
y is thevalueof a @t at pointy, where,of course,Y C 72. In termsof algebraicequality,we thenhave
b = (a@t)|y. As aresult,a programmeris not facedwith the task of redefiningt for different-sized
imagesas would have beenthe caseif we had definedt € (RX)™.

Of course,the programstatementb := a @t will producea boundaryeffect. In particular,if a
andb are m x n imageswith underlyingcoordinatesetX = {(i,j) € 2* : 1 <i<m, 1 <j < n},
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thenb(1,1) = L(a(1,1) +a(1,2) +a(2,1) + a(2,2)), which is not the averageof four points. One
may either ignore this boundary effect (the most common choice) or use one of severalschemes
to preventit. For instance, one may simply avoid boundary pixels by defining an array Z =
{(i,j)€Z® : 1<i<m, 1<j<n} andsettingb := [L(a@t)]|z. Thenb representghe desired
(m —2) x (n — 2) outputimage. Letting m and n be variablesallows the applicationof t to images
of arbitrary size.

If, ontheotherhand,atrueaverages desiredn theinterioraswell asalongtheimageboundarythen
anappropriatevarianttemplatecanbe definedto accomplisithis task. Specifically,for y = (y1,v2) € 72,
setN(y) = {(y1 +t,92+7) : 1,5 € {—1,0,1}} anddefinet by

if y e {(1,1),(1,n),(m,1),(m,n)} and x € N(y)nX
if ye{(4,1),(1,7),(,n),(m,j) : 1<i<m, 1<j<n}

[N N

ty(x) = and x € N(y)nX
t ifye{(,j):1<i<m,1<j<n}and xe N(y)nX
0 otherwise.

In Sectiord.5we hintedthatspatialtransformationsnay alsobe performedusingtemplateoperations.
This shouldcomeas no greatsurprisesincetemplatesoperateon both pixel valuesand pixel locations.
We provide an exampleof a spatialtransformin termsof a left image—templatg@roduct.

4.8.2 Example: (Image rotation) Let a be a real-valuedimage on a rectangulararray X =
{(azl,xg)EZQ:lgxlgm,lgxggn},P:{9:—27r<9<27r}, andr : P —
(IRP)Z a parametrizedemplatedefinedby

r(9)(m,x2)(y1,yz) _ { L if (y1,92) = ([z1cosl — zysinb], [x1sinb + xocosb)])

0 otherwise

Then the image b obtainedby setting

b :=r(f) Pa

represents rotatedthroughan anglef usingnearesneighborinterpolation.In this examplethe
symbol [a] denotesthe roundingof a to the nearestinteger.

The boundedl-group (R+~, V, A, +,+') providesfor two lattice products:

b=aMt,
where
by)= \/  [ax)+ty(x)], (4.8.8)
xeXNS_o(ty)
and
b=alt,
where
by)= A\ [a(x)+ ty(x)]. (4.8.9)
x€XNSa(ty)

In orderto distinguishbetweenthesetwo typesof lattice transformswe call the operatorig the additive
maximumand A the additiveminimum It follows from our earlierdiscussiorthatif XN S_.,(ty) = 3,
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then the value of b(y) in Eq. 4.8.8is —oo, the zeio of Ry, underthe operationof v. Similarly, if
XN Sx(ty) = G, thenb(y) = oo in Eq. 4.8.9.
The left additive max and min operationsare definedby

tWa= {<y,b(y)) by)=  V  [lx(y)ta)], ye Y} (4.8.10)

x€XNS_(ty)
and

tMNa= {(y,b(y)) : b(y) = /\ [tx(y) +'a(x)], y € Y} , (4.8.11)

x€XNSa (ty)
respectively.The relationshipbetweenadditive max and min is given in termsof lattice duality by

aflt = (t"Ma")",
wherethe imagea* is definedby a*(x) = [a(x)]", and the conjugate(or dual) of t € (Ri‘oo)Y is the
templatet* € (RY,.)™ definedby t:(y) = [ty(x)]". It follows thatt:(y) = —t! (x).

4.8.3 Example: (Saltand peppernoiseremova) An imagemay be subjectto noiseand interference
from severalsources.Image noisearising from a noisy sensoror channeltransmissiorerrors
usually appearsasdiscreteisolatedpixel variationsthat are not spatially correlated.Pixels that
arein error often appeamarkedlydifferentfrom their neighbors.In Booleanimagesthis type
of noiseappearsasisolatedblack andwhite pixels andis referredto as salt and peppernoise
The image a on the top left of Figure 4.8.2 providesan exampleof this type of noise. The
silhouetteof the SR 71 spy plane containssmall holeswhile the backgroundcontainsisolated
black pixels or smallisolatedgroupsof black pixels. Oneway of removingthis type of saltand
peppernoiseis by geometricfiltering usinglocal maximaand minima.

Let F denotethe 3—elementboundedsubgroup{—oc, 0, oo} of Ry, andt € (FZZ)ZZ be
defined by

. 0 if 1,22 E{y1i17y27 ylva:tl}
bonn) (21, 2) = { —0 oth(erwise). ( a )

Pictorially, t can be representeds

wherethe cells outsidethe supportof t, (everythingnot labelledzero) havevalue —co.
If b := aMt, then
b(y17y2) = \\/ [a(xl,QfQ) + t(yl,yz)($17x2):|
(rl,xZ)ES—w(t(yl,w))
= \V [a(z1,22) + 0]
(xl7'r2)€{(yliliy2)7(91592i1)}
=a(y +1,y2)Valyr — Ly2)Valyr, g2 + 1) Va(y,y2 — 1).

182



Figure 4.8.2 Exampleof salt and peppernoiseremoval. The sequencef images
illustratesthe different stepsof the algorithm, startingwith the noisy sourceimageon
the left in the top row and endingwith the cleanedimage shown on the bottomright.

Thus, b(y) is the maximumof a restrictedto a von Neumannneighborhoodaboutthe point y.
In particular,if a(y) = 0 buta(x) = 1 for any 4—neighborx of y, thenb(y) = 1. Therefore,
in the transformedmageb, any small hole appearingn a will havebeenfilled in asillustrated
by the top centerimageof Figure4.8.2 However,sincewe are taking local maxima,all black
objectsin a havebecomeenlagedor dilated To shrink black objectsbackto their former size,
we convolveb with t* using the additive minimum operator Al . The conjugatet™ of t looks
the sameast, the only differenceis that pixel valuesof —oc havebeenreplacedwith oc. The
resultingimagec := b A t* is shownon the top right of Figure 4.8.2

In orderto removethe peppemoise,we needto apply the additive min operatorone moretime.
The imaged := c¢A t* is shownon the bottom left of Fig. 4.8.2 Unfortunately,the second
applicationof the operator A1 also erodedthe silhouetteof the SR 71. To dilate the eroded
silhouettebackto its former size we needto apply the additive max operatorto d. This results
in the final filtered imagef := d ¥ t shownon the bottomright of Figure4.8.2 The complete
algorithmresultingin f canbe statedin oneline of pseudo-codenamely,

f=(((aMt)Nt)At )M t.
The bounded-group (Rgoo, V, A, X, ><’) alsoprovidesfor two lattice products.Specfically, we have
b=a@t,
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where

biy)= V [ax) xty(x)], (4.8.12)
xeXNS(ty)
and
b=a@®t,
where
b(y) = /\ [a(x) x" ty(x)] . (4.8.13)
x€XNS (ty)

Here 0 is the zero of RZ? underthe operationof v, sothat b(y) = 0 wheneverX n S(ty) = @.
Similarly, b(y) = oo wheneverX N S, (ty) = 9.

The lattice products ) and ® are called the multiplicative maximumand multiplicative minimum
respectively.In analogywith Egs. 4.8.10and 4.8.11,the left multiplicative max and left multiplicative
min are definedas

t@a=<(y,b¥): bly)= \ [x(y)xa®)],yeY (4.8.14)
xEXﬂSw(t’)
and \
tPa=14(y,b(y) : bly)= A [tx(y)x'a(x)],yeY,, (4.8.15)
x€XNS(t))

respectively. The duality relation betweenthe multiplicative max and min is given by

a@t = (tQa),

wherea(x) = a(x) and tx(y) = [ty(x)]. Herer denotesthe additive conjugateof r in RZ° andis
defined by
1/r if 7€ RT
r=40 if r=o00

oo if r=0.

This is similar to the additive conjugatedefinedin Eq. 3.12.1(Section3.12.

4.8.4 Example: (Geometricedgefiltering.) Roughly speaking,a local edgein a digital image is
a small areain the image wherethereis a sharp pixel value transition betweenneighboring
pixels. Local edgefiltering enhancedhesetransition zonesand suppressesalues of pixels
whoseneighboringpixels are of approximatelythe samevalue.

The basicidea underlying most simple edgedetectiontechniquesnvolves the computationof
the local derivativeoperator. This examplediffers from the standardgradienttechniquesn that
it computesdifferencesin local maximaand minima.

Let t ands be templatesmappingZ? — (HgOO)ZZ and definedby

ty=]2 [ 1 |2 ss= 12 |1
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Let f : Z* — 7? bethe reflection f(z1,z2) = (z2,21) andddfine t' ands' by ty, =ty o f
ands), = sy o f, respectively. Then

2 1
ty=1 s =2
2 1

The differencesbetweenthe local maxima and minima in both the horizontal and vertical
directionsenhancedocal edgesin thesedirectionswhile smoothinglocal areaswithout sharp
edgecontrast. The particularalgorithmis given by
2) 1/2
e:={[(a@t) - @®s) + [(2@t) - @]} ",
wherea denotesthe sourceimageand e the edgeenhancedmage. Figure 4.8.3 illustratesthe

effects of this technique;the sourceimagea is shownon the left andthe edgeenhancedmage
e on the right.

Figure 4.8.3 An exampleof geometricedgefiltering. The
sourceimageis on the left and the filtered image on the right.

In both, the definition of the productoperator@® aswell asthefour lattice image-templatg@roducts,
we assumedhat X is a finite point set. There are variousinstanceswherethis restrictive assumption
canbe lifted. For example,if a is continuous,t, is continuousvVy € Y, and X N Sy(ty) is compact
Vy € Y andthe appropriatezero,thena@t, alAl t, a)t, anda @t all exist. Here we assumethat
the global reduceoperations\/ and A denotethe supandinf of the functionsa + t,, a +' ty, etc. In
caseof the productoperator @, Eq. 4.8.7 assumesghe form

by)= [ abo-t(0ix.

XNS(ty)

Extensionsto the continuouscase are essentialfor modelling or computing continuousimage
transformations.
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4.9 The Algebra of Templates

Sincea templateis simply animagewhosevaluesareimages,the basicelementaryfunction theory
conceptsthat were applied to imagesare also applied to templates. For example, restrictionsand
extensionshave analogousmeaningwhen appliedto templates. If t € ([FX)Y andZ C Y, thent|z

denotesthe templates € (FX)” ddinedby sy = ty Vy € Z. If V C X, thent||y denotesthe template

s € (FV)Y definedby sy = ty|v Vy € Y. As in the caseof imagerestrictions thesetwo conceptsof
templaterestrictionscan be combinedinto a single, mutually inclusive definition.

4.9.1  pefinition. If t € (IFX)Y, Z C Y, andV C X, thenrestrictionof t to Z and V is definedas

tlzv) = (t|z)llv-

Thus,t|z x) = tlz, t|(y,v) = t|lv,andif s =tz v), thens € (FV)? andsy (x) = ty(x) Vy € Z
andVx € V.

In orderto definethe complementaryotionsof templateextensionslett € (FX)Y andr ¢ (FX
The extensiorof t to r is denotedby t|* andis an elementof (FX) "™ definedby

)"

¢ — ty ifyeyY
"= ry if ye W\Y.

On the otherhand,if t € (FX)Y ands € (FW)Y, thenthe rangeextensiorof t to s is denotedby
t||* anddefinedby (t][*), = ty|*. Thus,if r = t||*, thenr € (FXUW)¥,

The commonunary and binary operationson templatescorrespondo thosedefinedon images.For
exampleif f: E —F andt € (EX)Y, thenr = fot € (FX)Y is definedby

ry = f(ty),

wheref is appliedpointwiseto theimaget, asin Eq. 4.7.3. Similarly, if y:Ex G — F, s € ([EX)Y,
andt € (6X), thenthe inducedbinary operationy : (EX)Y x (6%)¥ — (FX)Y is definedby

(s7t)y, =syrty VyeY.

Thus,if R=E =G =F, ands, t € (HX)Y, thenthe basicbinary operationsof addition, multiplication,
and maximum are given by

ry =sy +ty, where r=s+41;
ry =sy-ty, where r=s-1t;

ry =sy Vty, where r=sVt.
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4.9.2 Example: (Templatearithmetic) Supposes, t € (HZZ)Z arethe following translationinvariant
templates:

Using the basicbinary operationsof templateaddition, multiplication, and maximumwe obtain
the templates

(s+t) =| 1 [ 5 | 1 (st} =[6 | (svt)y=]1 [3 1

If (F,+) is a(commutativelgroup,thenaccordingto Theorem4.4.1 (IFX, +) is alsoa (commutative)
group. Replacingthe groupF by the inducedgroupF* in Theorem4.4.1resultsin the conclusionthat
(FX)Y is a (commutative)group. This provesthe following theorem:

4.9.3 Theorem. If (F, +) is a (commutativegroup, then ((IFX)Y, +> is a (commutativegroup.

If 0 denotesthe zeroimageof (F*, +), thenthe zeo templateof ((FX)Y, +>, denotedby 0, is
definedby §y, =0 Vy € Y. Thus,fy(x) =0 Vxe X andVy e Y, t +0 =0+t =1t Vt e (FX)Y,
and Sp(y) = @ VyeY.

If (F,+, -) isaring with multiplicativeidentity 1, thenwe candefineamultiplicativeidentity template
e (FX)Y byl, =1 Vy € Y, wherel denotesthe multiplicative identity imageof (FX, +, ). Thus,
(x)=1 ¥xeXand¥y e Y, t-1=1-t =t Vt € (FX)Y, and Sp(ly) = X Vy € Y. The next
theoremis an easyconsequencef Theorem4.4.2

494 Theorem. If (F,+, -) is a (commutative)ing (with unity), then ((IFX)Y,+, ) is a (commu-
tative) ring (with unity).

As canbe inferredfrom the last two theoremsthe algebraof templateshehavesrery muchlike the
algebraof the underlyingvalue set. In view of theorems4.4.1 and 4.4.2 and the fact that templates
areimages,this shouldcomeasno greatsurprise.Of course,just asfor imagesin general the induced
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structure((FX)Y, +, ) is, in generalweakerthantheoriginal structure(F, +, -). Forexamplejt easily

follows from our earlierobservationgoncerninghealgebraicstructureof FX thatif (F, +, -) is adivision

ring, then (([FX)Y, +, ) is a von Neumannring with zerodivisorsand, hence,not a division ring.
Thereis a naturalconnectiorbetweenthe algebraof F—valuedtemplatesandthe algebraof matrices

with entriesfrom F. SupposehatX andY arefinite, sayX = {x1, ..., xn} andY ={y1, ..., yn}.

Then thereis a naturalmap

¥ (FX)Y = My (F)

(1) (4.9.1)

mXn

definedby #;; = ty,(x;). Anotherway of visualizingthe map+ is by usingthe image-to-vectomap

v:FX S F™

a—v(a)
definedby v(a) = (a(x1), ..., a(xm)). Theny(t) = (v(ty,), ..., v(ty,)) , wherev(ty,)" denotes
the transposeof the vector v (ty,) = (ty,(x1), ..., ty,(xm)).

495 Eyample: Supposes ¢ (IR%ZZ)Zz is definedby

Let X = {(zr,22)€2Z?: 1 <21 <3,1<2,<4} andt € (IHX)X be the restriction of
s to the point set X in both its domain and range. More precisely,t = s|xgx) So that
ty(x) = sy(x) Vy,x € X. In particular,the image correspondingo t; ;) hasthe following
appearance:

t(l,l) =11 0 0 0

The region outlined in bold show the supportof t. If we usethe usualrow scanningorder
xi; = (25, 2;) & k = 4(¢ — 1) 4 j for relabelingthe array X, thenthe vector correspondingo
the image t(; 1) is given by
v(tx,) = (tx, (1,1), tx,(1,2), ..., tx,(3,4))
= (1,1,0,0,1,0,0,0,0,0,0,0).
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By definition, this vector forms the first column of the matrix (t) = (v(tx,)’, ..., ¥(tx,,)).
Similarly, the secondcolumnis derivedfrom the vector

V(tx,) = (tx,(1,1), tx,(1,2), ..., tx,(3,4))
= (1,1,1,0,0,1,0,0,0,0,0,0).

wherethe imagetx, = t(12) is given by

t(l,2) =10 1 0 0

Continuingin this fashion,we obtain the symmetricmatrix

1100100 O0O0O0O0O0
11100 1 0 0 0 000
o1 1100 1 00000
o 01100010000
100 01 1 001000
o100 1 1 1 00100
vlt) = o 01001110010
o 00100110001
o 00 01 0O0O0O1T1TTQ0F@O0
o 00 001001110
o 0o 000100111
\0 0o 000O0O0OT1TUO0TO01 1)

The relationshipbetweenmatrix algebraand the algebraof templatesis given by the following
theorem.

496 Theorem. ¢ : (([FX)Y,+, ) — (Mmn(F), +, -) is anisomorphism.

Proof: To showthat is one-to-onejets,t € ([Fx)Y with s # t. ThenJy; € Y suchthat
ty, # sy,. But this meansthat 3i such that ty (x;) # sy,(x;) and,thereforet;; # s;; for
somepair of indicesi, j. Thus, ¥(t) # ¥(s).

For U = (uij),,,,, € My (F), defineu € (FX)Y by uy,(x;) = ui;. Thenw(u) = U. This
provesthat ¢ is onto.

Ifr=s+t,¥(s)=95="(5),yn V() =T = (tij),, 4 andS + T =R = (r3;),. .., then

Ty, (Xi) = sy, (xi) + ty,(xi) = sij + 15
=r; Vie{l,...,m}andVje{l,...,n}.

Therefore,i(s) + ¢(t) = S+ T = R =¢(r) = (s + t).
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Similarly, ¥(s) - (t) = ¥(s-t).
Q.E.D.

This showsthat for finite point sets,templatesare equivalentto matricesand the inducedbinary
operationon (IFX)Y areequivalento theinducedbinary operationon M,,,,,(F); e.g. templateaddition
correspondso matrix addition, andtemplatemultiplication correspond$o Hadamardpointwise) matrix
multiplication

4.10 Template Products

Accordingto Theorem4.9.6 if (F,~,() is aring (or semiring), then (([FX)Y,%Q) is alsoa

ring (or semiring). The operationsy and() on (IFX)Y are pointwiseinducedoperations.In Section4.8
we observedhat undercertainconditionsthe operationsy and () canbe combinedto inducethe more
compleximage—templatg@roductoperator (). This notion extendsto templatesas well.

Suppose € (EZ)X, t e (GX)Y, O :E x G — F, (F,v) acommutativesemigroupandX a finite

point set. Thenthe templateproductr = s )t, wherer € ([FZ)Y, is definedas
ry(z) =L, (sx(z) O ty(x)), Vy€Y and VzeZ. (4.10.1)

By dedfinition, the operator ) is a function
@ : (EZ)* x (6¥)Y = (F%)Y.

Pictorially we canview r = s ()t asa functional compositionwith t applied as a G—valuedtemplate
from Y to X, followed by the E—valuedtemplates from X to Z asshownin Figure4.10.1

Figure 4.10.1 lllustration of templatecomposition.

Similar to the computationof the image—templat@roduct,it is generallynot necessaryo apply the
global reduceoperatorT’ in Eq. 4.10.1to all of X but only over a certainsubsetof X. For illustration
purposeswe againusethe primary value setsR, Ri.,, and RZY.
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If s € (RZ)* andt € (RX)Y, thenfor agiveny € Y define
Sy(z) ={xe X :2z€5(sx) andx € S(ty)} Vze Z. (4.10.2)

It follows that sx(z) - ty(x) = 0 wheneverx ¢ Sy(z). Hence,in orderto computer = s @t, we
can use the formula

ry(z) = z sx(z) - ty(x), (4.10.3)
X€ESy (z)
where > sx(z) - ty(x) = 0 wheneverSy(z) = @.
x€ Sy (z)
The lattice productr = s@t is defined in a similar manner. Fors € (RZ_)*, t ¢ (RX_ )Y
andy € Y define
S;7(z)={xeX:2€85 w(sx) andxX €5 (ty)} Vz€Z. (4.10.4)
Thenr ¢ (R%_)Y canbe definedusing the formula:
ry(z) = \/  Isx(2) +ty(x)], (4.10.5)
x€Sy ~ (2)
wherery(z) = —oco wheneverS,~(z) = &.
The dual operationu = s Al t canbe computedin termsof the formula
uy(z) = /\ [sx(z) +" ty(x)], (4.10.6)
x€Se(z)

where5y°(z) = {x € X : z € S(sx) and x € So(ty)} Vz € Z.
It follows from Egs. 4.10.5and 4.10.6that the duality relation
sAt=(t"Ms")"

is preservedlt is alsonot difficult to verify thatthe supportof ry, wherer = s @t orr = s ¥ t, is given
by S(ry)={z € Z : Sy(z) # B} or S_o(ry) = {z € Z : 5,°°(z) # D}, respectively.Similarly, if
u = s[@At, then S (uy) = {z €Z: S7°(z) # @}.

Fors € {(H?OO)Z]X andt € [(H?OO)X}Y, the lattice productr = s @t is definedby
ry(z) = \/ [sx(z) x ty(x)], (4.10.7)
x€ Sy (z)

where Sy(z) is asin Eq. 4.10.2andry(z) = 0 wheneverSy(z) = &. The dual operator ® can be
definedeither in terms of duality by

st = (t©s),
or by the formula
ry(z) =\ [sx(2) X' ty(x)], (4.10.8)
x€S5°(z)

wherer = s(®t.

For manytemplatesan easyway of computingthe templateproductr = s &)t is to usethefollowing
fact:
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4.10.1 Theorem. If r = s@t, thenry = sty and ry(z) = s, o ty.

The theoremfollows from the observation

and
Z s, (x) - ty(x)=s,oty.
xeX

Thereis nothing specialaboutusing the operator @, the agumentis identical when using the general
product ).

4.10.2 Example: Supposes,t € (RZZ)Z arethe following translationinvarianttemplates:

Thenthe templateproductr = s @t is the templatedefinedby

1 2 1

ry=13 [ 6 |3

-1 -2 -1

If s,t e (Hfoo)z aredefinedas abovewith values—oco outsidethe support,thenthe template
productr = sM t is the templatedefinedby

In this particular example,the templatesr = st and u = s[At havethe property that
S oo(ry) = Se(uy) Vy € 72 and

uy(z) = {ry(z) if z€ S(uy)

00 otherwise.
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