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PREFACE

This documentis an initial draft of thedevelopingtheoryof imagealgebra.Theprimaryobjectiveof
this treatiseis to providethe readerwith an introductionto the theoryandfoundationsof imagealgebra.
For readersinterestedin applicationsandimagealgebraspecificationof awidevarietyof imageprocessing
transformswe recommendthe Handbookof ComputerVision Algorithmsin ImageAlgebra [46].

Sincethe disciplineof imagealgebrais in its infancyanda stateof flux, this documentwill undergo
various changesbefore its completion in book format. The book will consistof eight chaptersand
will be largely self contained.The first chapterwill containall the introductorymaterial;e.g., what is
image algebraall about, the history of image algebra,the peopleinvolved, organizationof the book,
etc. Chapters2 and 3 containbasic backgroundmaterialdealingwith point set theory, topology, and
abstractalgebra.Lack of this backgroundis oftena fatal stumblingblock to understandingtheunderlying
conceptsof imagealgebraand the mathematicsof computervision in general.

As to this initial draft, we recommendreadingthe introductionandthenproceedto a quick overview
of thebasicconceptsthatdefineimagealgebra,we suggestto startwith Section3.13(Chapter3) andthen
proceeddirectly to Chapter4, referringto precedingsectionsfor notationandtheoremsastheneedarises.
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CHAPTER 1
INTRODUCTION

Since the field of image algebrais a recentdevelopmentit will be instructive to provide some
backgroundinformation. In the broad sense,image algebrais a mathematicaltheory concernedwith
the transformationand analysisof images. Although much emphasisis focusedon the analysisand
transformationof digital images,the main goal is the establishmentof a comprehensiveand unifying
theoryof imagetransformations,imageanalysis,andimageunderstandingin the discreteaswell as the
continuousdomain [45].

The idea of establishinga unifying theory for the variousconceptsand operationsencounteredin
imageandsignalprocessingis not new. Over thirty yearsago,Ungerproposedthatmanyalgorithmsfor
imageprocessingandimageanalysiscould be implementedin parallelusingcellular arrayCellular array
computercomputers[61]. Thesecellular array computerswere inspiredby the work of von Neumann
in the 1950s[63, 64]. Realizationof von Neumann’scellular array machineswas madepossiblewith
the adventof VLSI technology. NASA’s massivelyparallel processoror MPP and the CLIP seriesof
computersdevelopedby Duff and his colleaguesrepresentthe classicembodimentof von Neumann’s
original automaton[2, 18, 16, 17, 20]. A moregeneralclassof cellulararraycomputersarepyramidsand
Thinking MachinesCorporation’sConnectionMachines[59, 60, 25]. In an abstractsense,the various
versionsof ConnectionMachinesareuniversalcellular automatonswith an additionalmechanismadded
for non-local communication.

Many operationsperformedby thesecellular array machinescan be expressedin termsof simple
elementaryoperations. Theseelementaryoperationscreatea mathematicalbasis for the theoretical
formalism capableof expressinga large numberof algorithmsfor image processingand analysis. In
fact, a commonthreadamongdesignersof parallel imageprocessingarchitecturesis the belief that large
classesof image transformationscan be describedby a small set of standardrules that induce these
architectures.This belief led to the creationof mathematicalformalismsthat were usedto aid in the
designof special-purposeparallel architectures.Matheronand Serra’sTextureAnalyzer [28], ERIM’s
(EnvironmentalResearchInstituteof Michigan)Cytocomputer[32, 57, 31], andMartin Marietta’sGAPP
[7, 5, 6] are examplesof this approach.

Theformalismassociatedwith thesecellulararchitecturesis thatof pixel neighborhoodarithmeticand
mathematicalmorphology. MathematicalmorphologyMathematicalmorphologyMorphologyis the part
of imageprocessingconcernedwith imagefiltering andanalysisby structuringelements.It grew out of
theearlywork of Minkowski andHadwiger[39, 40, 22], andenteredthemodernerathroughthework of
MatheronandSerraof theEcoledesMinesin Fontainebleau,France[37, 52, 53,54]. MatheronandSerra
not only formulatedthemodernconceptsof morphologicalimagetransformations,but alsodesignedand
built the TextureAnalyzerSystem.Sincethoseearly days,morphologicaloperationshavebeenapplied
from low-level, to intermediate,to high-level vision problems.Among somerecentresearchpaperson
morphologicalimage processingare Crimmins and Brown [8], Haralick et al. [24, 23], Maragosand
Schafer[34, 36, 35], Davidson[14, 13], Dougherty[15], Goutsias[51, 21], andKoskinenandAstola[30].

Serraand Sternberg were the first to unify morphologicalconceptsand methodsinto a coherent
algebraictheoryspecificallydesignedfor imageprocessingand imageanalysis.Sternberg wasalso the
first to usetheterm“imagealgebra”[56, 58]. In themid 1980s,Maragosintroducedanewtheoryunifying
a large classof linear and nonlinearsystemsunderthe theory of mathematicalmorphology[33]. More
recently,Davidsoncompletedthe mathematicalfoundationof mathematicalmorphologyby formulating
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its embeddinginto the lattice algebraknown as Mini-Max algebra [11, 12]. However, despitethese
profound accomplishments,morphologicalmethodshave somewell-known limitations. For example,
suchfairly commonimageprocessingtechniquesasfeatureextractionbasedon convolution,Fourier-like
transformations,chaincoding,histogramequalizationtransforms,imagerotation,andimageregistration
andrectificationare— with theexceptionof a few simplecases— eitherextremelydifficult or impossible
to expressin termsof morphologicaloperations.The failure of a morphologicallybasedimagealgebra
to expressa fairly straightforwardU.S.government-furnishedFLIR (forward-lookinginfrared)algorithm
was demonstratedby Miller of Perkin-Elmer[38].

The failure of an image algebrabasedsolely on morphologicaloperationsto provide a universal
imageprocessingalgebrais due to its set-theoreticformulation,which restson the Minkowski addition
andsubtractionof sets[22]. Theseoperationsignorethe lineardomain,transformationsbetweendifferent
domains(spacesof differentsizesanddimensionality),and transformationsbetweendifferentvaluesets
(algebraicstructures),e.g.,setsconsistingof real,complex,or vectorvaluednumbers.Theimagealgebra
discussedin this text includestheseconceptsandextendsthe morphologicaloperations[45].

Thedevelopmentof imagealgebragrewout of a need,by theU.S.Air ForceSystemsCommand,for
a commonimage-processinglanguage.Defensecontractorsdo not usea standardized,mathematically
rigorousand efficient structurethat is specificallydesignedfor imagemanipulation.Documentationby
contractorsof algorithmsfor image processingand rationaleunderlyingalgorithm designis often ac-
complishedvia word descriptionor analogiesthat areextremelycumbersomeandoften ambiguous.The
resultof thesead hocapproacheshasbeena proliferationof nonstandardnotationandincreasedresearch
anddevelopmentcost. In responseto this chaoticsituation,theAir ForceArmamentLaboratory(AFATL
— now known asWright LaboratoryMNGA) of the Air ForceSystemsCommand,in conjunctionwith
the DefenseAdvancedResearchProject Agency (DARPA — now known as the AdvancedResearch
ProjectAgency or ARPA), supportedthe early developmentof image algebrawith the intent that the
fully developedstructurewould subsequentlyform the basisof a commonimage-processinglanguage.
Thegoal of AFATL wasthe developmentof a complete,unified algebraicstructurethat providesa com-
mon mathematicalenvironmentfor image-processingalgorithmdevelopment,optimization,comparison,
coding,andperformanceevaluation.Thedevelopmentof this structureprovedhighly successful,capable
of fulfilling the tasksset forth by the government,andis now commonlyknown asimagealgebra.

Becauseof the goalsset by the government,the theory of imagealgebraprovidesfor a language
which, if properlyimplementedasa standardimageprocessingenvironment,cangreatlyreduceresearch
anddevelopmentcosts.Sincethe foundationof this languageis purely mathematicalandindependentof
any future computerarchitectureor language,the longevity of an image algebrastandardis assured.
Furthermore,savingsdue to commonality of languageand increasedproductivity could dwarf any
reasonableinitial investmentfor adaptingimagealgebraasa standardenvironmentfor imageprocessing.

Although commonalityof languageand cost savingsare two major reasonsfor consideringimage
algebraasa standardlanguagefor imageprocessing,thereexistsa multitudeof otherreasonsfor desiring
the broadacceptanceof imagealgebraas a componentof all imageprocessingdevelopmentsystems.
Premieramongtheseis thepredictableinfluenceof an imagealgebrastandardon future imageprocessing
technology.In this, it can be comparedto the influenceon scientific reasoningandthe advancementof
sciencedueto the replacementof the myriadof differentnumbersystems(e.g.,Roman,Syrian,Hebrew,
Egyptian,Chinese,etc.) by the now commonIndo-Arabicnotation.Additional benefitsprovidedby the
use of image algebraare
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• The elementalimage algebraoperationsare small in number, translucent,simple, and provide a
methodof transformingimagesthat is easily learnedand used;

• Image algebraoperationsand operandsprovide the capability of expressingall image-to-image
transformations;

• Theoremsgoverning image algebra make computerprogramsbasedon image algebranotation
amenableto both machinedependentandmachineindependentoptimizationtechniques;

• The algebraicnotation providesa deeperunderstandingof image manipulationoperationsdue to
concisenessand brevity of codeand is capableof suggestingnew techniques;

• Thenotationaladaptabilityto programminglanguagesallows the substitutionof extremelyshortand
conciseimagealgebraexpressionsfor equivalentblocksof code,andthereforeincreasesprogrammer
productivity;

• Imagealgebraprovidesa rich mathematicalstructurethatcanbeexploitedto relateimageprocessing
problemsto other mathematicalareas;

• Without image algebra,a programmerwill never benefit from the bridge that exists betweenan
imagealgebraprogramminglanguageand the multitude of mathematicalstructures,theorems,and
identities that are relatedto image algebra;

• Thereis no competingnotationthat adequatelyprovidesall thesebenefits.

The role of imagealgebrain computervision and imageprocessingtasksand theoryshouldnot be
confusedwith the government’sAda programminglanguageeffort. The goal of the developmentof the
Ada programminglanguagewasto providea singlehigh-orderlanguagein which to implementembedded
systems.The specialarchitecturesbeingdevelopednowadaysfor imageprocessingapplicationsarenot
often capableof directly executingAda languageprograms,often due to supportof parallel processing
modelsnot accommodatedby Ada’s taskingmechanism.Hence,most applicationsdesignedfor such
processorsare still written in specialassemblyor microcodelanguages.Image algebra,on the other
hand,providesa level of specification,directly derivedfrom theunderlyingmathematicson which image
processingis basedand that is compatiblewith both sequentialandparallelarchitectures.

Enthusiasmfor imagealgebramustbetemperedby theknowledgethat imagealgebra,like anyother
field of mathematics,will neverbe a finishedproductbut remaina continuouslyevolving mathematical
theory concernedwith the unification of image processingand computervision tasks. Much of the
mathematicsassociatedwith image algebra and its implication to computer vision remains largely
uncharteredterritory which awaitsdiscovery. For example,very little work hasbeendone in relating
imagealgebrato computervision techniqueswhich employtools from suchdiverseareasasknowledge
representation,graphtheory, and surfacerepresentation.

Severalimagealgebraprogramminglanguageshavebeendeveloped.Theseinclude imagealgebra
Fortran (IAF) [68], an image algebraAda (IAA) translator[65], image algebraConnectionMachine
*Lisp [67, 19], an imagealgebralanguage(IAL) implementationon transputers[9, 10], and an image
algebraC++ classlibrary (iac++) [66, 62]. Unfortunately,thereis oftena tendencyamongengineersto
confuseor equatetheselanguageswith imagealgebra.An imagealgebraprogramminglanguageis not
imagealgebra,which is a mathematicaltheory. An imagealgebra-basedprogramminglanguagetypically
implementsa particular subalgebraof the full image algebra. In addition, simplistic implementations
canresult in poor computationalperformance.Restrictionsandlimitations in implementationareusually
dueto a combinationof factors,the mostpertinentbeingdevelopmentcostsandhardwareandsoftware
environmentconstraints. They are not limitations of image algebra,and they should not be confused
with the capability of imagealgebraasa mathematicaltool for imagemanipulation.
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Image algebrais a heterogeneousor many-valuedalgebraHeterogeneousalgebrain the senseof
Birkhoff and Lipson [3, 45], with multiple setsof operandsand operators.Manipulationof imagesfor
purposesof imageenhancement,analysis,andunderstandinginvolvesoperationsnot only on images,but
alsoon differenttypesof valuesandquantitiesassociatedwith theseimages.Thus,thebasicoperandsof
imagealgebraareimagesandthe valuesandquantitiesassociatedwith theseimages.Roughlyspeaking,
an imageconsistsof two things,a collectionof pointsanda setof valuesassociatedwith thesepoints.
Imagesare thereforeendowedwith two types of information, namely the spatial relationshipof the
points, and also sometype of numeric or other descriptiveinformation associatedwith thesepoints.
Consequently,the field of imagealgebrabridgestwo broadmathematicalareas,the theoryof point sets
and the algebraof value sets,and investigatestheir interrelationship. In the sectionsthat follow we
discusspoint andvalue setsaswell as images,templates,andneighborhoodsthat characterizesomeof
their interrelationships.
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CHAPTER 2
ELEMENTS OF POINT SET TOPOLOGY

In order to readanythingaboutour subject,the readerwill haveto learn the languagethat is used
in it. We shall try to keep the numberof technicaltermsas small as possible,but there is a certain
minimum vocabularythat is essential.Much of the standardlanguageis takenfrom point set topology
andthe theoryof algebraicsystems,subjectswith which we arenot concernedfor their own sake.Both
subjectsare, indeed,independentbranchesof mathematics.Point set topologyandset theoryhavetheir
own basicundefined concepts,subjectto variousaxioms;oneof theseundefinedconceptsis the notion
of a set itself. It is not our intention to formally definethe requiredaxiomsthat governthe useof sets
but deal with setson an intuitive basis.

2.1 Sets

Intuitively, we think of a set as somethingmade up by all the objects that satisfy some given
condition,suchasthe setof integers,the setof pagesin this book,or the setof objectsnamedin a list.
The objectsmaking up the set are called the elements,or members,of the set and may themselvesbe
sets,as in the caseof all subsetsof a given set.

We adoptthe conventionof denotingsetsby capital lettersandthe elementsof setsby small letters.
The following is a brief summaryof someof the thingswe shall simply assumeaboutsets.

2.1.1 A set X is comprisedof elements, and if 	 is one of the elements,we shall denotethis fact
by “ 	�
�� .” The notation“ 	�

�� ” shall denotethe fact that 	 is an object which is not an
elementof X.

2.1.2 Thereis exactlyonesetwith no elements.It is the emptyset, andis denotedby the symbol � .

Throughoutthis book, the notationof symbolic logic will be usedto shortenstatements.If p andq
are propositions,then the statement“ ����� ” meansthat p implies q or, equivalently,if p is true, then
q is true. The statement“ ������� ” is read: “p if and only if q,” and meansthat p and q are logically
equivalent; i.e. “ ��� � and ����� .”

An expression����	! thatbecomesa propositionwhenevervaluesfrom a specifieddomainof discourse
aresubstitutedfor 	 is calleda propositionalfunction or, equivalently,a conditionon 	 ; andp is called
a property,or predicate. The assertion“ 	 haspropertyp” meansthat “ ����	! ” is true. Thus, if ���"	� is
the propositionalfunction “ 	 is an integer,” then p denotesthe property“is an integer,” and “ ���$#% ” is
true, whereas“ �!�'&)()#� ” is false.

The quantifier “there exists” is denotedby * , and the quantifier “for each” is denotedby + . The
assertion“ +,	-*%.0/214351 +,6879�!�:	<;5.=;56) ” reads“for eachx thereexistsa y suchthat for eachz, �!�:	>;?.@;?62 
is true.”

A set may be describedeither by giving a characterizingpropertyor by listing the elements.The
standardway to describea setby listing elementsis to enclosethedesignationsof theelements,separated
by commas,in braces,e.g. {1,2,3,4,5}. In termsof a characterizingpropertythis set could be written
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as ACBEDGF�H�B!IKJ , which reads“the setof all B suchthat F!H:B!I ,” wherep denotesthe property“is a positive
integer less than 6.”

If L and Y are sets, then “ L MON ” will mean that L and Y have the sameelements;that is,P BQDRH�BRSTL�IVUXW H"B0STNXI .
L YZN , read “X is a subsetof Y,” signifies that eachelementof X is an elementof Y, that is,P BRD[H�BRSTL�I\W]H�BRSTN�I . Equality is not excluded— we call X a propersubsetof Y wheneverL^Y�N

and L _MQN . The set whoseelementsare all the subsetsof a given set X is called the powerset of X
and is denotedby `ba . The following statementsare evident:

2.1.3 L YcL for every set X.

2.1.4 If LdYeN and NfYZg , then LhYZg (i.e. Y is transitive).

2.1.5 LhMiN if and only if both LjYkN and N]YeL .

2.1.6 l YmL for every set X.

2.1.7 l Sn` a and L SQ` a .

2.1.8 N^YoLhU�WdN]Sp` a , and BpS�L�U�W ACB!J9Sp` a .

Of these,2.1.5 is very important: the equality of two setsis usually provenby showingthat each
of the two inclusions is valid.

Throughoutthis text, various familiar setsof numberswill occur naturally. For convenience,we
shall now reserve:q

to denotethe set of integers,r
the set of rational numbers,s
the set of real numbers,

and t
the set of complex numbers.

Thenotation
q>uwv=q�xyv?szu

, and
s{x

will refer to the setof all positiveintegers,the setof all negative
integers,the set of all positive real numbers,and the set of all negativereal numbers,respectively.
Observethat the number0 is not an elementof any of thesefour sets. The setwhoseelementsare the
number0 and the positive integerswill be denotedby | . Thus,

|}M^AC~ v���v ` v���v>���b� J .
Threefinite subsetsof

q
that will occur throughoutmuch of this text are

q�� M�AC~ v���v��b�K��v?����� J v\q u� M�A ��v ` v��K����v5� J v\�)�=��q>�@� M�A ����v����b�Kv����2v ~ vK��v��b���Kv5� J v

where
� S q u .
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2.2 The Algebra of Sets

Intuitively, an algebra is simply a collection of nonemptysets togetherwith a finite numberof
operations(rules) for transformingone or more elementsof the sets into anotherelementof one of
the sets. The formal definition of an algebrawill be given in Chapter3. In this sectionwe define
the elementaryset-theoreticoperationsand presenta list of standardformulaewhich are convenientin
symbolic work.

Whendefiningoperationson andbetweensetsit is customaryto view the setsunderconsideration
assubsetsof somelargersetU, calleda universalsetor the universeof discourse. For instance,in plane
geometry,the universalset consistsof all the points in the plane.

2.2.1 Example: Considerthe equation�"�[�p�)�'���������2�C�:�=������� ��¡
whosesolution set is the set ¢ �d£����C¤�¥� ¤5¦K¤�� ¦"§ , where

¦��f¨ ���
, provided that © is the

universalset. However, if ª is the universalset, then ¢ �m£«�¬�2¤C¥� § .
2.2.2 Definition. Let X andY be given sets.The union of X andY, written ¢®­�¯ , is definedasthe

set whoseelementsareeither in X or in Y (or in both X and Y). Thus,

¢°­�¯ ��±)²�³¬²X´ ¢®µ2¶ ²�´ ¯�·{¸
The intersectionof X and Y, written ¢º¹T¯ , is definedas the set of all elementsthat belong
to both X and Y. Thus, ¢^¹�¯ �]±)²�³¬²X´ ¢¼»¾½=¿ ²�´ ¯�·\¸ For example, À�­TÁ�Â � Á andÀe¹ ±Ã� �«¤�����¤:¡«¤��2¤?� · �f±C¡�¤���¤?� · .

Two setsX andY arecalled disjoint if they haveno elementsin common,that is, if ¢®¹T¯ �oÄ .
Obviously, Á>Å8»¾½=¿pÁ�Â are disjoint.

If ¢ ÆÈÇ , then the complementof X (with respectto U) is denotedby ¢8É and is defined as¢8É �Z±��0³¬�R´ Ç ¤\��Ê´ ¢Ë· . The differenceof two sets ¢ ¤ ¯OÆiÇ is denotedby ¢�Ì�¯ and definedas¢�Ì�¯ �m±C�0´ ¢ ³¬��Ê´ ¯�· . Note that ¢8É � Ç-Ìb¢ .

For future referencewe list below (2.2.1) someof the more important laws governingoperations
with sets. Here X, Y, and Z are subsetsof somegiven universalset U.

Becauseof associativity,we candesignate¢m­ � ¯Í­0Î � simply by ¢®­�¯Í­0Î . Similarly, a union
(or intersection)of four sets,say

��Ï ­�¢ � ­ � Î�­�¯ � , can be written as
Ï ­Ð¢Ñ­V¯Í­8Î because,by

associativity,the distributionof parenthesesis irrelevant,andby commutativity,the orderof termsplays
no role. By induction,thesameremarksapply to the union (or intersection)of anyfinite numberof sets.

The union of n sets, ¢ÐÒ ¤�ÓbÓ�Ó5¤ ¢[Ô , is written
ÔÕÖØ× Ò ¢ Ö , and the intersectionis

ÔÙÖØ× Ò ¢ Ö .
The relation between ¹ , ­ , and Æ is given by:

2.2.3 The statements

(i) ¢ÚÆ�¯ , (ii) ¢ � ¢O¹�¯ , (iii) ¯ � ¢m­Ð¯ , (iv) ¯[É<Æ�¢9É , and(v) ¢m¹T¯¬É �nÄ
are all equivalent.
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Identity LawsÛ°Ü9ÝßÞnÝ Ûcà9ÝßÞpÛ
ÛmÜ0áQÞpÛ ÛmàTáQÞná

Idempotent LawsÛmÜ�Û^ÞpÛ Ûmà�ÛºÞ�Û
Complement Lawsâ ÛRãåä$ã=ÞpÛ áæã,ÞnÝ�çGÝGã�Þßá

ÛmÜ�Û ã ÞnÝ Û®à�Û ã Þ�á
AssociativeLawsâ ÛmÜ�è�ä>ÜTé�ÞpÛcÜ â è�Ü0é-ä â Û°àÐèXä>à0é�ÞpÛmà â ènàTé-ä

Commutative LawsÛmÜ�èZÞpèÍÜ�Û Û°à�èoÞ�è�à�Û
Distributive LawsÛmÜ â èÍà0é ä\Þ â ÛmÜÐèXä>à â Û°Ü0é ä Ûmà â èÍÜTé-äyÞ â Ûmà�è�ä>Ü â ÛmàTé-ä
DeMorgan’s Lawsâ Û°ÜÐèXä ã ÞpÛ ã à�è ã â Û®à�è�ä ã ÞpÛ ã Ü�è ã

Figure 2.2.1 Laws of Operationswith Sets

2.3 Cartesian Products

Let
ÛêÞië�ìíç?î�ï

and
èOÞZëCð�ç?î@ç�ñ�ï

. The set of distinct orderedpairs

é�Þ�ë â ìíç'ðòä?ç â ìíç?î�ä?ç â ìíç?ñ�ä5ç â î@ç?ð ä5ç â î@ç?î%ä?ç â î@ç?ñ2äKï

in which the first componentof eachorderedpair is an elementof X while the secondcomponentis an
elementof Y is called the Cartesianproductof X andY. Orderedpairsaresubjectto the onecondition:â ìíç?î�ä Þ â ñ«ç?ðòä�ó�ô�ì�Þoñ�õÃö�÷TîRÞøð

; in particular,
â ìíç?î�ä Þ â î@ç?ì@ä ó�ô�ì�Þoî

. Sincethe Cartesian
productis oneof themostimportantconstructionsof settheory— enablingus to expressmanyconcepts
in terms of sets— we define it formally.

2.3.1 Definition. Let X, Y be two sets.The Cartesianproductof X andY, denotedby
Û^ùTè

, is the
set of all orderedpairs

ë â ìíç'î�ä\ú¬ìRûTÛ8ç?î�ûTè�ï
.

2.3.2 Example: View the elementsof
Û�ÞZëÃü�çKý�çÿþ%ï

as the coordinatesof points on the x-axis and
the elementsof

èmÞQë�ü�ç?ý«ç5þ«ç���ï
as the coordinatesof pointson the y-axis. Then the elements

of
Û ùRè

are the rectangularcoordinatesof the twelve pointsshown(Figure2.3.1).
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(1,2)� (2,2)� (3,2)�
(1,3)� (2,3)� (3,3)�
(1,4)� (2,4)� (3,4)�

Figure 2.3.1 The Cartesianproduct ����� viewedas a subsetof the plane.

If in the aboveexamplewe would have let � �	�
��� instead,then the elementsof the set�
����������� are all the points in the first quadranthaving integral coordinates.Similarly, when��������� , the set �	����������� consistsof all pairs �����! #" of real numbers� and  , andrepresents
the usual �$���% &" -coordinateplane.

The Cartesianproductof threesetsX, Y, andZ is definedby �	�'�(��)*�+�,�-�'��".��) , andthat
of n setsby induction: ��/0�2131415���76'������/8�2141315�'�96;:</=">���96 . The Cartesianproductof n setsis

alsodenotedby
6?@BA / � @ ; an elementof

6?@BA / � @ is written �$�C/D�FE3E4E%�!�#6#" and � @ is called the ith coordinate.

If ����� @ for GH�JI;�3E4EKE3�KL , thenwe define � 6 � 6?@BA / � @ . In particular,the ���M�% <" -coordinateplane,also

known as two dimensionalEuclideanspace, is denotedby �.N , while O�N denotesthe discretesubsetof� N consistingof all points having integral coordinates.

Thenotionof Cartesianproductextendsthesetof elementaryset-theoreticoperations.In comparison
to P and Q , however,theCartesianproductis neithercommutativenor associative:in general,�R�7�TS������ and �����'��">��)�S�����U���(�U)V" . Also, �-�W���YX
Z7[����JXY\;]^�R��X (or both). The
relationbetweenthe Cartesianproductand the operationsof union and intersectioncanbe summarized
as follows:

2.3.3 � �	�_��P�)0"`�	�����'��">P��,����)0" .�
���_��Q�)0"7�	�_���'�a"^Q�������)0" .
2.4 Families of Sets

If for eachelement b of somenonemptyset c there correspondsa set �ad , then the collectione � d�f bhgickj is called a family of sets,and c is called an indexingset for the family. We alsowritee ��dlj dDm3n for
e �ad f b'g�o9j . If the indexing set c(�p� , then the indexedfamily

e � @ j @ mDq is called a
sequence(of sets)and may also be denotedby

e � @ jsr@BA / .
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The notion of union and intersectioncan be generalizedto any arbitrary indexedfamily of subsets
of someuniversal set U.

2.4.1 Definition. Let t3uav5w v=x3y be a family of subsetsof a universalsetU. The union of this family
is denotedby zvDxDy u�v and is the sett|{W}�~Y�^{�}'u v����;�>�=�.�B�3�����.�;�#�V� }���w��
The intersectionis denotedby �vDxDy u v and is the sett|{W}�~Y�^{�}'u�v ���l���4�;�F�K��� }���w��
For a sequencet3u7�,w3��B��� of setswe also usethe notation������� u ��� u �^� ua� � �4�3�!¡ �D�C¢ �£�B��� u ��� u �.¤ ua� ¤Y�4�3�
to denoteunion and intersection,respectively.

2.4.2 Example: Let � � t � � � }�¥R�§¦9¨ � ¨+©Dw . For each � } � , let u v �t|ª«�>ª`}�¥ ¡ ¦9¨�ª`¨ � w . Then�vDxDy u v � t|ª`�>¦`¨�ª`¨¬©Dw � � ¡ �D�­¢ £vDxDy u v � t3¦5w®�
Example2.4.2canbegeneralizedto the following usefulfact: let X beanysetand,for each{W}'u ,

let u7¯ be a subsetof X suchthat {°}�u9¯i±�u . Then u � z¯ xD² u9¯ .
It follows from the definition that the union andintersectionof a family of setsdoesnot dependon

how thefamily is indexed.That is, unionandintersectionareunrestrictivecommutativeandassociative.
Thecomplementlaws,distributivelaws,andDeMorgan’slawsalsohold for thesegeneralizedoperations.
In particular, we have

2.4.3 If t3u v w vDxDy is any family of subsetsof someuniversalsetU and ³´±J~ , thenµ ©D¶	³ � µ �vDxDy u v ¶ � �v=x|y µ ³ � u v ¶µ�· ¶¸³ ¤º¹ zvDxDy u v|» � zvDxDy µ ³ ¤ u v ¶µ�¼ ¶ ¹ zvDxDy u v;»F½ � �vDxDy u ½v �=�C¢ ¹ �v=x|y u vD»s½ � zvDxDy u ½vµ�¾ ¶¸³T¿ ¹ zvDxDy u�v » � zv=x3À ¹ ³¸¿Uuav »µ�Á ¶¸³T¿ ¹ �v=x|y u v » � �v=x|y ¹ ³´¿°u v »µ�Â ¶ �v=x|y · ²>Ã � ·
Ä �ÃKÅKÆ5Ç^ÈKÉ ÊDËCÌ ÍÎDÏ3ÐkÑ Ç>ÈaÒ Ñ.Ó ÍÈKÔ%Õ Ç^ÈKÉ�Ö
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2.5 Functions

The notion of a function (or map) is basicin all mathematics.Intuitively, a function f from a setX
into a set Y, written ×ÙØ­Ú
Û
Ü , is a rule which assignsto each Ý�Þ°Ú someelement ß of Y, where
the assignmentof Ý to ß by the rule f is denotedby ×Mà�Ý�á�â¸ß or ×JØãÝ*ä ß . However, we shall
definethe notion of a function formally in termsof the primitive concept“set” by identifying functions
with their graphs.

2.5.1 Definition. Let X and Y be two sets. A function f from X to Y, denotedby ×¬ØHÚåÛ Ü is
a subset×ÙæJÚ�çUÜ with the property: for each ÝÙÞ°Ú , there is one, and only one, ß2Þ°Ü
such that à�ÝHè%ß&áéÞ+× . The set of all functions from X into Y will be denotedby Ü§ê . ThusÜ ê â	ë|×�Ø>×9ìîí>ï�ð_ñCòCó!ô�ìîõ;ò`ð_öKõD÷(ÚTôKõVÜ�ø .

We write ×Mà�Ýùáaâ�ß for à�Ý�è%ß<á'ÞY× and say that ß is the value f assumesat Ý , or that ß is the
evaluationof f at Ý . For instance,defining Ú�â*ÜRâ+ú , then the set ×�æÙÚ-çWÜ definedby

(i) ×¬â�ëDà$ÝMèûß<á>Ø;ß9â�ü;Ý`ý*þ;è>ÝWÞ'ÚUø�õ;ö
(ii) ×Jâ�ë;à$Ý�è%ü;Ý«ý*þDá>Ø§ÝWÞ'Ú°ø
is a function ×°Ø�ÚÿÛ�Ü . Observethat this function is completelyspecified by the rule

(iii) ×Mà$Ý�ákâJü;Ý9ý+þ or, equivalently,by either ßWâJü;Ý�ý+þ or Ý�ä ü;Ý9ýºþ .
Throughoutmuch of this book we shall specify functionsby assignmentrules (as in (iii)) and call

the set ë;à$ÝMèûß&á Ø5ß9â�×Mà�ÝùáMï=ò � Ý'Þ'Ú°ø , where ×°Ø#ÚÿÛ Ü , the graph of the assignmentrule ×Mà$Ý�á8â ß
or, simply, the graphof f. Note that underthis definition the statement“the graphof f ” is synonymous
with the statement“the function f.” We will alsoperiodicallyrefer to certainspecialpropertiesandtypes
of functions. In particular,it will be importantto distinguishbetweenthe following typesof functions:

2.5.2 A function ×�Ø5Ú�Û�Ü is said to be one-to-one(or 1–1) if distinct elementsin X havedistinct
evaluations;i.e. Ý��â���� ×Mà�Ýùá��âY×Mà	�&á or, equivalently, ×Mà�Ýùá®âY×Mà	�&á
� ÝWâ�� .

2.5.3 A function ×*Ø�Ú Û Ü is said to be onto (or f is a function from X onto Y) if every ß2Þ°Ü
correspondsto anevaluation×Mà�Ýùá for some Ý�ÞiÚ ; i.e. if ßaÞiÜ��
��Ý�ÞiÚ í$ñCó��7ô��­ïDôé×Mà�Ýùá.âß .

2.5.4 A function ×YØ Ú Û Ü assigningall Ý¬Þ*Ú to the samesingle element ßÙÞ*Ü is called a
constantfunction.

2.5.5 The function ×�Ø#Ú
Û
Ú with the property ×Mà�Ýùá8â(Ý���Ý2ÞUÚ is called the identity function
on X and will be denotedby ��� . If �	æJÚ , the function �VØ�� ÛåÚ given by ��à	�#á«â�� is
called the inclusion of A into X.

2.5.6
Given sets Ú��Dè���� �%èûÚ"! , the function #%$YØ !&')( � Ú ' Û Ú*$ , where þ,+.-/+10 , defined by

# $ à$Ý � è�� ���Kè!Ý $ è ��� �Kè%Ý ! áãâ Ý $ is called the projection onto the jth coordinate.

11



2.5.7 Suppose 243 5�6 6�6�572�895 :;3<5 6�6�675�:=8 , and X are nonempty sets, and >@? A BC5�6�6 6�5ED
there exist functions F�GIHJ2KG1L :=G.M<NPO QRGSH/2 L 2KG . Then the familiesT F G HU?VA,BR5�6 6�6�5�D=WXMYNPO T Q G HZ?VA�BR5 6�6�675ED[W inducenew functions F\H 8]

G_^ 3 2 G L 8]
G_^ 3 : G MYNPO`QaH

2 L 8]
G_^ 3 2 G that are defined by F[b	cd3�5 6�6�6�5Ece8gfhA biF<3 b	cd3 fE5�6�6�6 5EF 8gbicg8gf7fjM<NdO Q=bkc=fhA

blQ 3 b	cmfE5�6�6 6�5iQ 8 bkcmf�f , respectively. The functions F G M<NdO Q G are called the ith-coordinate
functionsof f and g, respectively.

2.5.8 Given a function FnHd2oLS: and a subsetp/q�2 , then the function f consideredonly on A
(i.e. the function

T bkc[5EF[b	cmf�fUHUcsrtpuW ) is called the restriction of f to A and is denotedbyFwv x . Thus, Fwv x�AyF{z|b	p~}�:�f .
2.5.9 In the reversedirection, if pJq~2 and F�H�phLo: , then any function ��H�2
L1: with the

property �Kv x�A�F , is called an extensionof f over X relative to Y.

2.5.10 Let 2
A�p`��� . Given functions F�HPp�L�: and QaHP�hL
: , then the function �/H�2
L.:
definedby

��b�cmf�A
� F[b	cmft?�F�c�rspQ=b	cmft?�F�c�r�2���p

is called the extensionof f to g over X relativeto Y. We will usethe symbol F�v � to denotethis
extension.

Thedifferencebetween2.5.9and2.5.10is in the definitionof an extensionand the extensionof the
function f. Observealso that in 2.5.10, �Kv x�A/b	Fwv �Rf4�� x A�F .

The following examplesshouldhelp in clarifying the importantconceptsof “one-to-one”and“onto”
functions.Thefunction F�H��~L�� definedby F[bic=fUA��Cc=�"B is notontosince,for example,F[bic=f9�A��"rt�
for any c�r�� . However, f is one-to-onesince �Rc��~B�AJ���*��B�  c¡A�� . On the other hand, the
function Q¢H�£�L�£U¤�� T�¥ W definedby Q=bkcmfwA�cP¦ is onto sincefor every §�r�£�¤�� T�¥ W�¨�ctrs£ (namelyctA,©�ª § ) suchthat Q@bkcmf«A�§ . But Q is not one-to-onesince Q@b�¬��Cf«A�Q=bk��f and ¬��s�A�� .

Given two functions F�HR2­L®: and Q¢H<:hL.¯ , thenthe compositionQ�°UF�H<2±L.¯ is definedbyblQ²°³FVfib	cmfUA�Q=bkF;b	cmf�f">@csr�2 . The following theoremindicatesa simplemethodfor establishingthat a
given function f (respectivelyQ ) is one-to-one(respectivelyonto).

2.5.11 Theorem. Let F�H<2®L±: and Q¢HC:�L®2 satisfyQU°@F�A�B�´ . Thenf is one-to-oneandg is onto.

Proof: Since F[bic=f�AµF[bi��f� ¶c�A~b·QX°³F;f7b	cmf�A�Q=biF;b	cmfifUA�Q=bkF;bi��f�fUAub¸Q²°«F[f�bi��fUA�� , we have
that f is one-to-one.The function Q is onto sincefor any c�r�2o¨�§|r�: , namely §�A�F[b	cmf ,
such that c`A�b·QX°«F[f�bic=f²A¹Q=b	F;bic=f7f²A�Q=bk§ef .

Q.E.D.

As a simple illustration of Theorem2.5.11we showthat for any function ºtH�2­Lo¯ , the functionFuH=2»L»: , where :­A�2
}�¯ and F[b	cmf²Aybic;5Eºmbkcmf�f is one-to-one.Let ¼P3�H[2�}�¯/L½2 be the
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projection onto the first coordinate. Then ¾P¿�À�Á,Â�Ã Ä Ã is ÅEÆ . Hence,by Theorem2.5.11, f is
one-to-one(and ¾ ¿ is onto).

The fact that the compositeof one-to-oneandonto functionsis againa one-to-oneandonto function
follows from the next theorem.

2.5.12 Theorem. SupposeÁ�Â[ÃSÄIÇ and ÈÉÂ[Ç®Ä Ê .

(i) If f and g are onto, then È4À9Á�Â=ÃIÄ Ê is onto.

(ii) If f and g are one-to-one,then È�À
Á`ÂPÃoÄ»Ê is one-to-one.

Proof: (i) Let Ë�Ì�Ê . Since È is onto, Í�ÎsÌ�Ç suchthat ÈPÏ	ÎeÐ³Ñ�Ë . Sincef is onto, Í�Ò|ÌÓÃ
suchthat Á;ÏiÒ=Ð³Ñ�Î . But then ÏlÈ"À«Á[Ð�Ï	ÒmÐ«Ñ`È=ÏkÁ;Ï	ÒmÐ�Ð³Ñ�Ë . Therefore,È�À«Á is onto.

(ii) SupposeÏlÈ²À«ÁVÐiÏiÒ=Ð
Ñ�Ï·È"À«Á[Ð�ÏiÒgÔÕÐ , i.e. È=ÏkÁ;Ï	ÒmÐ�Ð
ÑuÈ=ÏkÁ[Ï	ÒeÔÕÐ7Ð . Then Á[Ï	ÒmÐÖÑ,Á[Ï	ÒeÔ_Ð since È is
one-to-one.But then ÒtÑ�Ò Ô sincef is one-to-one.Accordingly, ÈXÀ
Á is one-to-one.

Q.E.D.

2.6 Induced Set Functions

If Á�Â<Ã±Ä®Ç , thenthe setX is calledthe domainof f andis denotedby ×�Ø<Ù�ÚgÛlÜ[ÏiÁ;Ð . The rangeof
f, denotedby Ý<Ú�ÜeÈeÞ<ÏiÁ;Ð , is definedas Ý<Ú�ÜeÈPÞ<ÏkÁ;ÐUÑ~ß�Á;ÏiÒ=Ð¢Â�Ò�ÌsÃÓà . It follows that ×�Ø<Ù�Ú�ÛkÜ[ÏiÁ�á â�ÐUÑ�ã ,Ý<Ú�ÜeÈPÞ<ÏiÁ�á â�Ð�Ñ�ß<Á;ÏiÒ=Ð4Â²ÒtÌsãäà , and that ÁnÂ=ÃoÄSÝ<Ú�ÜeÈPÞYÏ	ÁmÐ is onto.

Sincefor each ã,Ì|å Æ\æ Ý<Ú�ÜeÈPÞ<ÏiÁ�á â ÐÖÌ�å<ç , f inducesa function èÁ|Âgå Æ Ä¶åYç definedby

èÁ;ÏiãäÐ�Ñuß�Á[Ï	ÒmÐKÂ�ÒsÌsãÓàUé
In addition, f also inducesa function èÁ;ê ¿ Â;å<ç,Ä»å Æ definedby

èÁ ê ¿ ÏkëKÐUÑìß9Ò�Â�ÒsÌ�Ã�í<îPï�Á[ÏiÒ=Ð«Ìsë/à�é
The set èÁ ê ¿ Ï	ëKÐ is called the inverseimage of B.

It is commonpracticeto let f(A) and Á[ê ¿ Ï	ëKÐ denotethe evaluation èÁ;ÏiãäÐ and èÁ[ê ¿ ÏkëKÐ , respectively.
Sincein mostcasesthecontextof discussionavoidspossiblemisinterpretation,this economizesnotational
overhead. Although we shall follow this conventionto someextent, we point out that in machine
implementationand algorithm descriptionthe maps Á æ Á[ê ¿<æ èÁ , and èÁ[ê ¿ must be distinguishedas they
do representdifferent processes.

2.6.1 Example: Let Á�ÂRð�Ä.ð be defined by Á[ÏiÒ=Ð�ÑµÒdñ , ãìÑ�ò�ó æ�ô9õ å æEõ å æ�öd÷ , and ë¹Ñìß�ó æiøPæ�ù à .
Then Á[Ï	ãäÐ9ÑJß�ó æ å æ�ù à and Á;ê ¿ ÏiëKÐ9ÑJß�ó æ�ô ó æ å æ�ô å æEöeæ�ô9ö à .

The inducedset-valuedfunctions èÁ and èÁ;ê ¿ arecalledsetfunctionssincethey arefunctionsof sets
into sets. Inducedset functionspossessvariousproperties.In particularwe state:
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2.6.2 Theorem. Let ú�ûCü®ý±þ , ÿ�������ü , and ��ÿ��	� ��

� beanyfamily of subsetsof X. Then:

(i) ú��kÿ����­ú������
(ii) ú

�����
�� ÿ������ ���
�� ú��iÿ����
(iii) ú

�! ��
�� ÿ � � �  ��
�� ú��iÿ � �
The following exampleshowsthat the inclusion(iii) cannot,in general,be replacedby equality.

2.6.3 Example: Let ÿ � �"�$#�%'&(�«û*)"+,#-+/.(%*)0+/&1+/.�� , � ��0�2#�%3&(�Uû*)0+/#4+/.(%657+/&1+98:� , and ;=<�û?>A@B>�ýC> the projectiononto the first coordinate
(i.e. the x-axis). Since ÿ,DE�F�HG , I; < �iÿ9D��E�6�JGLK�J��#sû*)"+�#M+�.N�0�OI; < �	ÿP��DJI; < ����� .

Of the two inducedset functions, Iú�Q < is the more importantone as it is much more well-behaved
in the sensethat it preservesthe elementaryset operations.

2.6.4 Theorem. Let úÓûRü±ý±þ , ÿ������nþ , and ��� � � �R

� any family of subsetsof Y. Then:

(i) ú�Q < �iÿP����ú�Q < �����
(ii) ú Q < �2�0ST�:�VU�ú Q < �����XW S
(iii) ú Q < �Y���
�� � � � � ���
�� ú Q < �2� � �
(iv) ú Q < �Z �R

� �"� � �  �R

� ú Q < ���"�[�
Proof: We only prove(iv); the proofsof (i) through(iii) are just assimple. Observethat

#-\tú Q <^]7_��
�� � �a`Fb:c ú���#d�6\ _�R

� � ��b:c ú���#d�6\B� �fehg \Mib:c #j\aú Q < �$� � � e�g \Mi b:c #-\ _�R

� ú Q < ��� � �
#-\tú Q < ]7_��
�� � � ` b:c ú���#d�6\ _�R

� � ��b:c ú���#d�6\B� �fe�g \Mib:c #j\aú Q < �$� � � e�g \Mi b:c #-\ _�R

� ú Q < ��� � �

Q.E.D.

The following importantrelationshipbetweenthe two set functionsis alsosimple to verify:
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2.6.5 Theorem. Let k�lnmVoqp , rtsum , and v�sup . Then:

(i) rCswk�xzy|{|k�}$rP~������
(ii) k�{0k x=y }�v�~�s�v .

The inclusions(i) and (ii) cannot,in general,be replacedby equality.

2.6.6 Example: Let A and � y be as in Example2.6.3. ThenrF�� � x=yy }�� y }2rP~'~ � � x=yy }����-l����/�4�/����~ � �[}$���'�(~�l*�"�,�-�/�(�*�"���,�E���/�6�
If k!l�m�o�p is onto, thenequality holds in 2.6.5 (ii). In particular,f is onto �:� �k� ^�k x(y }�v�~$¡ �v£¢zv sqp . Similarly, f is one-to-one �:� ¢z�L¤ �k�}¥m¦~ the set �k�x(y�}��
�(�[~ consistsof a single

element. Thus, with each one-to-onefunction k�l7m o p there is associateda function k x=y l�k�}2m!~Yo m , called the inverse of f, which is defined by k x=y }$�(~ � � , where �
�§� � �k x=y }'�����[~ ;
that is, k x(y }��(~�¤ �k x=y }'�
�(�[~E¢z�u¤ �k�}2m!~ . For example, if k¨l"©NªZoC© is given by k�}��d~ ��« � ,
then k�x=y�}2�	~�¤ �k�x=y�}'�����[~ � �a¬(� and, hence, k�x=yR}2��~ � ¬ . Similarly, k�x(y   « � ¡ � � and, in general,k�x=y�}$�§~ � �=­^¢z�Y¤ �k�}$© ª ~ . If kYl�mOo�p is both one-to-oneandonto, thenthe inverseof f is a functionk�x=y7l�p¨o�m since k�}2m!~ � p . This differs from �k�x=y�l���®/o��R¯ eventhough,aspointedout earlier,
it is standardpracticeto usethe samefunctional notation.

There are severaluseful observationsconcerningone-to-oneand onto functions. Supposethatk!l�m�o�p is one-to-oneandonto. Then k x=y l�p¨o�m is one-to-oneandonto, and }�k x=y ~ x=y � k . In
addition,equalityholds in 2.6.5(i) and(ii). If we alsohavea one-to-oneandonto function °�l�p�o²± ,
thenboth °|{³k and }T°´{fk�~ x=y areone-to-oneandonto functions. This follows from Theorem2.5.12and
the fact that }X°0{�k�~ x=y � k�x=yP{*°dx=y .
2.7 Finite, Countable, and Uncountable Sets

Two setsaresaidto be equivalentif thereexistsa one-to-oneandonto function k4l�m�oOp . Hence
the idea that the two setsX and Y areequivalentmeansthat they are identical exceptfor the namesof
the elements.That is, we canview Y asbeingobtainedfrom X by renamingan element� in X with the
nameof a certainuniqueelement� in Y, namely � � k�}$�§~ . If two setsX andY arefinite, thenthey are
equivalentif andonly if they containthe samenumberof elements.Indeed,the ideaof a finite setX is
thesameassayingthatX is equivalentto a subset�����3���¶µaµ�µ3�¶��� of thenaturalnumbersfor some�Y¤-· ª .
To makethis andrelatedideasmoreprecise,we list the following definitionsinvolving a setX and · ª .

2.7.1 Definition. A set X is

finite if andonly if either m �H¸ or ¹?��¤B·�ª suchthat X is equivalentto �����3�(�aµaµ'µº�¶��� ,
infinite if it is not finite,

denumerableif and only if it is equivalentto · ª ,

countableif and only if it is finite or denumerable,and

uncountableif it is not countable.
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Somepropertiesof countablesetsare listed in the next example.

2.7.2 Example:

(i) » ¼L½�¾�¿C» is countable.

(ii) X is countableÀ ¿ÂÁ�Ã�Ä�ÅºÆ�Ç�¼u½ ¾ suchthat X is equivalentto Y.

(iii) If X is equivalentto Y and Y is countable,then X is countable.

(iv) If »È¼uÇ and Y is countable,then X is countable.

(v) If É,Ê »�ËqÇ is onto and X is countable,then Y is countable.

(vi) If É/Ê »�ËqÇ is one-to-oneand Y is countable,then X is countable.

(vii) If Ì is countableand Í »EÎ Ê(Ï�ÐMÌ�Ñ is a collectionof countablesets,then ÒÎ�ÓaÔ »1Î is countable;

i.e. the countableunion of countablesetsis countable.

Assuming Example 2.7.2 as a fact, it is not difficult to show that the set ½�Õ and the set Ö of
rational numbersare countablesets. First, note that the function ÉJÊ ½ ¾ Ë×½ definedby É�Ø$Ù�Ú�Û7ÜÝÚ
and É�Ø�Ù�Ú1Þ/ß�Û"Ü¨Þ�ÚMàJß , where ÚAÜLß�á3Ù�á'â(áäã�ãaã is one-to-oneand onto. Thus, ½ is equivalentto ½ ¾
and hencecountable.Now for each åæÐ ½ define »7ç ÜuÍ[Ø$å�á�Ú�Û6Ê�ÚYÐ ½ Ñ . Then,since ½ is countable,it
follows from 2.7.2 (vii) that ½ Õ Ü Òç ÓRè » ç is countable.

To show that Ö is countable,define ÉJÊ ½�Õ1Ë Ö byÉ�Ø$å�áêé(Û6Üìë å¥í3éuå¥É´é4îÜðïïñå2É7é�Üðïfò
Then f is obviously onto. Henceby 2.7.2 (v), Ö is countable.

We wish to attacha label card(X) to eachset X, called the cardinality of X, which will provide
us with a measureof the “size” of X. In particular,the label shoulddistinguishin someway if one or
two given setshas more membersthan the other. Assigning ó¶ô?õ�ö(Ø » Û:ÜwÚ to a set X equivalenttoÍ?ß[á3Ù�áaã�ãaãºá3Ú�Ñ will satisfythis requirementfor finite sets(using the conventionóºô�õ�ö(Ø » ÛNÜðï if andonly
if » Ü¨÷ ), for if Y is equivalentto X, then it follows from Theorem2.5.12 that Y is also equivalent
to Í�ß�á3Ù�á�ãaã'ãºá¶Ú�Ñ . Therefore,óºô�õ�ö(Ø Ç Û"ÜøÚ and hence, óºô�õ�ö(Ø » Û�Üùóúô?õ�ö(Ø Ç Û . As can be seenfrom the
finite case,countingis not neededfor the purposeof determiningwhetheror not two setshavethe same
cardinality. We needonly to pair off eachmemberof one set with a memberof the other set and see
if any elementsare left over. Thus the notion of two setshaving the “samesize” canbe formalizedas
follows: two setsX and Y havethe samecardinality if andonly if they areequivalent.

2.7.3 Examples:

(i) Let » ÜHÍ�Ù�ÚYÊ�ÚYÐ ½�¾ Ñ ¼�½�¾ and ÉZÊ ½�¾!ËC» be definedby É�Ø$Ú�ÛfÜHÙ�Ú . It is easyto verify
that f is one-to-oneand onto. Thus X and ½ ¾ have the samecardinality even thoughX is a
propersubsetof ½ ¾ . This is not possiblefor finite sets.No finite setcanbe equivalentto one
of its proper subsets.

(ii) Any openinterval Ø�ônáüû�Û³ÜJÍ�ý-Ð-þtÊ0ô1ÿ/ý4ÿ/ûúÑ ¼ þ is equivalentto theopeninterval Ø'Þ�ß�áaß�Û ,
sincethe function ÉYÊ(Ø'Þ�ß�áaß�Û Ë Ø2ôná3ûúÛ definedby É�Ø�ýdÛ³Ü��Õ ô(Ø¶ß Þ!ýdÛdà��Õ û�Ø3ßfà¦ý§Û is one-to-one
andonto. Furthermore,by defining �-Ê�Ø'Þ�ß[áúß�Û Ë þ by �dØ$ý§Û^Ü ���� � � � it canbe seenthat (–1,1)
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is equivalentto � . Thus, 	�

����������������������	�

������� � . It thereforefollows that any openinterval�!
"��#�� has “just as many points” as � itself.

In order to comparethe size of two sets,we makethe following definition:

2.7.4 Definition. For two sets,X andY, we write 	�

�����%$&�('�	)
*�����,+-� if thereexistsa one-to-one
function from X to Y.

Note that we use the symbol “≤” rather than the word “smaller.” Obviously, if $ ./+ , then	�

�����0$1��'2	�

�����0+3� . However, the existenceof a one-to-onefunction from X to Y doesnot exclude
the possibility that thereexistsalso a one-to-oneand onto function from X to Y, as Example2.7.3 (i)
and (ii) show. Example2.7.2 (iv) showsthat, roughly speaking,countableinfinite setsrepresentthe
smallestinfinity: No uncountableset can be a subsetof a countableset. In fact, it can be shownthat	�

�����%465 ����	�

�����%78� and 	�

������495 �;:�<	�

������� � [27]. Since 465&.=� , 	)
*�����>465?� '@	)
*�����>� � . Thus, � is
in a sensemuch larger than 465 or 7 , which are of the sameinfinite size.

2.8 Algebra of Real-Valued Functions

If A=BC�?D (i.e., A=E"$GFH� ), then f is called a real valued function on X. Many of the common
arithmeticoperationsof � areinheritedby � D . We providea quick review of theseinheritedoperations
as they are of fundamentalimportancein imagealgebra. Specifically, let A"�>IJB=� D �LKJB=� , and |k|
denotethe absoluteof k. Then we define:

2.8.1 �!MN� �!A-OPIQ��EQ$RFH�TS
UV�!A3OWIX���!YQ�Z��A9�!Y[�\O1IQ��Y[��!M]M]� �0K_^�A`��E9$aF �TS
Ub�]Kc^�A9���!Y[�d�eKf^
�!A9�!Y[����!M]M]M]�g�ihNA3hj�_E6$kF �RS
Ul�)h]A3hm�>�!Y[�c�nh A9�!Y[��h�!M0o�� ��Ap^iI"��E6$GFH�RS
Un�>Af^qIr�>�>YQ����A9�!Y[��^�Ir��Y[�
Observethat �>Af^iI"�fE\$ F � is not the composition Ats;I definedpreviously. For example,ifAuE_�eF � is definedby A9�NY[�c�vYXw and I@E_�xF � by IQ��YQ�_�gy�Y , then ��Ap^iIX���!Y[�c�gy�Y{z , while�!A3s\IQ�>�!Y[�d�}|*Y"w . Note also that At^�IW�}If^�A , but A~s�I�:�uI_s�A .

It is alsoconvenientto identify the realnumberKpB�� with theconstantfunction �~E�$nFl� defined
by �"�!Y[����K_�rY�BP$ . In particular,if ACE
$�F�� , then �XKWBW� we definescalaradditionof f by k as
the function �>A_O&K"��E*$�F�� , where ��A-OWK"���>YQ����A6�>YQ�`O1K . Thus, A-O&K��}A-OJ� .

The set � D , togetherwith the aboveoperations,possessesvarious important properties,someof
which are included in the next theorem.

2.8.2 Theorem. The set � D togetherwith the operationsdefined in 2.8.1 satisfiesthe following
properties:

1. Theoperationof addition of functionsf and g satisfies:�!MN� �>A_O�IX��O@�<��AtOu��IcOC�Q�
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�!�]�]� �P���@��������!�]�]�]�@�r�&�1�`�
, i.e. a zero function

�C�*�����
, suchthat

�-���W�}��!�0���k�r�=�J� � �f C�=�J� �
, i.e., a function

 ¡�J�Q�G�H�
, suchthat

�p�=�¢ ¡�6�Z�£�
,

the zero function.

2. Theoperationof scalarmultiplication ¤c¥ � of a functionf by the real numberk satisfies:�!�N� ¤p¥ � ¤*¦{¥ �9�_�v� ¤
¤
¦ � ¥ ��!�]�]� § ¥ �}�v��!�]�]�]� ¨ ¥ �}�l�
3. Theoperationsof addition and scalar multiplication satisfy:�!�N� ¤p¥ �!�3�W�X�©�£� ¤p¥ �6� ��� ¤-¥ �Q��!�]�]� � ¤ � ¤
¦ � ¥ �=�£� ¤p¥ �9����� ¤*¦Q¥ �6�
Proof: We only provepart 3 of the theorem.The remainingpartsare just assimple to prove
and are left as an exercise.�>�>� ª ¤©¥ �!�3�W�"��«0�!¬[�\� ¤_¥ ª­�!�3�W�"���!¬[��«r� ¤_¥ ªm�6�>¬Q�6���r��¬[��«� ¤ �>�6�>¬Q���[� ¤ ���Q�>¬Q�>�?�®� ¤c¥ �6���!¬[�[�C� ¤c¥ �Q�>�>¬Q�
for all

¬P�t�
; hence,¤_¥ �>�_���X����� ¤c¥ �9�`�J� ¤c¥ �Q� . Observethat we usethe fact that k,

�9�>¬Q�
and

�r��¬[�
are real numbersand satisfy the distributive law.�>���N��¯�¯ ¤ � ¤ ¦±° ¥ � ° �!¬[�²�³¯ ¤ � ¤ ¦±° �6�>¬Q�� ¤ �>�6�>¬Q���r� ¤ ¦ �!�9�!¬[���²�®� ¤c¥ �6���!¬[�[��¯ ¤ ¦ ¥ � ° �!¬[�

for all
¬��C�

; so
� ¤ � ¤ ¦ � ¥ �=�³� ¤f¥ �9�\��� ¤ ¦ ¥ �9� .

Q.E.D.

It follows from properties1 through3 of Theorem2.8.2that
� �

togetherwith operationsdefinedin
2.8.1formsa real linear vectorspaceasdefinedin Chapter3. If X is a finite setconsistingof n elements,

then
�²�

may be viewed as the well-known vector space
�`´W� ´µ¶±·Q¸ �p¹

2.8.3 Example: Let
� � º*§¼»X½�»6¾�¾�¾"»X¿9À

and let Á �W�`� � �`´
be defined by Á ���9�}��!�9�¢§Â��»¢�6�>½
��»�¾�¾�¾�»¢�9�>¿9���

. If Á ���Q��� Á ���9� , then
�%�Q��§���»!�Q��½Ã��»)¾�¾�¾i»>�Q�,¿Ä���c���>�6�i§��i»��9��½Ã�¢»�¾�¾�¾�»¢�9��¿9���

and, hence,
�Q���>�W�Å�9�!�N�p�r�1�e�

. Therefore,
�e���

and Á is one-to-one. Furthermore,
if
�!¬ ¸ »¢¬{Æ�»�¾�¾�¾�»i¬ ´ �=�b�²´

, and
�/�3� � �

is the function defined by
�9�!�N�J�Ç¬ ¶ , thenÁ ���6�����>¬ ¸ »¢¬"Æ�»�¾�¾�¾�»¢¬ ´ � and, therefore,Á is alsoonto. It follows that any function

���¼�/�Å�
canbe uniquely identifiedwith the orderedn-tuple

�!�9�¢§Â�¢»¢�9��½
�¢»�¾�¾�¾�»i�6��¿9���
. In addition, if f and

g correspondto the n-tuples�t�®�!¬ ¸ »¢¬XÆ�»�¾�¾�¾�»¢¬ ´ �ÉÈ�ÊXËÌ�f���>Í ¸ »¢Í�Æ�»�¾�¾�¾�»¢Í ´ ��»
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then Î3Ï�ÐfÑ�Ò!Ó"Ô ÏÖÕ�Ô�×¢Ó{Ø ÏCÕ�Ø�×�Ù�Ù�Ùi×¢Ó
ÚLÏÖÕ�Ú{Û
and for any ÜuÝÌÞ ,

Ü©ß ÎtÑ�Ò Ü Ó Ô × Ü Ó Ø ×�Ù�Ù�Ù�× Ü Ó Ú Û�à
Example2.8.3 showsthat Þ\á and Þ Ú are, from an algebraicpoint of view, essentiallythe same

vectorspace.This fundamentalfact providesa key componentin the studyof the imagealgebraandits
relationshipto other algebraicstructures.The precisedefinition of algebraicequivalenceof two vector
spacesis given in the next chapter.

2.9 Distance Functions

A type of real valuedfunction of particularimportancein imageprocessingandpatternrecognition
is the distancefunction. Distancefunctions inducegeometricstructureson setsthrough the notion of
nearnessof oneelementto another.Thegeneraldefinitionof a distanceor metricon a setX is asfollows.

2.9.1 Definition. Let X be a nonemptyset. A distancefunction or metric on X is a functionâPãQälåPäRæ Þ that satisfiesthe following threeconditions:

(1)
â Ò>Ó6×¢Õ
Û�ç}èêérÓ9×¢Õ Ý äÅëÂìXíWâ Ò�Ó6×¢Õ�Û�Ñ�ètî3ïðÓñÑ2Õ¡à

(2)
â Ò�Ó9×�Õ�Û©Ñ â Ò�Õ"×¢ÓQÛ£érÓ9×¢Õ Ý ä à

(3)
â Ò�Ó6×¢ò
Û©ó â Ò!Ó9×¢Õ
Û\Ï â Ò!Õ"×¢ò
ÛxérÓ9×¢ÕX×iò Ý ä à

When speakingof setson which metricsare defined,we refer to the elementsof the set as points
and to

â Ò�Ó9×�Õ�Û
as the distancebetweenthe points

Ó
and

Õ
. Property(1) of the function d characterizes

it as strictly nonnegative,and (2) as a symmetricfunction of
Ó

and
Õ
. Property(3) is known as the

triangle inequality. Excellentexamplesof distancefunctionsarethreemetricscommonlyusedin image
processing.Theseare the Euclideandistance,the city block or diamonddistance,and the chessboard
distanceon Þ Ú . For arbitrary points ô ÑlÒ�Ó"Ô�×�Ù�Ù�Ù�×¢Ó�Ú{Û

, and õ ÑlÒ!Õ�Ô�×�Ù�Ù�Ù�×iÕ�Ú{Û
of Þ Ú we define the

Euclideandistancebetweenx and y by

â Ò ô × õ Û\ÑÅö Ú÷øiù Ô Ò>Ó ø�ú Õ ø Û
Ø�ûZüý ×

the city block distanceby

â Ô�Ò ô × õ Û\Ñ
Ú÷øiù Ô\þ Ó ø ú Õ ø þ ×

and the chessboard distancebyâ Ø�Ò ô × õ Û\Ñ@ÿ��
Ó�� þ Ó ø�ú Õ ø þ ã�� ó Ü ó�����à
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Given a setX, a distanced on X, anda number 	�

� , thenfor any point ����� , we candefine the
set ����� ������� of points ����� that arewithin distancer of ��� ����� �����!�#"%$&�'�(�)� *+�,�.-��/�102	 3 . In order
to simplify notationwe let � � �,�!� denotethe set � �4� � �5��� if it is clear from the discussionas to which
metricd is beingused.We maythink of � ��� � �,�!� asa “sphere”with centerx andradiusr. Geometrically,
however,thesesetsneednot look like spheres.Figure2.9.1providesexamplesof spheresin 687 of radius	�":9 aboutthe point 0=(0,0) determinedby the Euclidean,city block, andchessboarddistances.

-1

1

-1 1

(a); (b)<
-1

1

1=-1

(c)>
-1

1

1-1

Figure 2.9.1 The spheres?,@+ACBED�F GH?,I�A�JK?,L�AMB�DON5F GH?,I!APJQ@/R�ST?,UVAWB�DYX5F G�?�I!A .
2.10 Point Sets in Z#[

A large portion of the materialintroducedin the previoussectionsdealt with abstractsets,that is,
setsof arbitraryobjectswhosenatureis immaterial. In this sectionwe briefly reviewpropertiesof special
setsin Z [ . A nonemptysubsetof Z [ will be referredto asa point set. Elementsof a point setX, called
thepointsof X, will bedenotedby smallbold letters. In particular,the origin of Z [ , which is the n-tuple?,\+JP\]J�^_^_^�JP\`A consistingonly of zeros,will be denotedby 0.

2.10.1 Definition. Let acbd?,e�f&J�^_^Y^�JPe [ A1ghZi[ . Then the lengthor norm of x is definedasjkj a jlj b m e�nfpo�q_q_qro e n['s
It follows from this definition that the norm of the differenceof two points is the sameas the

Euclideandistancebetweenthe points; i.e., if acb:?,e f J_^_^_^�JPe [ A and tub:?�v f J_^_^Y^�JPv [ A , then

S+?�apJwtxA8bzy [{|�} f ?,e |�~ v | A nY� NX b jkj a ~ t jkj s
It is now easyto establishthe essentialpropertiesof the norm.
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2.10.2 Theorem. Let x and y be points in ��� . Thenwe have�,��� �l� ���l�����]�K�/�.�c�l� �W�l�!�����������/�����&���������������¡ �¢�,����� �k� ��£h¤¥�l�8�¦�§� ¤�£h�W�l�4¢�,������� ¨¨¨¨ �©ªP«�¬]­ ª � ª ¨¨¨¨¯® �l� �W�k�4�§� ¤¥�l�4¢�,��°+� �k� �²±³¤¥�l� ® �§� ���l�´±µ�l� ¤¥�l�
Proof: Statements(i) and(ii) areimmediatefrom the definition. Statement(iii) is knownasthe
Cauchy-Schwartzinequality which can be rewritten as¶ �·ªP«�¬ ­ ª � ª_¸�¹ ®

¶ �·ªP«�¬ ­ ¹ª ¸ ¶ �·ª�«º¬ � ¹ª ¸ ¢
Sincea sum of squarescan neverbe negative,we have�·ª�«�¬ � ­ ªV» ±³� ª � ¹ �¼�
for every real numberr. This inequality can be written in the form½ » ¹ ±¿¾&À » ±uÁ��2���
where ½ � �·ª�«�¬ ­ ¹ª �ÂÀÃ� �·ª�«�¬ ­ ª � ª �ÄÁÅ� �·ª�«�¬ � ¹ª ¢
If

½dÆ �
, thenlet » �:£ÇÀ�È ½

in orderto obtain
À ¹ £ ½ Á ® �

, which is the desiredinequality.
If

½ �É�
, the proof becomestrivial.

Statement(iv), known as the triangle inequality, follows directly from the Cauchy-Schwartz
inequality: �§� ��±h¤¥�l� ¹ � �·ª�«�¬ � ­ ª ±³� ª � ¹ � �·ªP«�¬�Ê ­ ¹ª ±u¾ ­ ª � ª ±u� ¹ª&Ë�µ�l� �W�l� ¹ ±Ì�l� ¤¥�l� ¹ ±³¾ �·ª�«º¬ ­ ª � ª

® �§� ���l� ¹ ±��k� ¤¥�l� ¹ ±u¾��l� ���k�4�§� ¤¥�l�`�%�r�l� �W�Í�_±%�§� ¤¥�l�Î� ¹ ¢
Thus �§� ��±h¤¥�l� ¹ ® ���k� ���l�r±Ì�l� ¤¥�l�Ï� ¹ ¢
By taking the squareroot we obtain (iv).

Q.E.D.

With the notion of distance,we can now proceedto define what is meantby a neighborhoodof
a point in �x� .

21



2.10.3 Definition. Let Ð.Ñ Ò�Ó�Ô and Õ�Ò�Ó8Ö . The set×�Ø_Ù Ð.Ñ_ÚpÛ%Ü_ÐhÒ�Ó#Ý¼Þ²ßPÐ�àáÐ.Ñ`ßQâ¼Õ`ã
is called an opensphere of radius r and center Ð Ñ . The set× Ø Ù Ð Ñ ÚiÛÌÜ_Ð³Ò�Ó Ý Þ²ß�Ð�à�Ð Ñ ß¯ä¼Õ`ã
is calledthe closedsphereof radiusr andcenter Ð�Ñ . Any openspherewith center Ð.Ñ is called
a neighborhoodof Ð.Ñ andis denotedby

×áÙ Ð.å/Ú . An openspherewith its center Ð.Ñ removedis
called a deletedneighborhood of Ð.Ñ and is denotedby

×�æçÙ Ð.Ñ&Ú .
Observethaton the line ÓcÛ¡Ó�è , a neighborhoodof a point Ð Ñ is a symmetricopenintervalcentered

at Ð Ñ , while in the plane Ó�é it is a disc centeredat Ð Ñ with its boundary,which is the setof all points
x satisfying the equation ßPÐ�àhÐ�Ñ/ß'ÛÉÕ , removed.

With respectto a set êìë%Ó Ý , eachpoint Ð�ÑíÒhÓ Ý hasoneof threerelations,and for eachwe use
a familiar word in a preciseway:

1. Ð.Ñ is an interior point of X if thereexistsa neighborhood
×áÙ Ð�Ñ_Ú suchthat

×áÙ Ð.Ñ�Ú1ë¼ê ,

2. Ð Ñ is anexterior point of X if thereexistsa neighborhood
×áÙ Ð Ñ Ú suchthat

×hÙ Ð Ñ Ú�î�êÄÛ%ï ,
and

3. Ð å is a boundarypoint of X if Ð å is neitheran exteriornor interior point of X.

The setof all interior pointsof X is called the interior of X and is denotedby intX. The set of all
boundarypointsof X is calledtheboundaryof X andis denotedby ð�ê . Note thata boundarypoint may
or maynot belongto X: If we let êÄÛ ×�ØHÙ Ð.Ñ�Ú and ñKÛ ×�Ø�Ù Ð.Ñ&Ú , then ð�êÄÛÌÜ_ÐhÒ�Ó Ý Þ²ß�ÐMàáÐ.Ñ/ß�Û
Õ`ã
and, hence, ð�êÄî�ê Ûòï while ð�ñTÛÉð�ê ëKñ .

Beginningstudentsof multidimensionalcalculusoftenconfusethe two distinctnotionsof limit point
and boundarypoint. Limit points of setsin Ó Ý are definedas follows:

2.10.4 Definition. A pointy is a limit pointof X if for everyneighborhood
×áÙ�ó Ú of y,

× æ Ù�ó Úºî²êìôÛ%ï .

It follows from the definition that every interior point of X is a limit point of X. Thus, limit points
neednot be boundarypoints. The next exampleshowsthat the converseis also true.

2.10.5 Example: Let êTÛ�õ�Ð³Ò�Ó é Þ�ö÷âdßPÐWß¥ä%øCù�ú'Ü Ù öCûYüCÚYã . Theboundaryof X consistsof three
separatepieces:The circumference,where ýlý Ð�ýlýCÛ�ø , and the two points

Ù ö]ûPö`Ú and
Ù ö]ûPü`Ú . The

interior of X is the set of points x with ö�âòýký ÐWýlýiâþø , and the set of all limit points of X is
the set õ&ÐhÒ�Ó�éhÞ�ö�â:ßYÐWßQä%ø/ù�ú�Ü Ù ö]ûPö`ÚYã'Û × è Ù,ÿ Ú . In particular,

Ù ö+ûPü`Ú is a boundarypoint
which is not a limit point. A boundarypoint of X which is not a limit point is also called an
isolatedpoint of X. The reasonfor this definition is that for isolatedpointsonecanalwaysfind
neighborhoodswhich intersectno other points of X.

A subsetX of Ó Ý is calledan openset in Ó Ý if êÂÛ�������ê andclosedif every limit point of X is a
point of X. Thus,opensetsaretheunionsof neighborhoods,andclosedsetsaresetsthatcontainall their
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limit points. We wish to stressthe differencebetweenhavinga limit point andcontainingone. The set���
	���
������������������
hasa limit point (namely, � � � ) but no point of X is a limit point of X. In

everydayusage,“open” and“closed” areantonyms;this is not truefor the technicalmeaning.ThesetX
just describedis neitheropennor closedin

�
. The readershouldalsobecautionedthat anopeninterval!#"%$'&)(

in
�+*

is no longer an openset when consideredas a subsetof the plane. In fact, no nonempty
subsetof

�,*
canbe openin

�+-
, becausesucha setcancontainno two-dimensionalneighborhoods.

It is important to note that we definedthe conceptof “open” for sets in
�/.

. This conceptcan
be extendedto “open in X.” Suppose0 �1� �2� . . Then Y is said to be openin X if there exists
an open set W in

� .
such that 0 �43 56� . Similarly, Y is closedin X if there is a closedset W

in
� .

such that 0 �73 5�� . Thus the set
! � $ �98:�;	�<=�6�2���?>@<=A �)�

is open in the closedsetBDC � $ �E8+�F	G<H� C �IAJ<=AK���
since

! � $ �L8/� ! � $NMO( 5 BPC � $ �98
and
! � $QMR(

is openin
� *

.

The following list summarizessomeimportantfacts aboutopennessand closedness.

2.10.6 Every neighborhoodS !UT,( is an opensetandeveryclosedneighborhoodS !VT,( is a closedset.

2.10.7 The union of any collection of open setsis openand the intersectionof any finite collection
of opensetsis open. The intersectionof an infinite collection of opensetsneednot be open:	��O�W� XYZ9[ * \ C *Z $ *Z^] is closed.

2.10.8 The intersectionof any collectionof closedsetsis closedandthe union of any finite collection
of closedsetsis closed. The union of an infinite numberof closedsetsneednot be closed:!QC � $ � ( � X_Z9[ *a` C *Z C � $ � C *Z�b is openeven though ` *Z C � $ � C *Z�b � S *'c Z ! � ( is closedfor

eachk.

2.10.9 A set is open if and only if its complementis closed.

2.10.10 A point x belongsto theboundaryof X if andonly if everyneighborhoodof x containsa point
that belongsto X and a point that doesnot belongto X.

2.10.11
��dWe%�

is a closedset.

It follows from 2.10.4that the set
�f�g�2d6	 T � T1hji+kIlDhDmHhon+prq�hDs^n�q�tvu �

, calledthe closure of X,
is a closedset. In particular,X is closedif andonly if

��� �
. The relationbetween

�
andthe closed

set in 2.10.11is given by the equality
�w� �xd6e%�

. Also, from the definition of boundary,a point x
belongsto the boundaryof X if andonly if everyneighborhoodof x containsa point that belongsto X
and a point that doesnot belongto X. In fact, this observationforms the usualdefinition of boundary
points of regionsin digital images. This is in contrastto limit points: Neighborhoodsof limit points
neednot containpointswhich do not belongto X. Anotherdistinguishingfeatureconcerninglimit points
and boundarypoints is providedby the next theoremand its corollary.

2.10.12 Theorem. If p is a limit point of X, theneveryneighborhood of X containsinfinitely many
points of X.
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Proof: Supposethereis a neighborhoody{z#|,} which containsonly a finite numberof points
of X. Let ~����L�)�G�9�'~/� denotethe pointsof y{z#|,}���� , which aredistinct from p and let

�=�J���U�r�����%�����D� |��W~r� �D��� ~��+�6y��Dz�|,}����������� � � �
Theminimumof a finite setof positivenumbersis clearlypositive,so that �H�@  . But thenthe
neighborhoody:¡)z#|,} containsno point x of X suchthat ~£¢� | . Hence,accordingto Definition
2.10.4, p is not a limit point of X. This contradictionestablishesthe theorem.

Q.E.D.

2.10.13 Corollary. A finite subsetof ¤/¥ hasno limit points.

Accordingto thecorollary,finite setsarealwaysclosedsets.In ordinaryusage,thewords“finite” and
“bounded”aresometimessynonymous.In mathematicsthey areusedto describequite differentaspects
of a set. A setX is said to be boundedif thereexistsa numberr suchthat �P� ~ �¦�R§ ¨ for every ~W�6� .
Geometrically,this saysthatno point of X is fartherthana distancer from theorigin; thatis, ©«ª@y ¡ z#¬�} .
For example,everyneighborhoodin ¤ ¥ is boundedandinfinite. Of course,everyfinite set is bounded.

If X is a boundedset of real numbersthen, obviously, there exist numbersr and s such that­ �f®¯� �±° ® �²© . In this case,the numbersr and s are also called an upper bound and lower
boundfor X, respectively.Any setof real numbersthat hasan upperboundis said to be boundedfrom
above. Similarly, any set of real numbersthat has a lower bound is said to be boundedfrom below.
Obviously,a boundedsetof real numbersis just a set that is boundedfrom aboveand below. One of
the mostbasicpropertiesthat characterizesthe real numbersis the leastupperboundproperty; namely,
any nonemptyset that is boundedfrom abovehasa smallestupperbound,andany nonemptyset that is
boundedfrom below hasa greatestlower bound.To bemoreprecise,supposeX is a boundedsetof real
numbers.Then � �W¤ is the leastupperboundof X, denotedby lub or by supX, if andonly if r is an
upperboundof X andfor any ³v�6¤ with ³ §g� , t is not anupperboundfor X. Thegreatestlower bound
of X, denotedby glb or infX, is the numbers with the propertythat s is a lower boundfor X andif ³v��¤
with ­=§ ³ , then t is not a lower bound.For example,the set z � �'´�µ �K� ® �6¤ � � § ®�� ´^� haslub = 2,
and glb = 1. Here ´��¶z � �Q´�µ but

� ¢�¶z � �Q´�µ . As our next theoremshows,closedboundedsetshavethe
importantpropertythat they containtheir leastupperboundand greatestlower bound.

2.10.14 Theorem. If ©�ª@¤ is closedandboundedwith lub = r and glb = s, then � �·© and ­ ��© .

Proof: Suppose� ¢�£© . For every ³ �F  �=¸ ® �£© suchthat � �¶³ �
®£� � , for otherwise� ��³ would be an upperboundlessthanthe lub of X. Thuseveryneighborhoodof r contains
a point x of X with

® ¢�
� , since � ¢�W© . It follows that r is a limit point of X which is not
in X. But this contradictsthe fact that X is closed.

Q.E.D.

The notion of boundedsetscan be extendedto setsother than subsetsof ¤ ¥ . SupposeX is an
arbitrary nonemptysetwith metric d and ¹1ªº© with ¹x¢�¼» . Then we say that A is boundedif and
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only if the set ½�¾À¿#Á�Â'ÃÀÄvÅ+ÁÆÂQÃÈÇ6É:Ê is bounded.If A is boundedthenwe definethe diameterof A by

¾À¿UÉ±Ä,Ë�Ì)Í^Îr½G¾À¿#ÁÆÂEÃOÄvÅ�ÁÆÂQÃ�Ç6É±ÊvÂ
and ¾À¿UÉ±Ä�ËfÏ if A is not bounded.

The greatestlower boundcanbe usedto definethe distancebetweensets. In particular,for Á�Ç�Ð
we define the distancebetweenx and A by

¾À¿#ÁÆÂQÉ±ÄÑË�Ò�ÓrÔ�½�¾À¿#ÁÆÂNÕÀÄvÅ�ÕÈÇ6É±Ê�Â
andthe distancebetweentwo nonemptysubsetsA andB of X by ¾�¿UÉ=ÂQÖ?Ä+Ë×Ò�ÓrÔ�½�¾À¿#Õ%ÂEÖØÄvÅ�Õ?ÇÙÉ±Ê�Ú

It is of interestto notethat ¾À¿UÉ=ÂEÖ�ÄÜÛËKÝHÞßÉ£à�Ö¼Ë á , but that the converseimplication neednot
be true, evenif both setsareclosedsetsin â . As an example,considerthe sets ÉKËº½�Ó�Å�Ó�Ç6ã�ä�Ê andÖåËfæ�Ó�ç1èé Å�Ó�Ç6ã äëê . Here É×à·Ö;Ë1á , while ¾À¿#É=ÂQÖØÄIËìÝ .
2.11 Continuity and Compactnessin â é

Closelyassociatedwith the notion of boundedsetsis the conceptof compactness.Compactnessis
usually definedin termsof opencovers. By an opencover of a set X we meana collection ½îí�ï^Ê of
open setssuch that Ð ðfñ ï í ï .
2.11.1 Definition. A subsetX of â é is compactif everyopencovercontainsa finite subcover.

More explicitly, therequirementis that if ½)í ï Ê is anopencoverof X, thenthereexistsfinitely many

indices ò è ÂGó)óGó9ÂLò�ô such that Ð ð ôñõDö è í ï)÷ .
It is clearthateveryfinite setis compact.Recallthateveryfinite setis alsoclosedandbounded.The

next theorem,knownastheHeine-BorelTheorem,showsthat this propertyis sharedby all compactsets.

2.11.2 Theorem. (Heine-Borel) ÐßðJâ é is compactif andonly if X is closedandbounded.

We omit the proof of this theoremwhich can be found in [49]. The notion of compactnessis of
greatimportancein connectionwith continuity. We recall the ø and ù definition of continuity.

2.11.3 Definition. Let Ðßð�â é and ÔWÅ�Ð�úßâ ô . Then f is said to be continuousat a point ûýüHÇ�Ð
if, given an arbitrarynumber øÿþJÝ , thenthereexistsa number ùHþ@Ý (usuallydependingon ø )
suchthat for every ûWÇ���� ¿Uû��RÄ�à�� we havethat ÔÆ¿Uû,ÄvÇ	��
�¿�Ô�¿�û ü Ä�Ä . The function f is said to
be continuouson X if it is continuousat every point of X.

Anotherway of sayingthat f is continuousat û�� is that given ø�þKÝ , then thereexists ù�þ²Ý such
that for û4Ç¼Ð � û�
Wû ü ��� ù=Þ � ÔÆ¿Uû+Ä�
WÔÆ¿Uû ü Ä ��� ø/Ú
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This is the usualdefinition of continuity taughtat the beginningcalculuslevel.

Continuousfunctionshavea very useful characterizationin termsof opensets:

2.11.4 Theorem. Suppose������� and �	��������� . Thenf is continuouson X if andonly if � �"!$#&%('
is openin X for everyopenset Y in � � .
Proof: Supposef is continuouson X andY is openin � � . We haveto showthat thereexistsan
opensetW in �)� suchthat �*�+!,#-%.'�/1032�� . Let 4�56�7�"!$#8%9' . Then �*#&4:':5;% andsinceY is
open,thereexists <�=?> suchthat @�AB#B�7#84�'C'��D% . Sincef is continuous,thereexistsa numberE =�> suchthat for every F.5;@HGI#&4�'J2K� we havethat �7#8FL'�5	@MAB#N�*#&4�'C':�O% . By thedefinition
of � �"! #&%(' , we havethat @�GP#84�'�2��Q�R� �"! #8%.' . This showsthat for every 4D5S� �"! #&%T' , we
can find a neighborhood@U#84�' suchthat @�#-4:'�2��V�W� �"! #&%T' . So let

0 / XY[Z]\[^�_&`ba�c @U#&4:'+d
whereeachneighborhoodsatisfiesthe property @�#-4:'"2e�f��� �"! #&%T' . Then 0f2������ �+! #8%.' .
But clearly � �"! #&%T'g�h0i2	� . Thus, � �"! #&%T'�/j0i2	� .

Conversely,suppose�*�"![#-%T' is openin X for every openset Y in �:� . Fix 4k5;l and <m=n> .
Let %j/?@�Ao#N�7#84�'B' . Thenby 2.10.6, Y is open. Hence �*�"!$#&%T' is openin X. Thus,thereexists
an opensetW in � � suchthat � �"! #-%T'p/W0i2T� . SinceW is openin � � , thereexists

E =?>
such that @ G #84�':�rq . Therefore,@ G #84�'s29�f�t0V2T��/1� �"! #-%T'"u
This shows that for every FW5j@ G #&4:'�2v�6d	�*#&F+'v5h�xw&�*�"!$#&%T'Nyz/�@ A #N�*#&4�'C' . Hence, f is
continuousat 4z5	l and – since x was an arbitrarily chosenelementof X – f is continuous
on X.

Q.E.D.

Continuousfunctionshavethe importantpropertyof preservingcompactness:

2.11.5 Theorem. Suppose����� � is compact.If �6���{�3�:� is continuous,then �*#&�z' is compact.

Proof: Let |}%�~�� be an open cover of �*#&�z' . Since f is continuous,Theorem2.11.4shows
that eachof the sets �*�"![#8% ~ ' is open. SinceX is compact,thereexistsfinitely many indices,
say � ! d��$�}�Pd���� such that

��� �X��� ! � �"! #&% ~$�-���
Since �p�-� �"�$�&� �B��� � for every � �h��� , (i) implies that

�*�&� ��������� � �7�$� �
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This completesthe proof.
Q.E.D.

A function  6¡[¢�£f¤�¥ is saidto beboundedif thereexistsa realnumberM suchthat ¦§¦  7¨8©�ªP¦�¦�«�¬
for all ©�­	® . We now deducesomeconsequencesof Theorem2.11.5.

2.11.6 Theorem. Suppose¢ ¯h¤ ° is compact. If  D¡*¢Q£i¤�¥ is continuous,then  *¨&¢zª is closed
and bounded. In particular, f is bounded.

This follows from 2.11.5and the Heine-BorelTheorem. The result is particularly importantwhen
f is a real valued function.

2.11.7 Theorem. Suppose¢±¯?¤ ° is compact.If  z¡L¢²£³¤ is continuousand¬ ´?µ}¶�·¹¸] *¨&©:ª:¡[©z­	®6ºJ» ¼½´?¾-¿¹ 7¸À *¨&©�ª�¡[©k­;®6º�»
thenthere existpointsp and q in X suchthat  *¨NÁ:ª�´?Â and  *¨NÃ ª�´WÄ .

Proof: By Theorem2.11.6f(X) is aclosedandboundedsetof realnumbers;hencef(X) contains
its lub M and its glb m (Theorem2.10.14).

Q.E.D.

The conclusionof Theorem2.11.7may also be statedas follows: There existpointsp and q in X
suchthat  *¨BÃ ªe«n *¨8©�ªK«h *¨BÁ�ª for all ©�­	® . That is, f attainsits maximumand minimum valuesat
p and q, respectively.

We concludethis sectionwith anotherimportant fact concerningcontinuousfunctionson compact
sets. First we note that if X is a compactsubsetof ¤)° , then since X is boundedthere exists an n-

dimensionalrectangularbox Å{´ °ÆÇ�È¹É7ÊÌË Ç »ÎÍ ÇÐÏ suchthat ¢i¯jÅ . Figure 2.11.1 illustratesthis situation

if ¿j´³Ñ .
Now given a continuousfunction  6¡�¢�£f¤ we let ÒR¡JÅÓ£3¤ be the extensionof f definedbyÒm¨B©�ª9´hÔ  7¨8©�ª�Õ�Ö�©�­	®× ÕØÖ�©�­vÅMÙ}¢

The integral of f over X is then definedasÚ
Û  *¨8©�ª"ÜL©R´ Ú

Ý Òm¨N©:ª+Ü+©9Þ
By consideringtheusualRiemannsumsof advancedcalculuswhich approximatethe integral ßÝ Òm¨B©:ª+ÜL© ,

it is easyto seethat ßÛ  *¨&©:ª+ÜL© doesnot dependupon the choiceof the n-dimensionalbox containing

X. Furthermore,sinceX is compactand f is continuouson X, it follows from Theorem2.11.7and the
definition of F that F is a boundedfunction on B. It now follows from the theory of integration(see
[1] or [43]) that ßÝ Òm¨&©�ª"ÜL© existsand,hence,so does ßÛ  *¨8©�ª"ÜL© . The evaluationof the integralof the

multivariablefunction f overX canbeaccomplishedby evaluatingn successivesinglevariableintegrals.
This follows from Fubini’s theorem[43], and [50]. We statetheseobservationsasa theorem:
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Figure 2.11.1 A compactset in ã�ä containedin a rectangle.

2.11.8 Theorem. If å�æÀç�èfã is continuousand çféDã ê is compact,then ëì å í-î�ï"ðLî exists.

Furthermore, if çfé êñò�ó7ô¹õ÷ö òBøÎùPòÐú and ûhæÀüÓèfã denotesthe extensionof f definedabove,then

ý
ì å*í8î�ï"ðLîRþ ÿ �ý� �

�� ÿ �����ý� ���	��
�
�

�� ÿ �ý� � ûmí&î�ï�
�� ô��� 
�
�
 
�� ê����

������ �"!
where #%$'& � � !)(�(�(*!��+�+, .

Theorems2.11.7and2.11.8areessentialin thedefinitionof imagealgebraoperationson continuous
images.

2.12 Topological Spaces

In the previous section we discussedsuch notions as continuity, compactness,limit point, and
boundarypoint. Thesenotionsareall topologicalconceptsanda careful look at theseconceptsreveals
that the basicingredientof all them is the idea of an openset. Continuity of functionscan be defined
purely in termsof inverseimagesof opensets(Theorem2.11.4); closedsetsaremerelycomplementsof
opensets(2.10.9); the conceptof compactnessrequireslittle morethanthe ideaof opensets.However,
opensetsin - � are really just an elementaryexampleof opensetsin more generalspacesknown as
topological spaces.

2.12.1 Definition. Let X be a set. A set .0/21�3 is a topologyon X if and only if T satisfies the
following axioms:
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4�5
X and 6 are elementsof T.4�7
The union of any numberof elementsof T is an elementof T.498
The intersectionof any finite numberof elementsof T is an elementof T.

A pair (X,T) consistingof a setX anda topology T on X is calleda topologicalspace.

Wheneverit is not necessaryto specify T explicitly, we simply let X denotethe topologicalspace
(X,T). Elementsof topologicalspacesare called points. The membersof T are called opensetsof the
topologicalspaceX. Thereis no preconceivedideaof what“open” means,otherthanthatsetscalledopen
in any discussionsatisfy the axioms

4 5
,
4 7

, and
4 8

. Exactly what setsqualify as opensetsdepends
entirely on the topology T on X — a set openwith respectto one topology on X may be closedwith
respectto anothertopology definedon X.

2.12.2 Definition. Let (X,T) be a topologicalspaceand :<;>= . By a neighborhoodof x, denotedby
N(x), we meanany openset (that is, any memberof T) containingx.

The points of N(x) are neighboringpoints of x, sometimescalled N-closeto x. Thus, a topology
T organizesX into chunksof nearbyor neighboringpoints. In this way, topology providesus with a
rigorousand generalworking definition of the conceptof nearness:The topology of a spacetells us
when two points or two objectsin the spaceare closeto eachother.

2.12.3 Examples:

(i) Let X be any setand let ?%@BA�6DCE=GF . This topology, in which no set other than 6 and X is
open,is called the indiscretetopologyon X. Thereareno “small” neighborhoods.

(ii) Let X be any setandlet ?H@JI�K . This topology,in which everysubsetof X is an openset, is
called the discrete topologyon X, and X togetherwith this topology is calleda discretespace.
Comparingthis with example(i) aboveindicatesthe sensein which different topologieson a
set X give different organizationsof the points of X.

(iii) Recall from Section2.10 that a set in LNM is an “open” set in LNM if and only if it is the union
of neighborhoods;that is, a set O P�L M is openif and only if for each QG;�R thereis someSUTWV suchthat XZY�[\Q^]_P`R . It is not difficult to verify that the collectionof all setssatisfying
this definition of “open in LNM ” determinesa topologyT on LNM . Axiom

4�5
is trivial. Axiom

4�7
is alsoobvious,for if eachmemberof A	OGaUb�c<;ed9F is “open in L M ”, thenso is fahg�i OGa , since

Qj;%ka	g	i O aUlnm c<;edporqts�uwvEuyx	vzQG;{O aZlnm SUTWV o}|~v)|�XZY)[\Qz]�P�O a P�kahg�i O a |
We leaveit to thereaderto convincehimselfthatAxiom

4 8
holds. ThetopologyT definedin this

way is calledtheEuclideantopologyon L M , and L M togetherwith T is calledEuclideann-space.
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2.13 Basis for a Topology

The introductionof a basisin an abstractmathematicalsystemallows us to reducethe numberof
objectswe dealwith in orderto describemoreeasilytypical elementsof thesystem.Thereaderis already
familiar with the utility of basisfrom his studyof linear algebra: In an n-dimensionalvectorspacethe
primitive objectswe deal with are vectorsandany vector can be expressedas the linear sum of a few
(at mostn) basisvectors. Similarly, the primitive objectswe deal with in a topologicalspaceareopen
sets. Sincethe union of opensetsis open,it makessenseto ask if thereare classesof subsetsB of a
topologyT suchthat any elementof T canbe expressedasthe union of elementsof B. Suchclassesdo,
in fact, exist and they are called basesfor the topology T.

2.13.1 Definition. Let (X,T) be a topologicalspace.A classB of opensubsetsof X, i.e. �`��� , is
a basisfor the topology T if and only if

(i) every nonemptyset �`�p� is a union of elementsof B.

Equivalently, �'��� is a basisfor T if and only if

(ii) for any point � belongingto an opensetU, thereexists �`��� suchthat �����`��� .

If B is a basisfor a topology T, then we say that B generatesT.

2.13.2 Examples:

(i) T is a basis for T.

(ii) Let T be the discretetopologyon a setX. Then ���������t�U�z�<�e�j� is a basisfor T.

(iii) The set �9�������Z�����z���z�G�<���t�+�U�<�z �� is a basisfor the Euclideantopologyon �N¡ .

(iv) Define ��¢j�£���Z���¤�z�¥�z�G�<¦ � �y�U�<¦   � . Then ��¢ is a countablebasis for the Euclidean
topologyon � ¡ . For if �j�G�J�>� , whereT denotesthe Euclideantopology,then §¥¨U©«ª such
that � � �����¬�2� . Now if �p­�<¦Z� and ¨�­�®¦Z  , pick ¨�¯z�j¦°  suchthat ¨�¯²± ¢³ ¨ and choosea
point ´®��¦ � suchthat µ¶µ �<·G´¸µ¶µ ±�¨ ¯ . Then �®�G�Z�º¹»��´����9�Z�}���z���`¼ . Figure2.13 illustrates
this situation. A slight modificationof this argumentwill verify the casewhere ¨��W¦Z  , but�p­��¦°� . Thecasewhere �®��¦°� and ¨½­��¦°  is trivial. Thus �¾¢ is a basisfor T with ��¢"�«�9� .
The fact that �¾¢ is countablefollows from 2.7.2(vii).
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Figure 2.13.1 Â2Ã�ÄZÅ�ÆÈÇ�ÉzÊ_ËÌÄZÅ�Ç�Â�ÊzËÎÍ .

(v) Let X be a nonemptysetandd a metric on X. Define the opensphereof radius ÏÐÃGÑ�Ò about
a point ÓÔÃJÕ by Ä Å ÇºÓÖÊ�×HØ�ÙwÃ�ÕÛÚ�Ü+Ç�ÓÞÝ�Ù Ê�ß«Ï�à_á
Then âÔ×JØ�ÄãÅ�ÇrÓtÊ�Ú�Ó�Ã<äåÝyæUÃ<ÑzÒ�à is a basisfor a topologyon X. This topologyis calledthe
metric topology çÖè inducedby the metric d. The topologicalspace Ç�Õ�Ý�çÞè}Ê is called a metric
space, and it is customaryto usethe simplernotation(X,d) for the spaceÇ�Õ�Ý�çÞè}Ê .

In view of theseexampleswe seethat a given topology may havemany different basesthat will
generateit. This is analogousto the conceptof a basisfor a vectorspace:Differentbasescangenerate
the samevector space.Any linearly independentset of n vectorsin ÑNé can be usedas a basisfor the
vector space Ñ é .

We now ask the following question:Given âÎË�ê�ë , whenwill B be a basisfor sometopologyon
X? Clearly, Õ'× ìíNî	ïãð is necessarysinceX is openin every topology on X. The next exampleshows

that other conditionsare also needed.

2.13.3 Example: Let X={1,2,3}. The setB={{1,2},{2,3}} cannotbe a basisfor any topology on X.
For otherwisethesets{1,2} and{2,3} would themselvesbeopenandthereforetheir intersectionØ�ñ�Ý*ê�àÌò<Ø	ê+Ý�ó�àU×JØ	ê�à would alsobe open;but {2} is not the union of elementsof B.

The next theoremgives both necessaryand sufficient conditionsfor a classof setsto be a basis
for sometopology.

2.13.4 Theorem. Let B be a collectionof subsetsof X. ThenB is a basisfor sometopologyon X if
and only if it possessesthe following properties:

(i) Õ × ìíNî	ïãð .

(ii) If for any ô�Ý ð Ã<â½Ý�ÓeÃjô�ò ð , then õ�ö Ã�â , suchthat Ó<Ã<ö Ë�ôåò ð , or equivalently,ôHò ð is the union of elementsof B.
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Proof: SupposeB is a basisfor a topologyT on X. SinceX is open,X is theunionof elements
of B. HenceX is the union of all elementsof B. This satisfiesproperty(i). Now, if ÷�ø�ù2ú�û ,
then, in particular,U andV are opensets. Hencethe intersection ÷Wü<ù is alsoopen;that is,÷«üýùÎú�þ . SinceB is a basisfor T, ÷«üýù ÿ �������� . Thus, if 	�úp÷«üýù ÿ ����
��� , then	jú � � ÷�ü<ù for some � úpû . This satisfiesproperty(ii).

Conversely,supposethat B is a collectionof subsetsof X which satisfiesproperties(i) and(ii).
Let þ�
ºû���ÿ���÷��Ì÷Hÿ������Ì÷������ �"!$#&%'�(�)%*�,+-!/.(!102!3%4�/�5�,+¥û26 , i.e., þ7
rû�� is the collectionof
all possiblesubsetsof X which canbe formedfrom unionsof elementsof B. Then,obviously,þ7
rû�� containsboth X and � . Therefore,Axiom 879 holds.

If ��÷;:'6 is a collectionof elementsof þ�
ºû�� , theneach ÷<: is the unionof elementsof B; hence
the union

� : ÷<: is also the union of elementsof B. Therefore
� : ÷;:eúGþ7
rû�� . This showsthat

Axiom 87= is also satisfied.

Lastly, supposethat ÷�ø*ù�úWþ7
rû�� . We needto show that ÷�ü{ù'ú þ7
ºû�� . By definition ofþ7
rû�� , ÷Hÿ � : ÷ : and ù�ÿ � > ù > , whereeach ÷ : and ù > is an elementof B. By the distributive

law, we have

÷ üýùÔÿ ?A@
: ÷ :
BDC ?A@ > ù > B ÿ @

:FE > 
*÷ : üeù > �HG
But by (ii), each ÷ : üDù > is the union of elementsof B. Therefore

�:,E > 
*÷ : üeù > � is the union of

elementsof B and so belongsto þ7
ºû�� . This verifies Axiom 8JI .
Q.E.D.

If X is a set and B a collection of subsetsof X satisfying(i) and (ii) of Theorem2.13.4, then we
saythat þ7
rû�� is the topologyon X generatedby B. If û 9 and û = aretwo basesfor sometopologieson
X, then it is possiblethat þ7
ºû�91�"ÿ�þ7
rû7=3� eventhough û�9LKÿ2û7= . The two basesdefinedin Example
2.13.2(iii) and(iv) illustrate this case. If þ7
�û79F�Ìÿ�þ7
rû7=3� , then we say that the two basesû79 and û�=
are equivalent. A necessaryand sufficient condition that two basesû�9 and û7= are equivalentis that
both of the following two conditionshold:

(1) For each ÷�úGû 9 andeach 	�úp÷ , thereexists ù`úGû = suchthat 	�úGù � ÷ .

(2) For each ùÎúGû7= andeach MnúGù , thereexists ÷�úGû�9 suchthat 	Gúj÷ � ù .

2.13.5 Example: Let N'9 , N'= , and N)I denotethe Euclidean,city block, and chessboarddistance,
respectively.Then the following threebasesare all equivalent:û7OQP�ÿSR�TUO/PVE WF
YXZ�Z�ZXGú\[ = ø$]Uú\[-^`_Ìøû�Oba_ÿSR�TUOca E WF
YXZ���ZXGú\[ = ø$]Uú\[ ^ _Ìø-d
%feû�Obg_ÿSR�TUOcg E WF
YXZ���ZXGú\[ = ø$]Uú\[ ^ _$G
The equivalencefollows from the fact that T O4hjilkmbnFoYp�q7rts�uwv i n olp�qyx�z
{2|L}t~b�l��}t� . The four
possibleinclusionsare illustrated in Figure 2.13.2.
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Figure 2.13.2 Equivalenceof threegeometricallydistinct bases.

The specificationof a topology by giving a basisis generallyaccomplishedby specifyingfor each���\� a family of neighborhoods������� ���-�y�L�L� � ���b� , calleda neighborhoodbasisat x, andverifying
that the family �������*�'� �����-���L���J�\� � � ���c� satisfiesthe conditionsof Theorem2.13.4. If the
conditions of the theoremare met, then each member � � � �¡� is called a basic neighborhood of x.
For example,the set ¢
�¤£��Y¥ �-� ¥ ��¦�§'�$¨U�\¦ª©y« is a neighborhoodbasisfor the Euclideantopology
on ¦-¬ and each open disc �¤£F�Y¥ � is a basic neighborhoodof x. Similarly, if X is any set, then�­�®�¯�°� �¡�-� �°� �¡� ��� �¡�4�Z���L�±� is a neighborhoodbasisfor the discretetopology on X.

2.14 Point Sets in Topological Spaces

In this sectionwe will emphasizetopologicalconceptsin termsof basicneighborhoodsin order to
retainasmuchof the geometricflavor of Section2.10aspossible.We beginby giving somedefinitions
which will havea familiar meaningwhen specializedto ¦;² .

2.14.1 Definition. Let X be a topologicalspace,�±��� , and ³µ´ � . Then

(i) x is an interior point of Y if thereexistsa neighborhood�°� �¡� (i.e. an opensetcontaining
x) such that �°� ��� ´¶³ ;

(ii) x is an exterior point of Y if thereexistsa neighborhood�°� �¡� suchthat �°� ���¸· ³S�®¹ ;

(iii) x is a boundarypoint of Y if x is neitheran exteriornor interior point of Y; and

(iv) x is a limit point of Y if for everyneighborhood�°� ��� of x, ��º»� �¡�¡· ³½¼�¾¹ , where ��º¿� ���
denotesthe deletedneighborhood�°� �¡�bÀ � �¡� .

Theclosure of Y, denotedby ³ , is definedas ³Á���ÃÂ �L�Ä� Â � ³ �;Å�Æ Â*Ç�È�ÉJÊjÇÌË*Ç(Í�Î Å Ç�Ï'Í Å,Ð ³ � . The
setof all interior pointsof Y is called the interior of Y and is denotedby intY. The setof all boundary
pointsof Y is calledtheboundaryof Y andis denotedby Ñ"³ . In contrastto Euclideanspaces,an interior
point of Y neednot be a limit point of Y. For example,if X is a discretespaceand ³Ò�­� �A�wÓÔ� ´ � ,
then ��� �¡� �®� ��� is an openneighborhoodof an x in X with �°� ��� ´D³ but ³ · �\ºj� �¡� �D³ · ¹t��¹ .
Thus x is an interior point which is not a limit point.

2.14.2 Definition. Let X be a topologicalspaceand ³µ´ � . Then Y is closedin X if and only if
every limit point of Y is a point of Y.
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Thus a set is closed in a topological spaceif and only if it containsall its limit points. This
is in agreementwith Euclideanspaces,where Y is closedif and only if Õ�Ö Õ . The next theorem
characterizesclosedsetsin terms of open sets.

2.14.3 Theorem. Let X bea topologicalspaceand Õ­×ÙØ . ThenY is closedif andonly if ÕUÚHÖÙØÜÛFÕ
is open.

Proof: SupposeY is closed. Then Y containsall its limit points and so for any Ý¶Þß Õ
or, equivalently, Ý ß Õ Ú , thereexistssomeneighborhoodà°áâÝ¡ã suchthat à°áYÝ�ã�äLÕµÖ­å or,
equivalently,à°á Ý�ã-×DÕ Ú . Thus,for eachpoint Ý ß Õ Ú we canfind a neighborhoodà°á Ý�ã-×æÕ Ú .
But then Õ Ú canbewritten asthe union of suchneighborhoods,that is, Õ Ú Ö çè
é
ê<ë à�áYÝ¡ã . Since

each à°áYÝ¡ã is an open set, Õ Ú is open.

For the converse,supposethat Õ�Ú is open. Now, if Y were not closed,then therewould have
to be at leastone limit point Ý ß Ø of Y with ÝìÞß Õ . Thus, Ý ß ÕUÚ and, since ÕUÚ is open,Õ Ú is a neighborhoodof x. But clearly, Õ®äíálÕ Ú Û
î
Ý�ï�ãyÖ�å , which contradictsour assumption
that x is a limit point of Y.

Q.E.D.

This alsoprovesstatement2.10.9asit is a specialcaseof this theorem.Thenext theoremis obvious
and we dispensewith its proof.

2.14.4 Theorem. Let X bea topologicalspaceand Õð×ÙØ . ThenY is openif and only if Y=intY.

Let áYØ\ñbò�ã be a topologicalspaceand Õó×ÙØ . ThenT inducesa topologyon Y, calledthe induced
(or relativeor subspace) topologyonY. Its importancelies in this: To determinewhatanyconceptdefined
on X becomeswhen the discussionis restrictedto Y. We simply regardY as a spacewith the induced
topology and carry over the discussionverbatim.

2.14.5 Definition. Let áVØíñwòJã be a topological spaceand Õô×¶Ø . Then the inducedor relative
topology ò ê on Y is defined as ò ê Öõî�Õ¾ä�ö®÷$ö ß ò7ï . The space áYÕ$ñbò ê ã is called a
subspaceof X.

To verify that ò ê is actually a topology on Y is trivial. In fact, it is also straightforwardto show
that if B is a basisfor T, then the set îFÕ�äíö�÷øö ß\ù ï is a basisfor ò ê .

2.14.6 Examples:

(i) Let ÕÁÖ�áÃú7û�ñFûÃü
ýUî�þ'ï�× ÿ � , where ÿ � hasthe Euclideantopologyand áÃú¤û)ñ3û3üHÖ�î
Ý ß ÿ¶÷2ú¤û� Ý��Áû
ï . The inducedtopology on Y is generatedby all setsof form {2}, all openintervals
containedin áÃú¤û�ñ�û1ü , andall intervalsof form á��
ñ�û1ü with ú¤û���� � û . Theseareexactlythesets
onecanobtainfrom ÕDä2à
	�áYÝ¡ã , where � ß ÿ�� and Ý ß ÿ � . Note that thepropersubsetá/ú�û)ñ3û3ü
of the spaceY is both openandclosedin Y while it is neitheropenor closedin the spaceÿ .
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(ii) The subspace
�� of ��� is a discretespace:If ������������
�� , then 
����! #"$ �����%���'&)(*���+�,����- .
Thus, eachsingletonset {( m,n)} is open in 
 � .

(iii) Let .0/1&32*4��!����576%4868&:9<;>=?��� . Then the relative topology on .@/ is generatedby small
openarcs of form .0/A�! CBD�E4�� as shown in Figure 2.14.1. Again note that if .@/A�F 
BD�G4@� is
nonempty,then . / �� 
BH�G4�� is open in . / but not in � � .

1

-1 1

-1

xI
N
J

r ( x )
K

xL

yM

Figure 2.14.1 The intersectionof N0O with an opendisk P
QSRET�U .

2.15 Continuity and Compactnessin Topological Spaces

Thegeneralizationof thenotionsof compactnessandcontinuityretainthegeometricflavorof Section
2.11.

Given a topologicalspaceX and VXWZY , then an opencover of Y is any collection of opensets[ V�\<] with the property V^W`_ \ V�\ .

2.15.1 Definition. If X is a topologicalspaceand VaWbY , then Y is compactif and only if every
opencover of Y containsa finite subcover. A spaceX is a compacttopologicalspaceif and
only if X is compactas a subsetof X.

It follows from this definition that an indiscretespaceandany finite space(i.e. the underlyingset
X is finite) is always compact.

2.15.2 Definition. SupposeX and Y are topological spacesand c:d@Y e V . Then f is said to be
continuousat a point fhg!ijY if given any neighborhoodP#R�c�R�fhgHU,U
WkV l a neighborhood
P#REf g UmWnY suchthat for every foijP�REf g U , c�R�fpUmioP#REc�R�f g U,U . The function f is said to be
continuouson X if it is continuousat every point of X.
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The condition qsrEt�uCvxw�rEq�r�thy*u�u for each tovjw�r�tzy*u simply meansthat q�r�w#r�thy*u�um{3w#rEq�r�thy*u�u .
Note the similarity betweenthis definition and 2.11.3. Also, as before, continuousfunctions can be
characterizedin terms of open sets:

2.15.3 Theorem. SupposeX andY are topologicalspacesand q}|�~���� . Thenf is continuouson X
if and only if q����Dr%�1u is openin X for everyopensetU in Y.

Proof: Supposeq ��� r%��u is open in X for every open set U in Y. Let tzy be an arbitrary
point of X and let w�rEq�r�thy*u�u be an arbitrary neighborhoodof q�r�thy*u . Then, since w�r�q�r�tzyDu�u
is open in Y, q ��� r�w�rEq�r�thy*u�u�u is open in X. Obviously, tZv)q ����� w#rEq�r�thy*u�u�� . Thus, letting
w#rEt y u���q ��� � w#rEq�r�t y u,uE� , we then have q�r�w#r�t y u�u�{�w#rEq�r�t y u�u . Therefore,f is continuousat
t y , and since t y was arbitrary, f is continuousat every point of X.

To prove the converse,assumef is continuousand U is open in Y. We must show that
q����Dr%��u is open in X. Let t�v3q����Dr%��u . Then q�r�tpu+v`� . Thus U is a neighborhoodof
q�r�tpu and, since f is continuous,thereexists a neighborhoodw#rEt�u such that q�r�w�r�t�u�u�{`� .
But then w#rEt�um{)q��h��rEw�r�t�u,um{Zq��h��r%��u . This showsthat t is an interior point of q��h��r%��u .
Since t was arbitrary, this meansthat every point of q ��� r���u is an interior point. Therefore,
q����Dr%��u��b�E���z��q����Dr%�1uE� and,hence,by Theorem2.14.4, q����Dr���u is open.

Q.E.D.

Oneof the most importantconceptsencounteredin topology is that of a homeomorphism. Homeo-
morphismstell us when two objectsare topologically the same.

2.15.4 Definition. SupposeX and Y are topological spaces. A homeomorphismfrom X to Y is a
continuousone-to-oneandonto function q#|�~X��� suchthat q ��� |��)�X~ is continuous.If
q�|<~���� is a homeomorphism,thenwe say that X andY arehomeomorphic.

2.15.5 Example: Let X be the interval ~ � r%�
�� H�Du and let B be the set B =¡ w
¢Sr�t�u£|��
��¤ot}¤?��¥<��¦Cw
¢Dr�tpu�{§r��C�¨ ©�Du�ª . Then B is a basis for a topology on X.
Define q�|C~ � « by q�r�tpu¬�­��¥<��®H�¯*°�t�± . Then f is continuous,one-to-one,and onto.
Furthermore,the inverse function q���� is also continuous. Hence « and the open interval
r%�
�¨ ©�©u are homeomorphic.

A property P of sets is called a topological property or a topological invariant if whenevera
topological spaceX has property P, then every spacehomeomorphicto X also has property P. As
seenin the previousexample,the real line « is homeomorphicto the openinterval ~��?r%�
�¨ ©�©u . Hence
lengthis not a topologicalpropertysince r%�
�� H�Du hasfinite lengthwhile « is of infinite length. Similarly,
boundednessis not a topological invariant sinceX is boundedbut « is not.

2.16 ConnectedSets

Much of topologyconcernsthe investigationof consequencesof certaintopologicalpropertiessuch

36



as compactness,connectedness, and Euler characteristic. In fact, formally, topology is the study of
topologicalinvariants.Severalof theseinvariantsplay an importantrole in imageanalysis.

Intuitively, a spaceor a subsetof spaceis connectedif it doesnot consistof two or moreseparate
pieces. This simple idea is somewhatproblematicin the analysisof computerimages. Digital images
are discreteobjectsfrom a signal processingpoint of view. They are discretespaceswhen viewed as
subspacesof Euclideanspace. Thus, any object in a digital image consistsof finitely many disjoint
(disconnected)points. Yet the isolationandanalysisof “connected”regionsin digital imagesis a typical
activity in computervision. The reasonthat oneis ableto talk aboutconnectivityin digital imagesin a
rigoroussensestemsfrom the fact thatconnectivityis a topologicalconcept.Connectivityof a subsetof
a digital imagedependson the topology defined on the imagespace.

2.16.1 Definition. A topologicalspaceX is connectedif it is not the union of two nonemptydisjoint
opensets.A subset²´³¶µ is connectedif it is connectedasa subspaceof X. A spaceor subset
of a spaceis called disconnectedif and only if it is not connected.

Observethat if Y is a subsetof a topologicalspaceX then Y is disconnectedif thereexistsopen
subsetsU andV of X suchthat ·%¸º¹�²¼»s¹!·�½?¹¼²7»�¾:¿ , with ²À³b¸¶Á!½ and ¸o¹7²�Â¾:¿`Â¾Ã½:¹7² .
Note also that ²À¾3·�¸j¹¼²7»Ä¹�·�½x¹�²7»�Å¼Æ­²`³Z¸ÃÁ>½ . The two sets ¸o¹Ç² and ½:¹7² are called
a decompositionof Y.

2.16.2 Examples:

(i) The set È�É¼³kÊ@É is disconnected.The sets Ë�·�Ì�Í�Î�»ÐÏCÑÉÓÒ Ì�ÔC¹!È�É and Ë<·EÌ�Í%Îh»ÐÏCÑÉÓÕ Ì0ÔC¹!È�Éform a decompositionof È É .
(ii) The rationals Öb³jÊ are not connected since the sets Ë�Ì!×!ÊºÏÐÌ Ò

Ø Ù Ô�¹ÚÖ and
Ë ÌÇ×�Ê¶ÏÐÌ Õ

Ø Ù Ô ¹�Ö provide a decomposition.

2.16.3 Definition. Two subsetsA and B of a topological spaceX are said to be separatedifÛ ¹ ÜÝ¾X¿�¾ Û ¹�Ü .

If A andB aretwo nonemptyseparatedsetsin a topologicalspaceX, then ¸§¾oµ�Þ Û and ½k¾jµ¬Þ Ü
areopenin X. Furthermore,· Û Á>Ü�»Ä¹>½�¾ Û and · Û Á�Üß»Ä¹�¸b¾bÜ are nonemptysetswhoseunion
is
Û ÁFÜ . Thus, we havea decompositionof

Û ÁFÜ . This showsthat if A and B are two nonempty
separatedsets,then

Û Á1Ü is disconnected.Thebasicrelationshipbetweenconnectednessandseparation
is given by the next theorem.

2.16.4 Theorem. A setA is connectedif andonly if it is not theunionof two nonemptyseparatedsets.

Proof: We show, equivalently,that A is disconnectedif and only if A is the union of two
nonemptyseparatedsets. We alreadyknow that the union of two nonemptyseparatedsetsis
disconnected.In orderto showtheconverse,assumethatA is disconnected.ThenA is theunion
of somedecompositioņ¶¹ Û and ½§¹ Û . We claim that ¸j¹ Û and ½§¹ Û areseparatedsets.
Since ¸#¹ Û and ½j¹ Û aredisjoint, we needonly showthat eachsetcontainsno limit point of
the other. Let p be a limit point of ¸j¹ Û andassumethat à�×F½:¹ Û . ThenV is an openset
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containingp and so V containsa point of áxâ>ã distinct from p; i.e. ä%á¶âÇã�åsâ>æ�çèZé . But
by idempotencyand associativityof set intersectionwe havethe contradiction:

ä�á¶â>ã1å�â>æ è ä�áoâ�ã1å�â!ä�æ?â�ã1å è§éoê
Thus ë�çì æ:âÇã . Similarly, if p is a limit point of æ:âÇã , then ëºçì áoâÇã . Therefore ájâíã
and ækâ�ã are separatedsets.

Q.E.D.

Theorem2.16.4canbe usedto showthat the only connectedsubsetsof î containingmorethanone
point are î and the intervals(open,closed,or half-open). On the other hand,thereexistsa myriad of
differentconnectedsetsin î@ï . For example,considerthe set ð è ã�ñ¼ò shownin Figure2.16.1, where

ã è?ó ä�ôzõ�öhåÐ÷�ø
ù�úoö7ú?ù*û
ò è:ó ä�ü�õ%öhåÐ÷Ðö è�ýDþEÿ ä%ù��*ü�å�õ�ô��oü}ú?ù�û ê

Eachpoint of A is a limit point of B; henceA and B are not separatedsets.

A

B
1

-1

y�

x�
0
�

Figure 2.16.1 The connectedset �	��

��� .

A usefulnotion of connectivityin digital imageprocessingis that of weakconnectivity.

2.16.5 Definition. A subsetA of a topologicalspaceis weaklyconnectedif andonly if for eachpair
of open setsU and V satisfying

����� 
������������ � �"!#� 
%$&�('��)*'�+
%$,�.-
it follows that ��$&��'�/) .
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Observethatcondition(1) implies that 0
1�230%46587:9�230%4�;<7 . Thus,in a sense,weaklyconnected
setsarealmostconnectedsincea set is weakly connectedif and only if it is not the subsetof a union
of two nonemptydisjoint opensetseachintersectingit. This is very much like Theorem2.16.4with
the open setsreplacingthe separatedsets. In fact, in Euclideanspaces,the notions of connectedand
weakly connectedare equivalent.

2.16.6 Theorem. Suppose=	>@?BA . ThenX is connectedif andonly if X is weaklyconnected.

Proof: SupposeX is connectedand U and V are two opensubsetssatisfyingconditions(1)
and(2) of Definition 2.16.5. Now if 5C4D;E1�F , thensince 2G=*4&5H7I4,2G=J4D;<7K>�5�4D; , we
havethat 2G=L465H7I4M2N=�4D;<7O1
F . Thus =*465 and =L4D; is a decompositionof X. But this
contradictsthe hypothesisthat X is connected.Therefore 5@4�;QP1EF .

Now supposethat X is weakly connected.If X is not connected,then accordingto Theorem
2.16.4, X is the union of two separatedsetsA and B. Let

5�1
RTSVU6? A+WOX 2NSOYZ087O[ X 2GS\Y^]<73_a`�bdc ;(1�ReSfUg? A+WOX 2GS\YZ]�7O[ X 2GS\YZ0h7i_kj
SupposelCUgm . SinceA andB areseparatedsets,p is not a limit point of B. Thus thereexists
a number nMoqp such that r�s^2"lk7t4,u(1�F . Therefore X 2Gl\Yeu�7Ov.nwo@p and lxUzy . Hence0{>*5 . Similarly, ]	>|; and thus neither U nor V are empty. The two setsU and V are
also disjoint because

X 2GS\Yi0}7Zo X 2GSOY~u�7q`�b�c X 2�SOYZmh7O[ X 2NSOY~u�7
cannothold simultaneously.Let SCU�y , ��1 X 2NS\Y~u�7Z� X 2NS\Yim}7 , and �fUg�M�3����2GS�7 . Thenby the
triangle inequality

2Z��7 X 2N��Y�m87k[ X 2GS\Yim}7t�f�����wj
Also,

X 2���Y�u�7t�f������o X 2NS\Y�u�7���� X 2���Y�u�7 �%������o X 2NS\Y�m87 �������
2"�#7 X 2�SOY�m87��%������o X 2G��Y�u�7dj

But (1) and (2) imply that X 2G��YZmh7�[ X 2N��Yeu�7 . Therefore �fU
y and, since y was arbitrary,r �3�"  2�S�7O>*y . It follows that x is an interior point of U and, sincex was arbitrarily chosen,
everypoint of U is an interior point of U. Thus,accordingto Theorem2.14.4, U is open. The
proof thatV is openis identical. This showsthat thereexist two disjoint opensetsU andV with

=¡>�5�9�;�Y{`�b�c =*4&5�1+0EP1�F*P1@]E1.=J4D;@j
But this meansthat X is not weakly connectedwhich contradictsour hypothesis. Henceour
assumptionthat X is not connectedis false.

Q.E.D.

The first part of the proof actually shows that connectivity implies weak connectivity in any
topological space;no use of special propertiesof ?BA was made. The converse,however,does not
hold in generaltopological spaces.

As mentionedearlier,connectednessis a topologicalproperty. In fact, evenmoreis true, namely:
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2.16.7 Theorem. If X is connectedand ¢V£�¤Q¥¡¦ is continuous,then ¢B§N¤C¨ is connected.

Proof: We proceedcontrapositivelyby proving that if ¢©§�¤f¨ is not connected,then X
is not connected. If ¢t§�¤f¨ is not connected,then there exists a decomposition ¢©§G¤C¨%ª§"¢©§G¤C¨I«6¬8¨O­C§"¢©§G¤C¨ «,®�¨ , where U and V are disjoint nonemptyopen setsin Y. But then,
sincef is continuous,¢©¯ °±§�¬H¨ and ¢©¯d°±§"®<¨ areopensetsin X. Also, sinceU andV aredisjoint,¢ ¯d° §Z¬H¨ and ¢ ¯d° §3®�¨ are also disjoint. We now have

¤/ª+¢ ¯d° §G¢©§G¤C¨�¨�ª�²�¢ ¯d° §"¢©§G¤C¨3¨t«D¢ ¯d° §�¬H¨G³\­+²�¢ ¯d° §G¢©§G¤C¨3¨t«�¢ ¯d° §"®<¨G³µ´
and, therefore,the decomposition

¤Qª·¶¸¤*«�¢ ¯d° §Z¬8¨"¹�­%¶º¤�«,¢ ¯»° §3®�¨G¹\¼
Q.E.D.

As an applicationof Theorem2.16.7 we obtain the following generalizationof the intermediate
value theoremof standardcalculus:

2.16.8 Theorem. Everycontinuousreal valuedfunctionon a connectedspaceX takeson all values
betweenany two it assumes.

Proof: Since ¢&£�¤½¥¡¾ is continuous,¢©§G¤C¨O¿.¾ is connectedaccordingto Theorem2.16.7.
By our observationfollowing Theorem2.16.4, ¢t§�¤f¨ is either a point, an interval, or equalto¾ . If ¢©§�¤f¨ is a point, then thereis nothingto prove. But if ¢©§"À�¨Kª�Á and ¢t§3ÂÃ¨�ªzÄ , with say
b greaterthan a, then we have Å�Á�´ZÄiÆw¿(¢t§�¤f¨ . Now if c is any numberwith ÁxÇÉÈÊÇ(Ä then
for any ËVÌ@¢ ¯»° §3Í�È±Î�¨ we have that ¢©§"Ë#¨�ª*È .

Q.E.D.

A componentof topologicalspaceX is a maximalconnectedsubsetof X; that is, if C is a component
of X, then C is connectedand C is not a proper subsetof any connectedsubsetof X. Thus, if X is
connected,thenX hasexactly onecomponent,namelyX itself. On the otherhand,in a discretespace,
everypoint is a component.If x is a point in a topologicalspace,thenthe largestconnectedsubsetof X
containingx is called the componentof À and is denotedby Ï\Ð . It is intuitively clearandnot difficult
to prove that eachpoint À%Ì%¤ belongsto a uniquecomponentÏ�Ð .

Componentsareclosedsets.This follows from the fact that if Y is a setin a topologicalspaceandp
is a limit point of Y, thenthe setsY and{ p} arenot separatedsets.In particular,if Y is connected,then
so is ¦ . Thus,if C is a component,then Ï�ª Ï sinceC is a maximalconnectedsubset.It alsofollows
that if A and B are two distinct components,then ÑÒ«�ÓLª(Ô . If this werenot the case,thenA andB
arenot separatedsetsand,thus, ÑÒ«DÓ is a connectedsetcontainingA (andB). But this contradictsthe
maximality of A. We summarizethesecommentsas a theorem:

2.16.9 Theorem. Everyconnectedsubsetof a topologicalspaceX is containedin somecomponentof
X and the componentsform a partition of X.
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According to this theorem,a topologicalspacecanbe decomposeduniquely into connectedpieces,
namelyits components,andthenumberof componentsprovidesa roughindicationof how disconnected
a spaceis. A spaceX is called totally disconnectedif the only componentsare points; i.e. ifÕ�Ö%×QØ�Ù�ÚgÛIÙ(ÜzÝ

. Obviously, Þdß�à{áâß is totally disconnectedwhen viewed as a subspace,and
so is any discretespace.On the otherhand,the subspaceãäà+á of rationalnumbersis a spacethat is
not discretebut is totally disconnected.

2.17 Path-ConnectedSets

For mostpurposesof analysis,the naturalnotion of connectednessis that two pointscanbe joined
by a path.

2.17.1 Definition. Let X be a topologicalspaceand å
æDç�è»éeêeëwì Ý
continuous. Then the imageí × å©îZç�è»éTê�ëNï is calleda path in X. The points å©î3è�ï and å©îZê�ï arecalledthe initial and terminal

points of the path Y, respectively,and Y is a path from å©î3è�ï to å©î�ê�ï . The initial and terminal
points are also called the endpoints of the path. A point ð Ü í

is a multiple point if the setå©ñ òóî"ð»ï containsmore thanone point. The imageY is an arc (or simplecurveor simplepath)
if it containsno multiple points.

It follows from the definition that if Y is an arc, then åVæôç�èÃéTê�ë©ì í
is a homeomorphism.Also, if

Y is a path from åtî3è�ï to å©î�ê�ï , then it is clear that the function

õ æOö�ì¡å©îZêw÷Cö�ï�éOö Ü ç�è»éTê�ë�é
definesa path from å©îZê�ï to å©î"è#ï .
2.17.2 Definition. A topologicalspaceis path-connectedif for eachpair of points p and q in the

spacethereexistsa path from p to q. A subsetof a spaceis path-connectedif and only if it
is path-connectedas a subspace.

2.17.3 Examples:

(i) áBß is path-connectedand if ø*ù�ê , then for every countableset
Ý àQáBß , áBßdú Ý is also

path-connected.

(ii) If
í à(á ß is an arc and øÒùÉê , then á ß ú í is path-connected.

(iii) A discretespacehaving more than one point is neverpath-connected.Every indiscretespace
is path-connected.

A trivial but useful reformulationof 2.17.2 is providedby the next theorem.

2.17.4 Theorem. Let X be a topologicalspaceand û ÜfÝ
. ThenX is path-connectedif and only if

for every
ÙÒÜÒÝ

, there is a path from p to x.
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Proof: If X is path-connected,thentheconditionholdsautomatically.Conversely,assumethat
the condition is satisfiedand that ü©ýZþ,ÿ�� . Let �������Ãý
	
�
��� definea path from x to p and� �����»ý�	������ a path from p to y. Let �������»ý�	������ be defined by

��������� � � �"!���� #��$�&%'�(%*)+� ��!��-,.	/�0#1�2)+(%.�(%3	 4
Thenh is continuoussinceh is the continuousfunction f on the interval 56�Ãý )+87 , the continuous
function g on the interval 59)+:ý/	�7 , and at �&�:)+ , �;�"���<�=� �>	?�<� � �9�@� . Thus, �A�����»ýB	��C� is a path
from x to y.

Q.E.D.

The next theoremestablishesthe generalrelationof connectednessandpath-connectedness.

2.17.5 Theorem. Eachpath-connectedspaceX is connected.

Proof: If X is not connected,thenX is the unionof two nonemptydisjoint opensetsU andV.
Now let DgÿFE and GÊÿIH , andlet J*�3� �>���Ãý�	��C� bea pathfrom u to v. Then �>E'K&JL�NMO�"HPKQJR�
is a decompositionof Y. But this contradictsTheorem2.16.7accordingto which JS�T� �����Ãý�	��U�
is connected.

Q.E.D.

2.17.6 Example: A connectedspaceneed not be path-connected. Consider the example � �V M�W , where
V �YX8�"�ÃýZþZ�[�<,\	]%ÒþQ%P	8^ and W_�YX8�"ü©ýZþ`�a�\þ&�cb�#�d ��	8e�ü;�Zý>�(f.üg%3	8^ (Figure

2.16.1). ThespaceX is connectedbutnotpathconnected:thereis nopathfrom �9�Ãý>��� to �>	8e�h�ýi�Z� .
However, it is obvious that eachof the setsA and B are path-connected.Also, as mentioned
earlier, jWS�3� . Hencethe closureof a path-connectedsetneednot be path-connected.

In view of Theorem2.17.4, the union of any family of path-connectedspaceshaving a point in
commonis againpath-connected.Becauseof the propertyof unions,we can definea path component
of a spaceas a maximal path-connectedsubsetof the space.As before,the pathcomponentspartition
the space;indeed,from 2.17.5, the pathcomponentspartition the components.However,in contrastto
components,path componentsneednot be closedsubsetsof the space:in Example2.17.6, B is a path
componentof W .

2.17.7 Theorem. Thefollowing propertiesof a spaceX are equivalent:��	8� k�l@m
�\nilpo9�qm>r�s(nir8dut/dvo�#�bOr�nit/dI�"l@d�w�o9�vt��8t/�ur8�8t]lyxzb/r-m
xCr8b�t/w`� 4�9!@� k(l@m
��nir8#1dvo
r8�{�|�vl@b-lOnil�o"�},(mBr8dAdAt�m~o"t/w�dAt/# � �v�Br8�8�ir8r8w 4
Proof: If eachpathcomponentis open,thengiven üVÿF� , the pathcomponentcontainingx
is a path-connectedneighborhoodof x. Thus, ��	8��� �9!@� .
To show that ��!Z��� ��	8� , let P be any path componentand ü@ÿ3� . By hypothesis,x has a
path-connectedneighborhoodU. However,P is a maximalpath-connectedsetcontainingx and,
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therefore, �S�3� . Thuseverypoint of p is an interior point and thereforeU is open(2.14.4).
Noting that �O�A�'�F�N� is the union of the remaining(open)pathcomponents,we havethat �O�
is also open. Hence,by 2.14.3, P is closed.

Q.E.D.

This theorem provides a tool for determining when path-connectednessand connectednessare
equivalent.

2.17.8 Theorem. A spaceX is path-connectedif and only if it is connectedand each ����� hasa
path-connectedneighborhood.

Proof: Sincepath-connectednessimpliesconnectednessandX is apath-connectedneighborhood
of everypoint, only the converserequiresproof. For this, we know from 2.17.7that eachpath
componentis both open and closed in X; since X is connected,this path componentmust
thereforebe X.

Q.E.D.

This theoremhasthe following importantconsequence:

2.17.9 Corollary. An openset in �
� is connectedif and only if it is path-connected.

Proof: Again, since path-connectednessimplies connectedness,we only needto prove the
converse. If ���:� � is open, then eachpoint x of the space �������u�}� has a neighborhood�(� �9�A���:� . But

��� �"�;� is path-connected.Henceit follows from Theorem2.17.8 that U is
path-connected.

Q.E.D.

Of course,asExample2.17.6shows,non-openconnectedsubsetsof � � neednot bepath-connected.

Simple pathshave a particularuseful and unique property that can be expressedin terms of cut
points. A point x of a topologicalspaceX is a cut point of X providedthat ���8�N�A�(���'�q� , whereA
and B are nonemptyseparatedsets;otherwisex is a non-cutpoint of X.

2.17.10 Examples:

(i) Every point  (�F¡�¢`�~£B¤ with ¢&¥. \¥Y£ is a cut point of [0,1], and0 and1 arethe only non-cut
points of [0,1].

(ii) Every point of � � , where ¦.§$£ , is a non-cutpoint of � � .

In view of Example2.17.10(i) and the fact that arcsarehomeomorphicimagesof the unit interval,
the next theorembecomesintuitively obvious. However, its proof, which is given in [26], is far from
trivial and is beyondthe scopeof this book.
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2.17.11 Theorem. If ¨ª©c«
¬ is compactandconnectedwith just two non-cutpoints,thenX is anarc.

A path ­S®°¯
±�²�³y´
µB¶z· in a spaceX is a closedpath if ¯ ±"³Z·¸®3¯ ±>µ8· . A simpleclosedpath, alsocalled
a simpleclosedcurveor Jordancurve, is a closedpathwith exactlyonemultiple point ¹Qºg¯�±�²�³y´�µ�¶z· such
that ¯�»i¼/±9¹y·�®P½N³y´�µ/¾ . An equivalentandmorecommonway of defining a simpleclosedcurve is asthe
homeomorphicimageof the unit circle ¿¸¼À®*Á@±"Â ´>¹@·�Ã�ÂAÄaÅÆ¹@ÄÀ®=µ@Ç . It is clearthat the omissionof any
two distinctpointsfrom ¿�¼ separates¿�¼ into two openarcs(objectshomeomorphicto the interval (0,1)).
It turns out that this propertycharacterizessimple closedcurvesin «¸¬ .

2.17.12 Theorem. If ¨È©c« ¬ is compactandconnectedandhasthepropertythat for any two pointsÉ ´9Ê�ºIË , ¨�Ìp½ É ´ÍÊa¾ is not connected,thenX is a simpleclosedcurve.

As in thecaseof Theorem2.17.11, thestatementof this theorem(aswell asthatof thenext theorem)
is intuitively obvious,but its proof is nontrivial [26].

2.17.13 The Jordan Curve Theorem. If ¨ ©Î« Ä is a simpleclosedcurve, then « Ä ÌNË has two
components.

Therearevariouswaysof provingtheJordancurvetheorem;a geometricproof is givenin [41] while
[55] providesanalgebraicversion.Accordingto this theorem,everysimpleclosedcurvein theplane «�Ä
separates« Ä into two components,eachof which mustbenecessarilypath-connected(2.17.9). In thenext
sectionwe showthat Theorems2.17.11, 2.17.12, and2.17.13all haveanaloguesin the discretedomain.

2.18 Digital Images

We now take a closer look at the set Ï ¬ . For ÐP®Ñµ�´ZÒ , and 3, this set plays an important role
in discretesignal and image processing. Viewed as a subspaceof «
¬ , ÏA¬ is a discretespace. The
componentsarepoints;thusthereareno interestingconnectedsubsetsof ÏA¬ andno point is a limit point
of any given subsetof Ï;¬ . However,as mentionedpreviously,the isolation and analysisof connected
regionsin Ï;¬ is a commonactivity in imageanalysis.Obviously,whentalking aboutconnectedregions,
theremustbe topologieson the set Ï ¬ which providefor the connectivityof setsthat containmorethan
onepoint. Beforediscussingdifferenttopologieson Ï ¬ , we provideanalternategeometricrepresentation
of Ï ¬ and discussthe role of Ï ¬ in imagerepresentation.

With eachÓÔ®�±ÖÕ ¼ ´1Õ Ä ´~×/×�×�´�Õ ¬ ·�º0Ï;¬ we associateann-dimensionalcell, Ø/±9Óa· , with centerp defined
by

ØN±�Óa·a®*Ù É Ã É ®3±"Â ¼ ´�×�×/×i´>Â ¬ ·�º�« ¬ ´OÚ ÕyÛAÜÝÂ`Û�ÚZÞ µÒ_ß8àAá µ�Þ°âaÞ.ÐäãQå
The setof all n-dimensionalcells is denotedby æ ¬ ; that is, æ ¬ ®*½�Ø/±9Óa·RÃ�Ó�ºIÏ ¬ ¾ . Set theoretically,
the sets ÏA¬ and æ�¬ are the same: The function Ø&Ã�Ï;¬0çèæ�¬ definedby ØLÃ]Óéç2Ø/±�Óa· is one-to-one
and onto. Figure 2.18.1 illustratesthis relationshipfor ÐP®êÒ . The set æ�¬ is also referredto as the
dual representationof ÏA¬ .
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pë pëcì (  )í

Figure 2.18.1 The set î�ï and its dual ð\ï .
Onereasonfor usingtherepresentationð�ñ of î;ñ hasto do with samplingof continuousimagesand

the displayof sampledimages.In order to processa picture (continuousimage)or any othersignalby
computer,we mustconvertit into a finite setof numbers.Samplingis the selectionof a setof discrete
points from a compacttime and/or spatialdomain. Only the valuesof the signal at thosepoints will
usuallybe usedin further processing.In the one-dimensionalcasethe fundamentalmathematicalresult
is Shannon’ssamplingtheorem[42]. It showsthat any continuoussignalover any durationT but band-
limited in frequencyto ò cyclespersecondcanbecompletelyspecified(i.e. reconstructed)if we sample
its amplitudeat intervalslessthan ó8ô8õ/ò seconds.It follows thatall we needto do is to samplethesignal
at k greaterthan õ/ò�ö equidistantpointsduring the durationT in order to encompassthe total signal.

Shannon’stheoremdoesnot suggesta way for reconstructingthe continuoussignalfrom its discrete
samples;it only saysthat it is possible. In fact, it is necessaryto usefairly sophisticatedtechniquesto
reconstructa signalwhenit is sampledat the minimum frequency.In addition,the choiceof algorithms
for reconstructionis usuallyseverelylimited in imageprocessing.Pictorialdatamustusuallybesampled
at a muchhigher rate,about160 times as often, thanwhat one might expectfrom the trivial extension
of Shannon’stheoremto two dimensions.To illustratethe problem,considerthe high resolutionimage
(512÷ 512) shownin Figure 2.18.2(a), which to the humaneye is indistinguishablefrom a continuous
image such as a photograph. The two imagesin Figures2.18.2(b) and 2.18.2(c) have beenobtained
from the former by skipping samples,so that Figure 2.18.2(b) consistsof 64 ÷ 64 samplesand Figure
2.18.2(c) of 32 ÷ 32. They aredisplayedon a larger grid by repeatingthe valuesof eachsample8 and
16 times. The quality of their appearanceis not due to undersamplingalone. Their quality improves
when squintingone’s eyesor looking at them from a distance;this is due to the fact that most of the
informationis still there. It is our methodof piecewiseconstantreconstruction,i.e. thesimplereplication
of values,that introducesthe distortions.Evena simple linear interpolationbetweensamples,insteadof
replication,would havegreatly improvedthe quality of the images.
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Figure 2.18.2 Effects of reducingsamplinggrid size.

In the caseof two-dimensionalimages,suchasshownin Figure2.18.2, the imageis usuallyviewed
as being derivedfrom a continuousimagefunction øcù�ú�ûRüýú�þÔÿ������ by taking a finite numberof
samples.The value ø��	��
 representsthe intensity, photographicdensity,or somedesiredparameterof
the physicalimageat the point ���Iú�
 . In a perfectimagesamplingsystem,spatialsamplesof the ideal
imagef would, in effect, be obtainedby multiplying f by a spatialsamplingfunction s composedof an
infinite array of Dirac delta functionsarrangedin a grid of spacing ������������������� û 
 . The sampled
image ø�� is then given by ø������ 
!� ø"����
$#�%&��� 
 ; that is

ø��'��� 
(�°ø"�)��
*#,+-/.1032�4 ���65879#�:<;�=�>@?A/B1C3DFE"G�H9I1J ;�= I�KLG ;NM HOI/J ;�=QP (2.18.1)

In this equation,vector subtractionand multiplication are definedcomponentwise;e.g. if ;R> G�SUT�VWSUX =and H > G�Y T V�Y X = , then

;�M H > G�SUT M Y1T�V�SZX M Y1X =*[�\^] H9I ;_> G�Y�T`I�SZT�V�Y�X�I�SZX =QP
A continuousimagefunction may be obtainedfrom the sampledimage E�a by linear interpolationor

by linearspatialfiltering. If r representsthe impulseresponseof an interpolatingfilter, thena continuous
imagefunction E�b is obtainedby convolving E�a with r; i.e. E1b > E�a c d where c denotesthe convolution
product. However,substitutingE�a from equation2.18.1andperformingthe convolutionyields

E b G ; =(>@?A/B&C'DFE a G	HeI�J ;�= I�dLG ;6M H9I1J ;�=^P (2.18.2)

This showsthat the impulseresponsefunction r actsas a two-dimensionalinterpolationwaveformfor
the sampledimage E a .

Of course,Equation2.18.1representsan idealizeddescriptionof E a . It is physically impossibleto
obtainmeasurementsat a point. Theevaluationof E a at a point x representsthe measuredintensityover
a small convexareacenteredat x. Thedimensionof the samplingareasareapproximatelyequalto their
spacing(Figure2.18.3). Anotherphysicalrestrictionis that f canonly be sampledat a finite numberof
places.Thus,the union of all convexsamplingareasforms a compactsubsetfhgji X . Thesecomments
can be formally expressedand are the rationalefor the next definition.
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2.18.1 Definition. Supposekmlen�oqp n is continuous. A samplingcell associatedwith a pointrts n�u is a compactand convexsubsetof n o with barycenterp over which the value of a
sample k�vWw r�x of f is calculated. The union of all the centersof the samplingcells is called
the samplinggrid. Thepair w r�y k v w r xzx is calleda picture elementor pixel and k v w r x is called
the pixel value.

Figure2.18.3illustratesthe ideabehindthis definition. In general,the spatiallysampledor spatially
quantizedimageconsistsof an {O|e} arrayof equallydistributedsamplesandcanthereforebeviewedas
pointsin the discreteplane ~,o arrangedin rectangularform. We alsoneedto point out that the sampling
cells can be disjoint, althoughin most samplingdevicesthey overlapas illustrated.

Figure 2.18.3 Samplinggrid with samplingcells; the different
shadingsrepresentdifferent valuesof the imagefunction f.

The mostcommongrid usedin imageprocessingis the rectangulargrid. Hexagonalandtriangular
grids (Figure 2.18.4) areoften discussedin the literaturebut are rarely implemented.
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(a)  Hexagonal grid (b) Triangular grid

Figure 2.18.4 (a) The hexagonalgrid and (b) the triangulargrid.

Althoughthespatialsamples���W����� canberepresentedaspoints,it is oftenintuitively moresatisfying
andcloserto the sensingprocessto usethe dual representationof �,� andview the samplesascells. In
addition, this view correspondsto the actualdisplay of sensedimageson a variety of display devices.
Televisionframes,for example,might be quantizedinto 450 lines of 560 cells each.

2.18.2 Definition. Theset �������'� ���3�1��� ���$���_���������	�"�z���W��� is calledthedisplaygrid of f andthe
function �3�����������'����� definedby ����� �1��� �¢¡��£���'��� � is called the display image. The pair�¤�3������¥����1���1��� �z�)¡ is called a displaypixel or simply a pixel.

In caseonedesiresa larger displayor a moredensesetof displaycells thanprovidedfor by ����� � � ,
we coulddefinethe displayfunction in termsof an interpolatingfunction ��¦ by setting � � �¤�3�����)¡^�§�1¦1��� � .

In order for the sampledimageto be processedby a digital computer,the function f must also be
sampledin amplitude;i.e., eachrealnumber�"��� � mustbeassigneda binarycode.This processis called
amplitudequantizationandcanbeconsideredasa mappingfrom therealnumbersinto eithertheintegers
or into � ��¨ aseachbinary codeis of finite length. The correspondingintegersarecalled the gray levels
or gray valuesof the image. It is commonpracticein imageprocessingto havethe discretegray levels
equally spacedbetween0 and somemaximumnumberL of form ©ª�¬«�­¯®m° . Thesecommentsform
the basisof the following definition:

2.18.3 Definition: A digital image is a spatially-quantizedandamplitude-quantizedimageand the
full rangeof amplitudequantizationlevels availablefor a particular image is called a gray
scale. Theprocessof obtaininga digital imagefrom a continuousimageis calleddigitization.
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Digital imagesconstitutea specialclassof computerimages,a topic discussedin Chapter4. Herewe
areonly interestedin exploringsomeuseful topologieson digital images.The first problemto consider
is that of connectedness.Considerthe digitization of the continuouscurvesshownin Figure 2.18.5(a)
and (b) using the gray scale{0,1}.

(a) (b)
±

Figure 2.18.5 Continuouscurveswith samplinggrid; thedotsindicatethecentersof thesamplingcells.

Thecontinuouscurvein 2.18.5(a) is connected,while theobjectin 2.18.5(b) consistsof two separate
continuouscurvesthat are spatially closeto eachother. Due to the limitations of the spatialsampling
grid, the resulting digital imagesobtainedfrom (a) and (b) are identical (Figure 2.18.6). The digital
representationin Figure2.18.6of eithersetof curvesassubsetsof ²"³ appearstotally disconnectedwhile
thedualrepresentationappearsconnectedandseemsa goodrepresentativeof either2.18.5(a)of 2.18.5(b).
Thus,the questionarisesasto which curve2.18.6(b) represents;i.e. doesit representa continuousfigure
eight curve or two separatesimple closedcurvesthat are spatially close? The answerto this question
depends,of course,on thechoiceof the topology. Keepingthe subspacetopologyfor ² ³<´jµ ³ is useless
in theanalysisof connectivitysincethe digitizedcurvesarethentotally disconnected.However,we may
choosetopologiesthat providefor the desiredconnectivityof the curveshownin 2.18.6(b). In the next
sectionswe shall take a closer look at thesetopologies.
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(a)
±

(b)

Figure 2.18.6 Illustration of the dual representationof digitized curves.

2.19 Digital Topology

Any topology on ¶¸· or ¹!· is called a digital topology. Topologieson ¹!· are also referredto as
cellular topologies. Theset ¶ · or ¹ · togetherwith a topologyis calleda digital spaceor cellular space.
Topologiesother than the discretetopology can be definedin termsof the coordinatesof points of ¶ · .
Oneof themostpopulardigital topologiesusestheconceptof evenandoddpoints. In particular,a pointºt»�¼¾½U¿�À�½ÂÁ�À/Ã�Ã1Ã�À)½ ·ÂÄ`Å ¶ · is calledevenif andonly if

·ÆÇÉÈ ¿ ½ Ç is even. If p is not even,thenp is said to

be odd. Let Ê »£Ë�ÌÎÍ�ÀzÏÂÀ�Í1Ð , º�»£¼É½ ¿ À�½ Á À�Ã�Ã1ÃzÀ�½ · Ä�Å ¶Ñ· , anddefinea basicneighborhoodÒ ¼�º Ä of p by

Ò ¼�º Ä »¬Ó Ë3º ÐjÔÖÕ�ºqÔØ× ÙÛÚÂÚË�¼¾½ ¿ À�Ã�Ã1ÃzÀ�½ ÇÂÜ�Ý À�Ã1Ã�ÃzÀ)½ · ÄßÞ Í¯àmá�àjâ�À Ý Å Ê ÐRÔÉÕ$º�Ô	×�ã/ä�ã/å,æ
It is easyto verify that the collection ç »£Ë Ò ¼�º ÄUÞ º Å ¶,è Ð satisfiesthe conditionsof Theorem2.13.4.
ThereforeB is a basisfor a topology on ¶ · and the topology thus derived is called the von Neumann
topology. This topology was first describedby A. Rosenfeldfor the case âé»ëê [48]. Rosenfeld’s
pioneeringwork in digital topologyhasprovideda variety of useful tools anda rigorousfoundationfor
many image processingoperations[29].

Defining basic neighborhoodsÒ ¼�ì3¼�º ÄzÄ for points ì3¼�º Ä�Å ¹ · by Ò ¼�ì1¼�º ÄíÄ »îì1¼ Ò ¼�º ÄzÄ provides
for an equivalent topology on ¹ · . In particular, Ò ¼�ì1¼�º ÄzÄ »ïË3ì1¼�º Ä Ð if p is odd and Ò ¼�ì1¼�º ÄzÄ »Ë3ì3¼É½ ¿ À�Ã�Ã�ÃíÀ�½ Çñð ¿ À�½ Ç Ü�Ý À�½ ÇÖò ¿ À1Ã�Ã1ÃzÀ�½ · Ä�Þ Í9àjá�àjâ�À Ý Å Ê Ð if p is even. If n=2 or 3, then the possible
neighborhoodsÒ ¼�ì3¼�º ÄíÄ of p areshownin Figure 2.19.1(a) and (b), respectively.

As an easyconsequenceof the neighborhooddefinition we have

2.19.1 Theorem. Thebasicneighborhoodsfor the vonNeumanntopologyare path-connected.
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c(  )p odd c(  )p oddó cì (  )í
pô evenõc(  )p even

Figure 2.19.1 The von Neumannbasis(a) if öø÷¬ù , and (b) if öú÷éû .
Proof: The proof is trivial if p is odd, for then ü8ý�þ ÿ is a point. If p is even,let q and r
be two distinct points in ü8ý�þ ÿ . Thenat leastoneof q or r must be odd, sayq. Now either
r is evenor odd. If r is even,then ��÷£þ . In this case,we definea path

�������	��

��� ü�ý�þ ÿ
with initial point q and end point r by� ý��Ñÿ�÷������ ��� ��� 


ù����  � ý!�¸ÿ$÷�þ"�#� 
ù � � �$
�%
Since &'�)(�÷ ü8ý!��ÿ+* ü�ý�þ ÿ , we have

��,.- ý�ü�ý/�(ÿzÿ9÷ �0�	� -1 ÿ and
�2,.- ý�ü8ý�þ ÿíÿ!÷ �3�4��

�

. This
showsthat the inverseimagesof opensetsareopenin [0,1]. Hencef is continuous.

If the point r is odd, then we define
�5�)�3�4��

�6� ü8ý�þ ÿ by� ý��Ñÿ$÷����#� �7� �8� 


ù ���:9 
ù<; ÷ þ � ���  � ý��Ñÿ$÷��=��� 

ù �5� �>
?%

In this casewe have
� ,.- ý�ü�ý/�(ÿzÿß÷ �3�4� -1 ÿ , � ,.- ý�ü8ý�þ ÿzÿß÷ �3�4��

�

, and
� ,.- ý�ü8ý/�Lÿzÿß÷ ý -1 �@
A� .

Thus,again,inverseimagesof opensetsareopenand, therefore,f is continuous.

Q.E.D.

2.20 Path-ConnectedSetsin Digital Spaces

Therearemanymetricsthat canbe definedon B<C . Two commonlyusedmetricsare the city block

metric D - ý�þ � �"ÿ�÷ CEF�G -2H I FKJ�L
F H andthechessboardmetric D 1 ý�þ � �"ÿ�÷>MONP�<& H I FQJRL
F H �S
?�5T�� öU( , whereþ8÷�ý I - �WV@V�V
� I C ÿ and ��÷£ý L - ��V�V�V
� L C ÿ . Givena point þ�X�B�Y , thenits vonNeumannneighborhood ZÎý�þ ÿ
is the set ZÎýzþ ÿ(÷[&'� � D - ý�þ � �"ÿ �>
 ( . In the caseö�÷mù , ZÎýzþ�ÿ is alsoknownasthe4–neighborhoodof
p sinceit consistsof thepoint p andits directly adjacenthorizontalandvertical neighbors.Furthermore,
if p is even, then ZÎý�þ�ÿq÷ ü8ý�þ ÿ .

The Moore neighborhoodof p is denotedby \�ý�þ ÿ anddefinedas \�ý�þ ÿ(÷$&�� � D 1 ý�þ � �"ÿ �[
 ( . For
n=2, \�ý�þ ÿ is also known as the 8–neighborhood of p.

2.20.1 Definition. A sequenceof points &3þ - � þ 1 ��V�V�V]� þ_^`(7*�B C is calleda D - -path if þ F�a - XbZÎýzþ2c	ÿ
for


S�$Td�fe J 
 , and a D 1 -path if þ F�a - X�\�ý�þ2c�ÿ for

g�>Th�fe J 
 .

A set ij*kB<C is saidto be D - -connected( D 1 -connected) if for eachpair of points þ � �lXlm there
existsa D - -path( D 1 -path) þ_÷�þ - � þ 1 ��V@V�Vn� þ ^ ÷o� from p to q suchthat þ F Xli for


?�5T��5e
.
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We call a prq -path ( shtvu or w ) a digital path if it is clear from the discussionwhich type of path
is meant. Unlessotherwisespecified,in the von Neumannspacea digital path shall always meanapPx -path and a digital path-connectedset a pPx -connectedset. Also, in the casen=2, pPx -pathsand pPx -
connectivityare usually referredto as 4–pathsand 4–connectivity, while pzy -pathsand pPy -connectivity
are called 8–pathsand 8–connectivity.

It follows from the definition that every p x -path is a p y -pathandevery p x -connectedset is also p y -
connected.Theconverseis obviouslyfalse;for n=2, theset {�t>|r}/~2���4����}�~7�kur���h�ku��n� is p y -connected
but not p x -connected.The relationshipbetweenconnectivity, p x -connectivity,and path-connectivityis
given by

2.20.2 Theorem. Let �<� be the digital spacewith the von Neumanntopologyand {f���<� . Then
the following are equivalent:

(1) S is connected.

(2) S is digital path-connected.

(3) S is path-connected.

Proof: The equivalenceof connectedand path-connectedfollows from theorems2.17.5,
2.17.8, and 2.19.1.

To show the equivalenceof connectivityand digital path-connectivity,assumefirst that S is
connected. Let ����{ and set �:�ot�|��R�l{����n�	���]�����6��pPx��R�.���n�7� �n¡�¢"���]¡£�g��¤O{¥� . If� � t¦{ , there is nothing to prove. If � �¨§t�{ , let © � t¦{�ª'� � . Then � ��« © � t"{ and� �S¬ © � t¦­ . Now if �k�k� � , then ®¯}/�)� ¬ {°��� � . This showsthat � � is open in S.
Similarly, if �±�R©²� , then ®R}/�U� ¬ {k�f©²� ; for otherwisethereexistsa path from p to q, a
conditionthatviolatesthedefinitionof ©²� . ThusS is theunionof two relativelyopendisjoint
sets,namely �h� and ©²� . But this contradictsthe assumptionthat S is connected.Therefore�h�$t³{ .

If, on the other hand,S is digital path-connectedbut not connected,then S is the union of
two separatedsetsA andB. In this caselet �±�b� , �l�l´ , and ��t>� x ��� y ��µ@µ�µ
����¶?t>� be ap x -path in S. Thenfor somej, �Q·¸��� and �Q·�¹ x ��© . Oneof ��º or ��º�¹ x mustbe even. If ��º
is even,then � ·»¹ x+�l¼?}�� · �¥to®¯}!� º � and,hence,®O½¾}�� · � ¬ © §tf­ . Thus, � · �b� is a limit
point of B; i.e. © ¬ � §t�­ . But this contradictsthe assumptionthat A and B are separated
sets. A similar argumentholds if � ·n¹ x is even.

Q.E.D.

Accordingto the theorem,the connectedsetsin � � areexactly the path-connectedsets.Comparing
this with Corollary2.17.9, we seethat � � with the von Neumanntopologyenjoyssomeof theproperties
of ¿)� . Subsequenttheoremswill show further similarities between¿)� and �Q� .

For the remainderof this sectionwe shall assume,unlessotherwisespecified, that �<� is the von
Neumannspace.Thenext lemmais a main ingredientin provingseveralinterestingpropertiesof digital
curves.

2.20.3 Lemma. Suppose{k�>�<� and �R�lÀ . If S is connectedand {6ª`|��Á�Âtf� « © a separation,
theneach � « |��Á� and © « |��Á� are connectedsets.
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Proof: We show that ÃoÄRÅ'ÆÁÇ is connected.By interchangingA with B, this also proves
that È�ÄjÅ�ÆÁÇ is connected.

Define É$ÊOË�Ì Ã[ÄjÅ�ÆÁÇ by

É2Í/ÎÁÏ�Ð�Ñ Î"Ò�Ó6ÎRÔ�Ã¨ÄOÅ�ÆÁÇÆ"Ò#Ó Î�ÔlÕ×Ö
We shall showthat f is continuous.The result then follows from Theorem2.16.7.

Let ÎRÔlØ , ÙjÐfÉ2ÍÚÎ�Ï , and Û�Í�Ù¥Ï a basicopenneighborhoodof y in Ã¨Ä�Å'ÆÁÇ . We show thatÉ2ÜKÝÞÍ�ÛßÍÚÙ¥ÏnÏ is open in S. Since Û�Í/Ù¥Ï is a basicopen neighborhoodin Ã[ÄRÅ�ÆÁÇ , ÛßÍÚÙ¥Ï is
of form ÛßÍ!à	Ï�Ð>á¯ÍâÙ6Ï<ã�Í�ä=ÄOÅ'ÆÁÇ`Ï Ö
Therearetwo casesto consider,namelyÙ¨åÐoÆ and ÙRÐ>Æ . SupposeÙ5åÐkÆ . In thiscaseÙjÔ�ä
and ÙRÐ¨Î . SinceA andB areseparated,y cannotbea limit point of B. Thus á¯Í/Ù¥ÏKã8ÕfÐ>æ .
If, in addition, Æ¨åÔlá¯Í/Ù¥Ï , then ÛßÍ!à	Ï�Ðoá¯ÍâÙ¥ÏKãOä and É Ü.Ý Í/Û�Í/Ù¥ÏnÏ6Ð>áRÍâÎÁÏ�ãOØ . Therefore,É Ü.Ý Í�ÛßÍÚÙ¥ÏnÏ is a relatively openset in S containingx.

If Æ�Ôfá¯ÍâÙ¥Ï , then p is odd andÉ Ü.Ý Í�Û�Í/Ù¥ÏnÏ�Ð>Í�á¯ÍâÎ�Ï�ãOÃ²ÏQÄOÅ�ÆÁÇçÄ8Õ Ö
Since á¯ÍâÎÁÏQãOÕßÐ[æ and Æ�Ô>áRÍâÎÁÏ ,Í�á¯ÍâÎ�Ï�ãèÃ²Ï�ÄOÅ�ÆÁÇ²ÐkáRÍâÎÁÏ�ã�Í/Ã¨ÄOÅ'ÆÁÇ`ÏÁÐ�á¯ÍâÎÁÏQãOØOé
which is openin S. However, È=Ä7Å�ÆÁÇ is alsoopenin S.This canbeascertainedfrom the fact
that sincep is odd, we havefor each êOÔlÈ[Ä�Å'ÆÁÇ that á¯Íâê	Ï_ãëä[Ð>æ and,therefore,È[Ä�Å�ìQÇ�Ð íî�ï�ð�ñzò]ó'ô Í/áRÍÚê	Ï�ã�Ø¥Ï Ö
Thus, É2Ü.Ý�Í�Û�Í/Ù¥Ï!Ï is the union of two relatively opensets Í/á¯Í/Î�Ï�ãëÃ²Ï�Ä�Å�ÆÁÇ and È$ÄlÅ'ÆÁÇ .
This showsthat É2Ü4Ý@Í!ÛßÍÚÙ6Ï!Ï is openin S as long as Ù¨åÐ�Æ .

Next supposethat ÙRÐ�Æ . In this case,É Ü.Ý Í/ÛßÍ!Ù¥Ï!ÏUÐ[Í�á¯Í�ÆÁÏ�ãëÃ?ÏKÄ8Å'ÆÁÇdÄèÈ Ö
Now if p is odd, then á¯Í/ÆÁÏ6Ð>Å'ÆÁÇ and, therefore, É Ü.Ý Í�Û�Í/Ù¥ÏnÏ£ÐõÈ�ÄlÅ�ÆÁÇ . By the above
argument,È¯Ä£Å'ÆÁÇ is openin S. If, on theotherhand,p is even,let ökÐ>á¯Í/Æ�ÏPã¸Ã8Ä£Å�ÆÁÇçÄ8Õ .
Then if êgÔf÷ we musthaveeither êOÔlá¯Í/Æ�Ï�ãOä with êlåÐ>Æ , or ê�Ð�Æ , or êëÔ¯Õ .

If ê>Ôfá¯Í/ÆÁÏ�ãèä with ê$åÐøÆ , then z is odd and { z} is open. Hence êgÔlÅ�ê4Ç+ù�÷ is an
interior point of U.

If ê�ÐoÆ , then á¯ÍÚê	Ï�ãbökÐ>á¯Í/ÆÁÏQãOÃ±Ä8Å�ÆÁÇ:Äëá¯Í�ÆÁÏ�ãëÈÐ>á¯Í/ÆÁÏQã8Í�Ã=ÄOÅ'ÆÁÇdÄèÈ�ÏSÐ�á¯Í�ÆÁÏ�ãOË Ö
which is openin S. ThereforeÆ5ÔRá¯Í�ÆÁÏ_ã8Ë5ù�ö is an interior point of U.
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Finally, if úëûlü , then ýÿþ/ú��������	� andý¯þ/ú�����
���ý¯þ/ú
���8þ��������������oý¯þâú
�����
which is openin S. Thus, in eachcasez is an interior point of U. Sincez wasarbitrary, this
showsthat ����� 
!�"
 . This completesthe proof that #%$'&Aþ)(ßþ�*+�)� is openin S.

Let ,-�.# $/& þ0(ßþ1*+�)� and 2lû�3 . Then #2þ024��û	#2þ0,5�6�.#879# $/& þ0(ßþ1*+�:�<;=�>(ßþ1*?� . This
showsthat given a point @jû=� and a basicopenneighborhood(�þ0#2þ�@��:�BA"C��D�E��� , then
thereexistsanopensetV containingx, namely ,F�G# $
& þ)(ßþ)#�þ1@��:�H� , suchthatfor each2lû�3 ,
#2þ024� ûI(ßþ)#�þ1@��H� . Therefore,f is continuousat x, and sincex was arbitrary, f is continuous
on S.

Q.E.D.

Lemma2.20.3 is neededto prove the following surprisingtheorem:

2.20.4 Theorem. SupposeJ!A"KML and NPORQ�S4þHJ?�BT"U . If S is compactand connected,thenS has
at least two non-cutpoints.

Proof: Let N bethesetof all non-cutpointsof Sandsupposeto thecontrarythat NPORQES4þ/ýV�XWYU .
Let �>û�J+Z'ý . Then J+Z��[���\�"C���� , whereA and B are separatedsetswith N contained
in oneof A or B. Supposewithout lossof generalitythat ý]A�� . For eachpoint 2lû�� , let
J+Z��[24�^�GC`_B���a_ , where C`_ and �b_ areseparatedsetswith ��û=�a_ . Since �jû��a_ andby
Lemma2.20.3 C`_6���E2c� is connected,we must have C`_d�=�[24�eAf� .

Partially order the collection gh�>�EC _ � _jilk by subsetinclusion. Since S is compact,S is
finite. Thereforeg mustbefinite. Thuswe canselecta maximalsimply orderedsubcollectionm �n��C`_joqp�rsutMv of w suchthat x`yRzX{|x`yE} whenever~a�Y� . Consider x`y���� r�sutMv x`y�z . Since

the sets x`y � , �ay � form a separationof �?�E��� r p , x`y �	���� . Let ����x`y � . Then since
x`y �+� ��� r p^{f� , q mustbean elementof A andthereforea cut point of S. Now considerthe
set x y . Since x y � �[�cp is a connectedsubsetof �?�����4p , it must either be a subsetof x y �
or of �by�� . Since �I�Vx`yE� , x`y � �E�cp6{Gx`yE� andhence x`y�{Gx`yE� . Thus the collection � is
a strict subsetof the simply orderedcollection �Ex`y���� x`y��P�P�[�l��� x`y��E��x`y�p . This contradictsthe
maximality of � and provesthat N must containmore thanone point.

Q.E.D.

The reasonthat 2.20.4 is a surprisingtheoremis that it is true for Euclideanspace�c� but not for
generaltopologicalspaces.In particular,2.20.4holds for a classof spacesknown as � v -spacesbut not
for a classknown as ��� -spaces.A topologicalspaceX is a �M� -spaceif given any two pointsof X, then
at leastone of them is containedin an openset not containingthe other. Obviously, both � � and � �
are � � -spaces.However,Euclideanspacesalsosatisfy severalstrongerconditions. One of theseis the
� v -hypothesis. A spaceX is called a � v -spaceif given any two points of X, then eachof them lies in
an opensetnot containingthe other. For example,if �+��� �V� � and ¡R¢0�+���%£¤�|¥ , then � ��V¦e§[¢)��£ and
� ���¦ § ¢��c£ . Thus, � � is a � v -space.On the otherhand,if �I��� � is evenand �=�D� � with ¡
¢0�+���%£?�|¨ ,
then � �=¦©¢0��£ . It follows that q is in everyopensetcontainingp and � ��=¦©¢0�c£����E�cp . Hence � � is
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a ª�« -spacebut not a ªM¬ -space.The reasonthat 2.20.4holdsfor ­�® , eventhoughit is not a ª�¬ -space,is
due to the von Neumanntopology which washeavily employedin the proof of the theorem.

2.21 Digital Ar cs and Curves

Thereare many other propertiessharedby ­M® and ¯c® , and one of theseis the similarity between
digital arcsin ­ ® and arcsin ¯ ® . In the definition of digital arcsgiven below, the set °²±´³0µ�¶ denotes
the deletedneighborhood°e³:µ�¶:·�¸�µ�¹ .

2.21.1 Definition. A digital arc is a º ¬ -path ¸�µ ¬E»[¼[¼l¼:» µc½E¹�¾G­ ® suchthat, for all ¿BÀ�Á »qÂ À�Ã ,

³�¿Ä¶ µ�ÅeÆÇµ�ÈÊÉ6Ë ÁeÆ ÂR»hÌEÍ/Î
³0ÏÐ¶ µ%Å�Ñ�° ± ³)µ�ÈÒ¶ÓÉ6Ë ÁeÆ Â5Ô ¿?Õ
If thearcconsistsof onepoint ³)ÃÖÆ|¿E¶ , thenit is alsocalleda degeneratearc. A digital simple
closedcurve is a ºR¬ -path ¸�µc¬ »[¼l¼[¼:» µc½E¹ suchthat Ã=×YØ and for all ¿dÀ�Á »�Â À�Ã ,

³�¿ ± ¶Ùµ%ÅBÆÇµ�ÈÊÉ6Ë Á�Æ Â , and

³0Ï ± ¶Çµ Å ÑG° ± ³0µ È ¶>É6Ë ÁeÆ Â�Ô ¿ÛÚ�ÜEº=ÃfÕ
A digital arc satisfying the additional condition

³0ÝÐ¶�µ%Å²ÞÑß°e³:µMÈ[¶ ÌÄÍ/Î °e³àµ%Å1¶4á�°e³)µMÈ[¶6ÞÆFâ É6Ë Á`Æ Â�Ô Ï¤Õ
is calleda digital Jordanarc. A digital Jordancurve is a digital simpleclosedcurvesatisfying
condition

³0Ý ± ¶ãµ Å ÞÑ °e³:µ È ¶ ÌEÍ�Î °e³0µ Å ¶Ûáä°e³:µ È ¶BÞÆ"â É6Ë ÁåÆ ÂeÔ Ï6Ú\ÜEºäÃ²Õ

Note that a digital arc is a digital pathwhich, becauseof condition(1), cannotdoublebackon itself
or crossitself. Condition (2) implies that a digital arc doestouch itself; a point µ�È with Â ×!Á%æ|¿ or
ÂÖç Á%èß¿ mustbe a (Euclidean)distancegreaterthanone from the point µ%Å . For Jordanarcs,condition
(3) meansthat the pathcannotevendoublebackwithin the distanceé Ï of anotherpoint of the path. In
higherdimensionsit allows arcsto doubleback to within the Moore neighborhoodof a previouspoint
µ%Å , but at a distancegreaterthan é Ï .

The requirementÃ	×�Ø for digital simple closedcurvesrules out one point (degenerate)closed
curves,two point closedcurves,and four point closedcurvesthat form a 2 ê 2 block of cells. In fact, it
is not hard to seethat thesearethe only º ¬ -pathswith Ã ç�ë that satisfy ³ ¿ ± ¶ and ³�Ï ± ¶ . Hencea digital
simple closedcurvemust containat leasteight points. Figure 2.21.1providesexamplesof digital arcs
and digital simple closedcurves.
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(a)
ì

(b)
ì

Figure 2.21.1 (a) A digital arc (left) and a digital Jordanarc (right). (b)
A digital simple closedcurve (left) and a digital Jordancurve (right).

Digital arcsanddigital simpleclosedcurvesasdefinedin 2.21.1are íRî -connectedsets.Obviously,
by using ïñð0ò�ó insteadof ôeð0ò�ó onecanjust aswell definetheconceptsof a digital arcanddigital simple
closedcurve in terms of íjõ -connectivity.

The points of a digital arc ò î[ö[÷l÷[÷ ö ò�ø are all distinct, and ò î and òcø are called the endpoints of
the arc. It is alsoobviousfrom the definition that the endpointsare non-cutpointsof the arc and that
any otherpoint ò%ù is a cut point. This is onepropertydigital arcssharewith topologicalarcs(Example
2.17.10(i)). Beforediscussingfurther commonpropertieswe needto establishthe following result:

2.21.2 Lemma. If ú û�üMý is connected,thenfor anytwo givenpoints ò ö�þ=ÿ�� there existsa digital
arc from p to q in S.

Proof: By Theorem2.20.2, thereexistsa digital pathfrom p to q in S. Let �����Eòcî öÒ÷l÷[÷:ö òcø��
be a digital pathfrom p to q in S of minimal lengthwith ò	��òcî and þ �Gòcø . Then ò%ù�
�ãò
�
if ����� ; otherwise,��òcî ö[÷l÷[÷:ö ò%ù ö ò
���Mî ö[÷l÷:÷[ö òcø�� would be a shorterpath thanP.

If ���	����� , then ò ù 
ÿ ôeðàò � ó , for otherwise��ò î ö[÷l÷[÷:ö ò ù ö ò � ö[÷[÷l÷:ö ò ø � is shorterthanP. Simi-
larly, we cannothave ò%ù ÿ ôeð)ò��Eó for ��������� , for otherwisethepath �Eòcî ö[÷[÷[÷Hö ò
� ö ò%ù ö[÷l÷[÷:ö ò ø �
is shorterthan P. It follows that P is a digital arc from p to q.

Q.E.D.

We are now able to prove the digital versionof Theorem2.17.11.

2.21.3 Theorem. If únûÇü ý is compactand connectedwith just two non-cutpoints, then S is a
digital arc.

56



Proof: Let �! #"�$�% be the two non-cutpointsof S. By Lemma2.21.2thereexistsa digital
arc P from p to q in S. If &(')+* , then thereexistsa point ,-$ *�. & . Sincex is a cut point
of S, *�.0/ ,�1 )325476 , whereA and B are separatedsets. SinceP is connected,P must be
containedin one of A or B, sayA. By Lemma2.20.3, 6�4�/ ,�1 is connected.Since 6 ')+8 ,9;:=<0>@? 6A4B/ ,C10D�EGF . Hence,by Theorem2.20.4, 6-4H/ ,C1 hasat leasttwo non-cutpoints,one
of which,call it y, is not thepointx. We now havetwo connectedsets,namely ? 6�4I/ ,C1�D .J/LK 1
and 254M/ ,�1 , and thesesetshavethe point x in common. Thus

*!.J/;K 1 ) ? 2N4B/ ,�1�D 4MO ? 6A4B/ ,�1�D .P/;K 1;Q
is connected.But this meansthat y is a non-cutpoint of S that is not in P, a contradiction.

Q.E.D.

A pair of points �� R"S$ST�U are called von Neumannneighborsor simply neighboringpoints if
��$WV ? "XD . If p and q are not von Neumannneighbors,then they are referredto as non-neighboring
points.

2.21.4 Theorem. If *�Y T U is compactand connectedwith the property that for any pair of non-
neighboringpoints ,� K $ * , *!.J/ ,! K 1 is not connected,thenSis a digital simpleclosedcurve.

Proof: We divide the proof into five parts.

(1) We first provethatScontainsno cut points. Supposeto thecontrarythatp is a cut point of
S. Then *!.J/ �C1 )W2N4Z6 , whereA andB areseparatedsets.By Lemma2.20.3, 2�4I/ �C1 and6[4M/ �C1 are both compactconnectedsets. According to Theorem2.20.4, thereexist points
,	$�\ and K $�] suchthat x doesnot separate2^4�/ �C1 and y doesnot separate6[4�/ �C1 .
SinceA andB areseparatedsets,x andy arenot neighboringpoints. But then

*�.P/ ,! K 1 )_O ? \ 4I/ �C1JD .P/ ,C1`Q 4BO ? ] 4�/ �C1JD .P/aK 1;Q
is the union of two connectedsets that have the point p in common. Thus *!.J/ ,! K 1 is
connected,contrary to the theorem’shypothesis.

(2) Next, supposethat *�.P/ ,� K 1 )^2-4b6 , whereA andB areseparatedsets.Then 2�4c/ ,! K 1
and 6�4d/ ,� K 1 arebothconnectedsets.For supposeto thecontrarythat 2I4�/ ,� K 1 )_e�4�f ,
where U and V are separatedsets. If U containsboth x and y, let gb$ f . Since fhYi2 ,fj.P/ g@1 andB areseparatedsets.Thus *�.P/ g@1 ) ? fk.J/ g@1PD 4 ? 6�4�e D is a separation,contrary
to part (1) of the proof. If U contains only one of the points x and y, say x, then*�.P/ ,C1 ) ?Pl .J/ ,�1�D 4 ? ] 4^m D is a separation. Thus againwe have a contradictionto part
(1).

(3) At leastoneof 2N4B/ ,� K 1 or 6A4B/ ,� K 1 is a digital arc. For if not, then it follows from
Theorems2.20.4and2.21.3that eachof the setscontainsa non-cutpoint, say ��$ 2�4�/ ,! K 1
and "�$ 6[4M/ ,! K 1 , distinct from x and y. But then

*�.P/ ,� K 1 )�O ? \ 4�/ ,� K 1PD .J/ �C1aQ 4BO ? ] 4�/ ,! K 1nD .P/ "X1;Q
is a connectedset since it is the union of two connectedsetshaving the points x and y in
common. In addition, p and q are non-neighboringpoints since ��$B\ and "�$�] . This
contradictsthe hypothesis.
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(4) Both o5pMqar!sut�v and w[pMqar!sxtXv are digital arcs. By (3), at leastone of thesetwo sets
is a digital arc. Let w+p�qar!sxtXv be the digital arc guaranteedby (3). If o-p	q;r!sxtCv is not a
digital arc, then it mustcontaina non-cutpoint y-z{ qar!sxt�v . Since w|pBq`r�sxt�v is a digital arc
andx andy arenot neighboringpoints, thereexistsa point } {�~ which separatesx from y;
that is, �uw�p	q;r�s�tCvP�u�Pq0}�v����-p^� is a separationwith r {^� s�t { � , and eachU and V
is a connectedset. But then

� �Jq`r!sxtXv��|�����NpBqar!sxtXvJ�x�Pq`yCvL��pI����p^���
is a connectedset,with p andq non-neighboringpoints. This againcontradictsthehypothesis.

(5) The pointsx andy areendpointsof oNpBqar!sxt�v andof w�pBq;r�sxt�v . If neitherx nor y is
an endpoint of o-pBq`r�sxtXv , let y�sR} { o denotethe endpointsof o-pBq;r�s�tCv . Then

� �Jq0y�s�}�v��_������pIq;r!sxtCvP�u�Jq0y�s�}�v`��pB� ~ pBqar!sxtXvJ�
is the union of two connectedsetshaving the points x and y in common. Thus

� �Jq0y�s�}�v is
connected.Sincep andq areendpointsand �R�=���@��o�pIq`r�s�tXvJ�C�^� , they arenon-neighboring
points. This contradictsthe hypothesis.Thus q`r�s�tCv containsat leastoneendpoint of A and,
for analogousreasons,of w[p�qar!sxtXv .
Supposey is the endpoint of o-pIq`r�s�tCv but x is not. If y { � denotesthe otherendpoint,
thenp andy cannotbe neighbors.Also, both x andy mustbe endpointsof wApBqar!sxtXv . For
if not, let } {	~ denotethe other endpoint. Then

� �Jq0y�sR}�v��+�����NpBq`r�sxtXvP���Pq`yCva�=pM��� ~ pIq`r�s�tXvJ�x�Jq`}Xva�
is the union of two connectedsetshaving the points x and y in common. Thus

� �Jq0y�s�}�v is
connected,wherep andq arenon-neighboringpoints. But this contradictsthe hypothesis.

We now have that x and y are the end points of wSp�q`r�sxtXv and p and y are end points
of o5p�q`r�s�tXv . Then �uo�pIq`rCv��x�Pq�yCv and w�p�q`rCv are connectedsetshaving the point x in
common. Therefore,

� �Jq`y�s�tCv��+�����NpBq`rCv��x�Jq`yCv`�=pI� ~ p�q`rCvP�
is connected.This againcontradictsthe hypothesis.

ThusS is the union of two digital arcshavingonly their endpoints in common.Furthermore,
sinceA andB areseparatedsets,we havethat y-z{�� ��}X����y { � and } {	~ . It now follows
that S hasat leasteight pointsandsatisfiesconditions �� L¡¢� and �£�n¡¤� of Definition 2.21.1.

Q.E.D.

If o�¥G¦�§ , thena �=¨ -componentof A is a maximal �=¨ -connectedsubsetof A. In particular,if ©��W� ,
then an 8–componentis a maximal 8–connectedsubsetof A. In [47] and [48], Rosenfeldproved the
following digital versionof the JordanCurve Theorem(2.17.13):

2.21.5 Theorem. If
� ¥^¦ ¨ is a digital simpleclosedcurve,then ¦ ¨ � � hastwo 8–components.

It canbe seenfrom Figure2.21.1(b) that the 8–componentsof ¦ ¨ � � neednot be connectedsetsin
the von Neumanntopology. However, the exactanalogueof the JordanCurve theoremfollows as an
easycorollary of Rosenfeld’stheorem.
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2.21.6 Corollary. If ªG«W¬�­ is a digital Jordan curve,then ¬�­`®Jª hastwo components.

Proof: Let C beoneof the8–componentsof ¬�­a®Pª guaranteedby 2.21.5and ¯�°�± . Let ²�³
denotethe componentof C containingp. We shall show that ²´³Iµ|² .

Since ¯¶°·² ³ , ² ³¹¸µ»º . Supposeto the contrary that ² ³¹¸µ¼² . Then there is a point½ °-²c®�² ³ and, sinceC is 8–connected,and 8–path ¾¿µiÀ0¯XÁ�Â�Ã`ÃaÃ�ÂR¯�ÄnÅ from p to q in C.
Since ½ ¸°	² ³ , thereexistsan n with ÆÈÇ�É�Ê^Ë suchthat ¯�ÌB°	² ³ and ¯�ÌPÍ�Á�°	²Î®0² ³ . LetÏ�Ð ÂÒÑ�Ócµ�¯ Ì . Then ¯ Ì0Í�Á ¸°�Ô Ï ¯ Ì Ó , for otherwise ² ³kÕ À0¯ Ì0Í�Á Å is a connectedsubsetof C
larger than ²´³ . Thus, ¯ Ì�Í�Á mustbe oneof the four diagonallyadjacentpoints

ÏuÐ�Ö ÆJÂ£Ñ Ö ÆnÓ .
Suppose,without loss of generality, that ¯ Ì0Í�Á µ Ï£Ð�× ÆPÂ£Ñ × Æ�Ó . Now considerthe pointsØ µ Ï£Ð
× ÆPÂÙÑ=Ó and Ú�µ ÏuÐ Â£Ñ × Æ�Ó . SinceS is a Jordancurve, it follows from 2.21.1

Ï�Û�Ü Ó , that
at leastone of the points, say x, is not an elementof S. But then ²´³ Õ À Ø Å is a connected
subsetof C larger than ² ³ . Therefore ² ³ µ·² .

Q.E.D.

The following digital versionof Example2.17.3(ii) was alsoprovenby Rosenfeld[47].

2.21.7 Theorem. If ªW«+¬ ­ is a digital arc, then ¬ ­ ®Pª is 8–connected.

In view of Figure 2.21.1(a), it is obviousthat ¬�­L®Pª neednot be connected.The following digital
analogueof 2.17.3(ii) follows as an easycorollary to 2.21.7:

2.21.8 Corollary. If ªW«�¬ ­ is a digital Jordan arc, then ¬ ­ ®Jª is connected.

The proof of this corollary is identical to that of Corollary 2.21.6.

A topological invariant that providesa methodfor counting objectsin the digital plane ¬�­ is the
Euler number.

2.21.9 Definition. If ª�«�¬ ­ is compact,thenthe Euler numberof S, E(S), is definedas

Ý Ï ª�Ó�µWÞ Ï ª�Ó�ß	É Ï ª!ÓàÂ

wherem(S) denotesthe numberof componentsof S andn(S) the numberof boundedcompo-
nentsof ¬�­L®Pª . The boundedcomponentsof ¬�­a®Pª arealsocalled the holesof S.

If oneof the numbersm(S) or n(S) is known, thenthe Euler numberprovidesa meansfor obtaining
theother. This observationhasdirectpracticalapplications.For example,therearevarious“hole filling”
algorithmswhoseoutput are connectedobjectswithout holes. The Euler numbercan then be applied
to find the numberof objectspresent.Conversely,if we know that we aredealingwith one connected
object, then the Euler numberprovidesus with the numberof holesin the object.
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2.22 Weakly ConnectedSetsand á=â -Connectivity

In theprecedingtwo sectionsweformulatedmostdefinitionsandtheoremsin termsof áJã -connectivity
and observedthat most of the theoremshaveanalogousinterpretationsfor á=â -connectivity. This holds
for the Euler numberas well. For 8–connectivitywe define

ä´å�æuç�è�é5êZå`æ�ç!èìë	íîå�æxç�è@ï

where
ê å æxç�è

denotesthenumberof 8–componentsof Sand
í å æ�ç�è

thenumberof bounded8–components
of ð âañ ç . Obviously, in most cases

ä å æxç�èjòéiäjæxç�è
.

Onereasonwe preferredusing á=ã -connectivityis Theorem2.20.2. It is well known that theredoes
not exist a topology on ð�ó for which connectivity is equivalentto á â -connectivity[4]. However,there
exist topologieson ð�ó in which every á=â -connectedsetis weaklyconnected.Note that if ô é�æ�õ�ï÷ö@è is an
evenpoint in the von Neumannspaceð â andq is any oneof the diagonallyadjacentneighboringpointsæ�õ
øGùPï£öúøWùaè

, thentheset û�ô ï�üXý is weaklyconnectedbut not connected.This is in contrastto þ ó , where
weakconnectivityandconnectivityareequivalentnotions(Theorem2.16.6). It doesnot mean,however,
that 8–connectedsetsareweakly connected;the set û æ�õ�ï£ö�ÿWùnèxï;æ�õîÿWùJï£ö�èuý is not weakly connected.

In thevon Neumanntopologyon ð a basicopenset � æ���è is of form � æ��
è�é û ��ý if
��� ð is oddand� æ���è!é û �këGùJï���ï��úÿWùný if p is even.The Cartesianproductof thesebasicneighborhoodswill be used

to definea basisfor a topologyon ð�ó which is different from the von Neumanntopology. Specifically,
with each ô é+æ�� ã ï�� â ï��	�	�#ï�� ó è
� ð�ó we associatea basicneighborhood� æ ô è definedby

� æ ô è!é�æ � æ�� ã è#ï����	�îï � æ�� ó è�è�é ó
��� ã �
æ�� � èàï

whereeach � æ�� � è is a basicneighborhoodof
� � � ð of the von Neumannspaceð . It is not difficult

to show that the collection � é û�� æ ô è�� ô � ð�� ý is a basisfor a topology on ð ó . Sincethereare � ó
possibleneighborhoodconfigurations,this topology is appropriatelycalled the � ó -topologyon ð ó . The
set ð ó togetherwith this topologyis alsoreferredto asthe productspaceof the von Neumannspaceð .

For illustrativepurposeswe againconsiderthedualspace� ó obtainedby substituting� æ ô è for p and� æ � æ ô è�è for � æ ô è . Thefour differentneighborhoodconfigurationsfor theproductspace� â areshownin
Figure2.22.1. The shadedcell representsthe cell � æuõxï£ö=è�� � æ � æ�õ�ï£ö=èxè�� Here the left-mostneighborhood
resultswheni andj arebotheven.Proceedingfrom left to right, thenextneighborhoodpicturedrepresents
the casei evenand j odd followed by i evenand j odd, and i and j both odd, respectively.

Figure 2.22.1 The four possiblebasicneighborhoodsin the productspace��� .
Productspacesandvon Neumannspacesshareseveraltopologicalproperties.In particular,we have

the following analoguesof Theorems2.19.1and 2.20.2:
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2.22.1 Theorem. Thebasicneighborhoodsfor the  �! -topologyare path-connected.

The proof of 2.22.1 is analogousto that of 2.19.1. Given a neighborhood"$#&%�' and %)(�*,+-".#&%�' ,
we definethe path /10324%65�(7%98�(:%<;�= , where %65>0?* , %68>0?% , and %@;A0CB , anddefinea continuouspathD,E>FHG (JILK9MN".#�%�' from q to r accordingto the typesof coordinatesof the pointsp, q, and r .

2.22.2 Theorem. Let O ! bethedigital spacewith the  ! -topologyand PRQSO ! . ThenSis connectedTVU P is path-connected.

As in the caseof 2.20.2, the equivalencefollows from Theorems2.17.5, 2.17.8, and 2.22.1. In
contrastto Theorem2.20.2, connectivityin the  �! -topologyis not equivalentto digital path-connectivity
for either WX5 -pathsor WX8 -paths.It is truethatevery WX5 -pathis connectedin theproductspaceO ! . However,
connectedsetsneednot be W 5 -pathconnected.For example,if #&YZ(\[]'^+_O 8 with i andj bothevenintegers,
then 2`#�Ya(�[b'7(�#�Ydc?I`(�[ecSIf'a= is connectedbut not WX5 -connected.Although 2`#&YZ(g[b'a(�#�Y<cCIh(�[icSI�'a= is WX8 -
connected,it doesnot meanthat all WX8 -connectedsetsare connected;the set 2h#jY�cCIh(�[b'a(�#�Ya(�[ic?I�'Z= isWX8 -connectedbutnotconnected.However,2`#&Y<cSIh(k[]':(�#�Ya(�[>cCI�'a= is weaklyconnected,andsois every WX8 -
connectedsetin theproductspaceO ! . Theseobservationsarerelevantin connectionwith the topological
notion of weakpath-connectivity.

2.22.3 Definition. Let O ! be a digital space.A sequenceof points 2	%65�(9l	l	l<(:%9m�=n+-O ! is calleda
weakpath if 2�%9oj(7%@oqp 5 = is weakly connectedfor InrsY>rutwvCI .
A set PxQSO<! is weaklypath-connectedif for eachpair of points %)(7*-+-y , thereexistsa weak
path /s0z24%.0?%65�(7%68�(�l�l	ld(7%6me0?*{=|Q}P . The setP is calleda weakpath fromp to q.

As a consequenceof this definition we have the following:

2.22.4 Theorem. If P is a weakpath in a digital space,thenP is weaklyconnected.

Proof: Supposeto the contrary that some weak path /~0�24% 5 (9l	l�l�(:%6m�=�Q�O�! is not
weakly connected. Then there exist open setsU and V such that /�Q��z�,� , /s�����0� �0�/1��� , and �3�-��0 �

. Assumewithout loss of generalitythat % m +3/s�-� . Let[�0u���X��24Y E % o +_/C�-�e= . Since [�cCIVr3t we haveby definition of j that %<� p 5�+,/C�_� ,
while %��i+_/}�_� . Thus 24%��4(7%�� p 5�= is not weakly connected,contraryto the hypothesisthat
P is a weak path.

Q.E.D.

It is not difficult to verify that connectivity implies weak path-connectivityin the von Neumann
topologyaswell as the  f! -topology. Also, every W 5 -path is a topologicalpathand,hence,a weakpath
in thesetopologies.However,aswe notedearlier,diagonallyadjacentpointsin the von NeumannspaceO 8 neednot be weakly path-connected.Hence W 8 -pathsin von Neumannspacesneednot be weakly
path-connected.On the otherhand, WX8 -pathsareweak pathsin the  �! -topology. This follows from the
fact that if % o�p 5e+_��#�% o ' , then ".#�% o�p 5�'9�n".#&% o '
�0 � for the basicneighborhoodsin the  �! -topology.
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In analogyto pathconnectivity,we alsohavethatweakpath-connectivityimpliesweakconnectivity
in digital spaces.For supposethat �3�s�9� is weakly path-connectedbut not weakly connected.Then
there exist open setsU and V such that �����}��� , �,�R����¡  �� �x��� , and �3��� ��  . Let¢�£ �_�-� , ¤ £ �_��� , andP a weak pathfrom p to q in S. Then ¥¦�u�§�¨� , ¥C���¦��z  �� ¥C��� ,
and �x�V� �3  . ThusP is not weakly connected,contraryto Theorem2.22.4. Thenext theoremshows
that the conversealso holds in the von Neumannas well as the ©�ª -topology.

2.22.5 Theorem. Let � ª be the digital spacewith either the von Neumannor the © ª -topology. If�?�z�9� , thenS is weaklyconnected«�¬ S is weaklypath-connected.

Proof: We alreadyknow that weak path-connectivityimplies weak connectivity in digital
spaces.To prove the converse,supposethat S is weakly connected.Let ¢z£ � and ­¯® =° ¤ £ ��±e²j³�´�µZ´^¶¸·º¹e»¼´	¹4½�¾�¹f²a³�¿\µ&ÀhÁ ¢ ²aÀÂ¤�¶�Ã��)Ä . If ­ ® � � , thenthereis nothingto prove.
So supposethat ­ ® �� � . Let Å ® � �ºÆ�­ ® ,

� � ÇÈÊÉ�Ë�Ì<Í.Î ¤6Ï�ÐÂ¹fÃ�ÑsÒÔÓ ÕÖh×hØ]Ù<Ú.Û�Ü6Ý�Þ
where Ú.Û�ß6Ý and Ú.Û\ÜºÝ denotebasicneighborhoods.

If Üxà-áãâ , then Ú.Û\Ü�Ý{ä_Ú.Û&ß{Ý Ó3å for every ßCàSæ>â . For if Ú.Û\ÜºÝºäçÚ.Ûjß6Ý
èÓ3å for some

ß,àéæ â , let P be a weakpathfrom p to q in S. Then êCëéì Üºí is a weakpathfrom p to x in
S and,therefore,Ü,à_æ â , contraryto the fact that æ â änî â Ó3å . It follows that ï ä ÒsÓ3å ,ï ä,ð Óñï ä-æ>â?èÓòå , Ò ä-ð ÓóÒ ä�îeâôèÓõå , and ð÷ö ï�ë�Ò . but this contradictsthe
hypothesisthat S is weakly connected.Therefore æ â Ó ð .

Q.E.D.

Although øhù -connectivityimpliesweakpath-connectivityand,hence,weakconnectivity,theconverse
doesnot hold in either the von Neumanntopologyor the ú�û -topology. For example,if Û&üZÞ\ý]Ý
à_þ ù with
i and j both even integers,then ê¡Ó�ì Û&üZÞ�ýXÝ7Þ�Û�ü�ÿ ú ÞkýXÝaí is weakly connectedand henceweakly path-
connectedbut not øXù -connectedin the úfû -topology. Note,however,that if we shift thesetoneunit in the
diagonaldirection, then the shifted set ì Û�ü<ÿ��hÞkýeÿ���Ý:Þ�Û�ü<ÿ � Þ�ý>ÿ��fÝaí is not weakly path-connectedor
weakly connected.This is dueto the fact that shifts arenot continuoustransformationsin this topology.
As we shallshow, ø ù -pathsaretheonly weakpathsthatareshift invariantweakpathsin the ú û -topology.

If ��Ó Û ��� Þ �	�
� Þ � û Ý and ß Ó Û ��� Þ �
�	� Þ � û Ý arepoints in þ û , and ðSö3þ û , thenwe define

� ÿRß Ó Û ��� ÿ ��� Þ �
�	� Þ � û ÿ � û Ý 
���� ð_ÿ �,Ó}ì�� ÿ�ß � ß-à-ð)í � (2.22.1)

A weak path ê�Ó�ì�� � Þ �
�	� Þ ��� í is a translation invariant or shift invariant weakpath if ê ÿ ��Óì ß � Þ �
�	� Þ:ß � í , where ß � Ó�� � ÿ � for �
�������

, is a weak path for every �! #"�$ .
2.22.6 Theorem. Let "�% be the digital spacewith the &�% -topologyand ')(*"+% . ThenS is ,.- -

connected/10 for eachpair of points �3254! 6' there existsa translationinvariant weakpath
P from p to q in S.

In particular, P is a ,.- -path /10 P is a translation invariant weakpath.
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Proof: SupposeS is 7.8 -connected.Let 93:5;!<!= , >@?BA	93CD:�E	E
EF:G9IHKJ a 7.8 -path from p to q
in S, and L6<#M+N . Since 9PORQ�SUT�L�<WVYXZ9�O\[]T^L_?`VYXZ9POZTaL][ , >bT_L is a 7 8 -path in =cT^L .
Since 7.8 -pathsare weak paths,P is a translationinvariant weak path.

To provethe converse,supposethat for eachpair 93:F;c<d= , thereexistsa translationinvariant
weak path from p to q in S. If S is not 7.8 -connected,then for somepair of points 93:F;!<!= ,
theredoesnot exista 7 8 -pathfrom p to q in S. Let >�?�A	9 S :	E	E
E�:F9]HKJ bea translationinvariant
weakpathfrom p to q in S. SinceP is not a 7e8 -path,we havethat for some fg9 ORQ�Sih<#VYX\9 O [ ,
where jik�f3kblim�j . Let 9 OnQ�S ?�Xno S :
E	E	Ep:Zo N [ anddefine L6?�Xrq S :
E	E	Ep:Fq N [s<6M N by

q.tu?
vxw_ynz o t y|{~}����j ynz o t y�{~���D��� :

where jckB�Wk)� . Then the coordinatesof the point 9 OnQ�S T�L are all odd and, therefore,� XZ9PORQ�S�T!L][�?�A�9PORQ�S3T�L~J . But then

� XZ9 OnQ�S TaL][+� � Xr9 O TaL][3� � Xr9 OnQ�S TuL�[+��VYXZ9 O TuL�[~?�A�9 OnQ�S TaL~JU� � X\9 O TaL][�?��
since 9 OnQ�S TaL h<cVYXZ9 O [�T�Lc?�V�Xr9 O TaL][ . This contradictsthehypothesisthatP is a translation
invariant weak path.

Q.E.D.

A shift by a vector L6<gM�� is a function �
���#M Nb� M N defined by �
��Xr9�[�?�9�T�L¡ �9!<#MP� .
The fundamentalproblem with both the von Neumannand the ¢ N -topology is that they are not shift
invariant; a shift � � is not necessarilycontinuous.Shifts are importantoperationsin imageprocessing,
while continuousfunctionspreservesuch important featuresas connectedness.Thereforeit would be
desirableto haveshifts representedas continuousfunctions. There are topologieson M+N that provide
for continuity of shifts. The discreteand indiscretetopologiesare two suchexamples.However,these
topologiesdo not provide the useful propertieswe associatewith £ N suchas the classificationof arcs,
the JordanCurveTheorem,and the variouspropertiesof surfacesembeddedin £ N . Digital imagesare
usuallyviewedasdiscreterepresentationsof regionsin £ N . Thuswe would like propertiesof £ N to carry
over into the discretedomain. As we haveseen,the von Neumannand ¢ N -topologiespreservemanyof
theseusefulproperties.In addition,eventhoughshifts arenot continuousfunctionsin thesetopologies,
shifts do preserveconnectivity in the von Neumanntopology and weak connectivity of 7.8 -connected
sets in the ¢KN -topology.

Thereare many other topics in digital topology that provide for a theoreticalfoundationof many
important imageprocessingoperations.We refer the readerinterestedin this subjectto [29] and [44]
for further references.
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CHAPTER 3
ELEMENTS OF ABSTRACT ALGEBRA

If onesurveysthe subjectsof arithmetic,elementaryalgebra,or matrix theory,certainfeaturesstand
out. One notesthat thesesubjectsdeal with somegiven or derivedset of objects,usually numbersor
symbolicexpressions,andwith rules for combiningtheseobjects.Examplesof theseare the setof real
numbers,thesetof realvaluedfunctionson a set ¤ , andthesetof complexvalued ¥i¦i¥ squarematrices
with the usualrulesof addition,subtraction,andmultiplication. Moreover,onefinds that therearesome
propertieswhich thesecombining operationshave in common: e.g. addingzero to any real number,
addingthe zerofunction to a function, or addingthe zeromatrix to a matrix doesnot changethe value
of the realnumber,the function,or the matrix, respectively.Otherproperties,suchascommutativity,do
not alwayshold. Multiplication of squarematricesis, in general,not a commutativeoperation.

Abstractalgebraaimsat providinga fuller understandingof thesesubjectsthrougha systematicstudy
of typical mathematicalstructures.Sucha studyhastheadvantageof economyin thatmanysuperficially
distinct structuresare found to be basicallythe same,andhenceopento a unified treatment.

Imagealgebrahasan analogousgoal in that it aims at providing a deeperunderstandingof image
processingthrougha systematicstudy of imageprocessingoperations.Variousstructuresin the image
algebraareequivalentto thosestudiedin abstractalgebra.Familiarity with someof thesestructuresis,
therefore,essentialto the understandingof imagealgebra.

3.1 Relations and Operations on Sets

A binary relation § on a set ¤ is, intuitively, a propositionsuchthat for eachorderedpair ¨r©�ª5«­¬ of
elementsof ¤ , onecan determinewhether ©­§�« is or is not true. Here, ©­§�« meansthat “ © is related
(by the relation § ) to « .” For example,if ® is the setof all lines in a plane,then“is parallel to” or “is
perpendicularto” are binary relationson ® .

The notion of a binary relation on a set can be rigorously defined by stating it formally in terms
of the set concept.

3.1.1 Definition: A binary relation § on a set ¤ is a subset§*¯�°±¦#° .

Thus,any subset§ of ¤�¦²¤ is a binary relationon ¤ andif sucha subsetis beingusedto define
a relation on ¤ , then it is customaryto write ©­§�« for ¨Z©�ªF«­¬x³!§ .

3.1.2 Examples:

(i) Set inclusion is a relationon any powerset. In particular,let ¤ be any setand

§)´¡µD¨r¶·ªF¸¹¬sº�¶�¯�¸²ª�¶·ªF¸@³#»�¼Y½¿¾
Then § is a binary relation on » ¼ .

(ii) The relationof lessor equal, À , betweenreal numbersis the set ÁD¨Z©Pªp«­¬�º�©gÀ�«­Â�¯uÃ!¦cÃ .

(iii) For any set ¤ , the diagonal ÄÅ´BÁD¨Z©PªF©�¬�º�©g³�¤!Â is the relationof equality.
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(iv) The inverserelation of Æ , denotedby ÆgÇ�È , is the relation ÆgÇ�ÈcÉËÊ�ÌÎÍ�ÏFÐ+Ñ�ÒiÌrÐPÏFÍ.Ñ�Ó�Æ#Ô .
Thus, the inverserelationof Õ in (ii) aboveis the relationof greateror equal Ö .

Note that in binary relations,eachpair of elementsneednot be related.For instance,in (iii) above,
if ÐPÏFÍ×ÓWØ and Ð�ÙÉÚÍ , then neither ÌrÐPÏFÍ­Ñ nor ÌrÍ�ÏFÐ�Ñ are in Û .

An obviousgeneralizationof Definition 3.1.1is to defineanysubsetof Ø¡Ü·Ý to bea binary relation
betweenthe elementsof Ø and thoseof Ý ; thus,a function Þ!Ò�ØàßáÝ is a specialtype of a binary
relationbetweenØ and Ý . Operationsbetweenimagesand templatesas definedin Chapter4 provide
examplesof binary relationsbetweenelementsof differentsetsthat arepertinentto imageprocessing.

Certain relationson a set allow elementsof that set to be arrangedin someorder. For example,
whena child arrangesa setof sticks in order, from longestto shortest,he hasan intuitive graspof the
relation “is longer than.” From this examplewe can seethat thereare at leasttwo propertieswhich a
relation Æ must haveif it is to order a set. Specifically:

Æ must be antisymmetric. That is, given two sticks, one of them must be longer than the other.
Otherwise,they could not be given relative positionsin the order.

Æ mustbe transitive. That is, given threesticks Ð , Í , and â , with Ð longer than Í and Í longer thanâ , then Ð must be longer than â .
We collect theseideasin a definition.

3.1.3 Definition. A relation ã on a set Ø is calleda partial order on Ø if andonly if for everyÐPÏFÍ�ÏFâ#ÓäØ the following threeconditionsare satisfied:

(i) Ð�ã*Ð ÌZå\æ�ç�æGè.é|êDæKÑ
(ii) Ðäã`Í#ë�ì�í×Í6ã`ÐïîðÐ^ÉÚÍàÌrëKìeñ\é�ò�óõôeöYö1æ÷ñ5å\éùø
Ñ
(iii) Ð�ã¡Ícë�ì�ídÍ!ã¡âúî Ð_ã`âïÌ�ñ5åGë�ì�óré|ñ\éùêDæ
Ñ

The relationsdefinedin Example3.1.2 are all partial order relations. The relationof lessor equal
given in Example3.1.2 (ii) is also called the natural order on û .

A set Ø togetherwith the partial order ã , i.e. the pair ÌZØcÏ	ãüÑ , is calleda partially ordered set. IfÐWãBÍ in a partially orderedset, then we say that Ð precedesÍ or that Ð is smaller than Í and that Í
follows or is larger than Ð .

If Æ = ã is a partial order on Ø , then it is easyto seethat the inverserelation Æ Ç�È , denotedbyý
, is also a partial order on Ø . The inversepartial order relation

ý
is also called the dual of ã and

gives rise to the following definition:

3.1.4 Definition. Thedual of a partially orderedset Ø is that partially orderedset Ø6þ definedby the
inversepartial order relation on the sameelements.

Since ÌÿØ þ Ñ þ É¡Ø , this terminology is legitimate.

Note that Definition 3.1.3 doesnot imply that given ÐPÏFÍ�ÓcØ , theneither ÐcãbÍ or Í�ãbÐ ; that is,
in a partially orderedsetnot everypair of elementsneedto be related.A partially orderedset in which
everypair of elementsis relatedunderthe orderrelation is calleda totally (or linearly) orderedset. The
set û togetherwith the naturalorderof Õ is an exampleof a totally orderedset. On the otherhand,the

70



relation of set inclusion (Example3.1.2(i)) is a partial order which is not a total order. An extremely
useful specialcaseof a linear order is providedby the next example.

3.1.5 Example: Let � and � be totally ordered. Then the product set ����� can be totally
orderedas follows:

���	��

������������
����������������! #"$�%���'&(�
�
)+*-,.
'��
��0/
This order is called the lexicographicalorder on �1�2� as it is similar to the way words
are arrangedin a dictionary. For example,supposethat 3 & �4�5� , where � &7698��;:
��<!=
and � &>6#8���:���<
��?�=

(seealso Example2.3.1). If the integersin � and � are considered
orderedby the naturalorder of lessor equal,then 3 is totally orderedby the order relation��@A�CB��ED7�F@ � ��B � �

definedabove. Thus, if we renamethe elementsof 3 by GIH &J�F@���BK�ML 3 ,
where N &O?���@QP�8+�	RSB , then 3 &T6 G	U � GWV �	XYXZXQ� GWU�V = and G H D G$[ if andonly if N D�\ .

If we view the elements
��@���B
�

of 3 as the usual
@
th row and

B
th columnlocationof a matrix

array,thenthis orderis alsoknownasthecommonscanningorder of thematrix array 3 . This
correspondsto the usualway a computerreads(scans)the entriesof a matrix; namely,row
by row from left to right, startingwith the top first row thenthe second,andso on, until the
last or bottom row is read.

If �1]T� , then �^�S�_]`�J�a� . Thus, if b is a binary relation on � , then bdc �Fe � ef� is a
binary relationon � . We call the relation bdc �Fe � ef� the relation inducedby b on � . In particular,
a binary relationon � inducesa definitebinary relationon everysubsetof � . For example,the natural
order relation b &hg

on � &ji
inducesthe naturalorder

g
on the setof integers� &`k

.

Oneof themostfundamentalrelationsbetweenelementsof a setis thatof equivalence.Equivalence
relationsareusedin practicallyall fields of mathematics;they arisewheneverone desiresto regardall
thosemembersof set that havesomepreassignedcharacteristicas a single entity.

3.1.6 Definition. A relation b ona set � is calledanequivalencerelation if it satisfiesthefollowing
three conditions:

(1)
�lL � m � b�n �C"�oqp-osr!�ut#ov�

(2)
� bxwym 
 b�n ��zF{!|.|}o�~A"F���Z�

(3)
� b�w )v*�,�
 b`�dm � b�� �C~�"s)v*-z��u~;�ut#oZ�

If b an equivalencerelation and
� b�w , thenwe say that

�
and



areequivalent.

3.1.7 Examples:

(i) Considerthe relation b of set inclusion(Example3.1.2(i)). For each �x] :v� , ��](� andif�T]�� and ��]�� , then �T]�� . Hence,the relation b & ] is both reflexiveandtransitive.
On the other hand, �J]d� and ���& � m �^�]�� . Accordingly, ] is not symmetricand
hencenot an equivalencerelation.

(ii) The diagonalrelation � of Example3.1.2(iii) is an equivalencerelation.
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(iii) Let �����4��� be a function and �y�`�#���	�q�!�����Q�	�������2�����9����� . Then � is an equivalence
relation on � .

If � is an equivalencerelation on � , then the equivalenceclassof any element  �¡¢� , denoted
by £¤ �¥ , is the set

£¦ 
¥	�`�¨§'��§����0�ª©'¡¬«a�®­
The collection of equivalenceclassesof � , denotedby � / � , is called the quotientset of � by� . Thus,

�°¯Y�J�`�!£±�9¥����²¡a«a�
The quotientset � / � possessesthe following properties:

3.1.8 Theorem. Let � be an equivalencerelation on � . Then

(1) For every  l¡O�a�³ `¡d£¦ 
¥
(2) £¦ �¥E�4£´§#¥Sµ  
�a©
(3) £´ �¥®¶�·£¦§�¥(µ £´ �¥	¸¹£¤§�¥º�¼»
Proof: (1) Since � is reflexive,we have  ���� and,hence, ¹¡�£¦ 
¥ .
(2) Suppose£¤ 
¥��½£´§�¥ . By part (1),  �¡`£´ �¥��½£´§#¥ . Thus,  ��a© . To prove the converse,let¾ ¡5£¤§�¥ . Then ¾ �a© . By symmetry,§��¬¿ . We now have §���¿ and,by hypothesis, 
�a© . Hence,
by transitivity,  ���¿ . Again, by symmetry, ¾ ��� and, therefore, ¾ ¡T£¤ 
¥ , which showsthat£¤ 
¥WÀ`£´§#¥ . Arguing in a similar fashion,we canshowthat £¦§�¥WÀx£´ �¥ and,hence,£´ �¥	��£¦§�¥ .
(3) Supposethe conclusionis false, i.e. £´ �¥Q¸�£¤§�¥®¶�½» . Then Á ¾ ¡Â� with ¾ ¡�£¤ 
¥0¸¹£¤§�¥ .
Hence, ¾ ��� and ¾ �a© . By symmetry,  ���¿ . Since  
��¿ and ¾ �a© , we haveby transitivity
that ¾ �a© . It now follows from part (2) that £´ �¥$�7£¦§#¥ which contradictsthe hypothesis.The
converseargumentis just as easy.

Q.E.D.

A collection �¨ÃºÄK� ÄZÅ¨Æ of subsetsof � is called a partition of � if the following conditionsare
satisfied: �sÇv��ÈÄ+Å¨Æ Ã Ä �O�hÉ+Ê-Ë

�FÌ!�WÃ Ä ¸³Ã�Í.�`»`ÎªÏ-ÐÑÊ�ÐYÒ#ÐqÓ�Ô2¶��Õy��Ô	��Õ¬¡×ÖØ�
­
The following fundamentaltheoremof equivalencerelationsis a consequenceof Theorem3.1.8:

3.1.9 Theorem: If � is an equivalencerelation on � , then �°¯ÑÙ is a partition of � .

Proof: Obviously, ÚÛ ÅvÜ £¤ 
¥�À�� . If §2¡Â� , then by Theorem3.1.8(1) §2¡l£¤§�¥�À ÚÛ ÅvÜ £¤ 
¥ .
Hence,�·À ÚÛ Å¨Ü £¦ �¥ . The remainderof the proof follows immediatelyfrom Theorem3.1.8(3).

Q.E.D.

Eachelement§ of anequivalenceclass £¤ 
¥ (i.e., each §'¡2£¦ 
¥ ) is calleda representativeof £´ �¥ . Note
that if § is a representativeof £¦ �¥ , then £¤§�¥º��£¤ 
¥ .
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3.1.10 Examples:

(i) Two integersaresaid to havethe sameparity if eitherboth areevenor both areodd. The
relation “has the sameparity as” on Ý is an equivalencerelation and partitions Ý into two
equivalenceclasses.In particular, if ÞOßOÝ , thenà¤á Þ-âäã`å¨æ×ß¬Ýaç�èEé�ê�ëZì#ëqíQî(ï+í0ð à¤á Þ.ñ(òÑâQã`å¨æ×ß¬Ý5ç�èóéCê$ô�ð�ðõî
Clearly,

à¤á Þ�âQö à¤á Þ}ñ(òÑâ�ã7Ý�ïví-ð à¤á Þ�âQ÷ à¤á�ø ñ(òqâ�ã7ù .

(ii) Eachequivalenceclassresultingfrom therelation ú of Example3.1.2(iii) containsexactly
one element.

(iii) In Example3.1.7(iii), the equivalenceclassesare the sets û+üäý-þZÿ�����ç��'ß¬üäÿ����	� .
3.1.11 Definition. For arbitrary integers
��sÞ and 
 , we saythat 
 is congruentto 
 modulo Þ (or
 is congruentto 
�
����EÞ ), andwrite 
���
 ÿ�
���� Þ�� , if the difference
���
 is an integral

multiple of Þ ; that is, if 
^ã ÞQæ.ñ�
 for someinteger æ .
It is easily verified that congruencemodulo Þ , i.e. the set ÿ�Þ��ªãTå#ÿ�
���
���ç�
�� 
ªÿ!
����ºÞ���î , is an

equivalencerelationon Ý . For therelationof congruencemodulo Þ is obviouslyreflexiveandsymmetric.
The transitivity also follows easily: If 
 ã ÞQæ'ñ�
 and 
�ãJÞ#".ñ�$ for someintegers æ and " , then
_ã½Þäÿ�æ®ñ%"&� ñ�$ , so that 
'�($�ÿ�
����ºÞ)� .

If * ã`ÿ ø � denotesthe relation on Ý definedby “ 
 is congruentto 
�
����¬Þ ”, then the quotientÝ)+�ÿ�Þ�� is called the set of integersmod n.

3.1.12 Example: Let * ã`ÿ�,#� be the relation on Ý definedby 
-�(
�ÿ�
����.,/� . Then there are
exactly five distinct equivalenceclassesin Ý)+�ÿ�,/� :0.1 ã`å3242526�4�Eò879�5�:,���7���,9�Yò479�526242´îEã<;4;5;�ã à �Iò57Zâ0ã à �:,vâ0ã à 7vâQã à ,vâQã à ò47vâ0ã=;5;5;0 þ ã`å3242526�4�?>9�5�A@&�Yò��!B9�Yò�ò��526242´îEã<;5;4;#ã à �:>Zâõã à �.@vâ0ã à òqâQã à B+â0ã à ò#òÑâ0ãC;5;5;0:D ã`å3242526�4�?E9�5�?F�� á ��G3�Yò á �526242´îEã<;5;4;#ã à �:EZâõã à �:FZâ0ã à¦á âQã à GZâ0ã à ò á â0ãC;5;5;0.H ã`å3242526�4��G#�5� á �IF��JE9�Zò5F9�624252 îEã<;5;4;#ã à �KGqâõã à � á â0ã à FvâQã à E+â0ã à ò5F+â0ãC;5;5;0.L ã`å3242526�4�MB��5�EòN�O@&�J>9�Zò8@P�624252 îEã<;5;4;#ã à �:BZâõã à �Iòsâ0ã à @#âQã à >+â0ã à ò8@�â0ãC;5;5;
Observethateachinteger 
 is uniquelyexpressiblein the form 
 ã�,#Þ ñ%
 , where 7RQS
RT�,
and 
®ß 0:U is the remainder.Clearly, Ýaã

LVWYX 1[Z�\ and
0 W ÷ 0A] ãTù whenever̂:_ã`" .

In Example3.1.10(i), thereareexactlytwo equivalentclasses,the setof evenintegersandthesetof
odd integers,and 7 and ò arerepresentativesof theseclasses.Although

á
and F arealsorepresentatives

of theseclasses,it is customaryto let 7 and ò representtheseclasses;i.e., to identify the set Ý D ã`å�79�YòZî
with the set Ý)+�ÿ á � ã¼å à¦á ÞQâa� à¦á Þ���òqâCî by identifying 7 with

à´á Þ�â and ò with
à¦á Þ'ñ�òqâ . In general,it

is customaryto let Ý[baã7å�79�Yò�� á �625242J�sÞc��òvî denotethe set Ý)+�ÿ�Þ�� as thesetwo setsare in one-to-one
correspondenceunder the function ^ed à ^CâºßOÝ)+�ÿ�Þ�� .

It is easyto showthat for any given æ°ß¬Ýgf , the set Ý)+ih á�j5kKl Ý D!m is in one-to-onecorrespondence

with theset
jnoqpgr9sgt.uwv!sgt4xIy (we leaveit to thereaderto convincehimselfof this fact). Thus,theelements
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of z�{}| canbeuniquelyidentifiedwith theelementsof ~��q�g�&���9�8��� ; i.e. with binarynumbersof fixed length�
. This correspondsto the usualrepresentationof digital imagevaluesin digital imageprocessingby

computers(Section2.18).

3.1.13 Example: The set of integersmod 8 consistsof eight equivalenceclasses;namely z {����
�3���5���5���8����� �����5� �����5� �����5�����a�5� �����5���5��� . Identifying [0] with (0,0,0), [1] with (0,0,1), [2] with (0,1,0),
[3] with (0,1,1),[4] with (1,0,0),[5] with (1,0,1),[6] with (1,1,0),[7] with (1,1,1)providesfor
a uniqueone-to-onecorrespondencebetweenz { � and �����5�4�������9�5�4�������9�5�4� �=� z {5�a� .

A binary operationis a relation betweensetswhich providesa rule for combining two arbitrary
elementsof one or two sets. The precisedefinition is as follows:

3.1.14 Definition. Let   , ¡ , and ¢ be three(not necessarilydistinct) sets.A binary operation £
betweenX and ¡ with resultantin ¢ is a function £ ¤?  � ¡¦¥§¢ . If   � ¡ � ¢ , then£ is simply called a binary operationon   .

The evaluation£ ��¨ �	© � is commonlydenotedby ¨ £ © andis calledthe resultantof the operation.
Thus,if ��¨ �J© �Aª   � ¡ , then ¨ £ © ��« ª ¢ . Binary operationsbetweensetsplay an importantrole in
imageprocessing.In this chapter,however,we will dealmostly with binary operationson a set.

Addition, multiplication, and division are examplesof binary operationson ¬®­ . Addition and
multiplication are also binary operationson ¬ . Due to the fact that for any pair of numbersof form��¯ �	� � , ¯�° � is undefined,division is not a binary operationon ¬ . However, it is a binary operationon¬²± ���#� .

Somebinaryoperationsmaysatisfyspecialproperties.Commutativityandassociativityarethemost
importantof thesespecialproperties.A binary operation £ on a set   is calledcommutativewhenever¨ £ © � © £ ¨C³�¨ �J© ª   , andassociativewhenever�!¨ £ © � £ «´��¨ £ � © £ « � ³µ¨ �	©P� « ª   .

3.1.15 Example: Addition andmultiplicationarecommutativeandassociativebinary operationson¬ . Division is not commutativeon ¬¶­ . Defining £ on ¬ by

· £(¸ � ·º¹ � ¸ ³ · � ¸ ª ¬
then � · £(¸ � £ � �w� ·»¹ � ¸ � £ � �w� ·º¹ � ¸ � ¹ � �
and · £ � ¸c£ � � � · £ � ¸ ¹ � � � � ·�¹ � � ¸ ¹ � � � � ·º¹ � ¸ ¹ � �[¼
Thus,the operation£ is not associative.Furthermore,£ is not commutativesince · £½¸ �·�¹ � ¸º¾� ¸ ¹ � · � ¸¿£ · .

A set   is said to havean identity elementwith respectto a binary operation £ on   if there
exists an element À ª   with the property

¨ £(À � ÀA£ ¨��Á¨§³µ¨ ª   ¼
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Theidentity elementof Â with respectto additionis 0 since Ã¶ÄÆÅ�Ç�Å.Ä�ÃKÇ�ÅÉÈµÅ¿Ê%Â ; theidentity
elementof Â®Ë with respectto multiplication is 1 since Å�Ì4Í:ÇÎÍ®Ì	Å�ÇÁÅ=ÈµÅ¿Ê%Â®Ë . Observethat Â®Ë has
no identity elementwith respectto addition. The next theoremshowsthat identity elementsareunique.

3.1.16 Theorem. An identity element,if oneexists,of a set Ï with respectto a binary operationÐ
on Ï is unique.

Proof: Assumethe contrary;that is, assumeÑ5Ò and Ñ4Ó are two distinct identity elementsofÏ . Then Ñ Ò Ð Ñ Ó Ç<Ñ Ó since Ñ Ò is an identity element.Similarly, Ñ Ó Ð Ñ Ò ÇCÑ Ò . Therefore,Ñ Ò ÇCÑ Ò Ð Ñ Ó ÇCÑ Ó , which contradictsthe fact that Ñ Ò and Ñ Ó aredistinct.

Q.E.D.

If a set Ï hasan identity elemente with respectto a binary operation
Ð

, thenanelementÔÕÊ�Ï is
calledan inverseof Å�Ê�Ï providedthat Å Ð Ô´Ç�Ô Ð Å�ÇÁÑ . The inversewith respectto addition(also
calledadditiveinverse) of Å�Ê�Â is ÖMÅ since Å´ÄS×JÖ:Å[Ø�ÇwÃ . The inversewith respectto multiplication
(also called multiplicative inverse) of ÅwÊwÂÚÙ�Û�Ã#Ü is Å�Ý Ò since Å%Ì#Å[Ý Ò ÇÞÍ . Note that the set of allß´à�ß squarematricesundermatrix multiplicationhasa multiplicative identity, namelythe ßRàáß identity
matrix. However,not every ßâà�ß matrix hasa multiplicative inverse.

The proof of the next theoremis similar to the proof of Theorem3.1.16and is left as an exercise
for the reader.

3.1.17 Theorem. Let
Ð

bea binary operationon set Ï . Theinversewith respectto
Ð

of Å�Ê¿Ï ,
if it exists,is unique.

Although not every binary operationon a set Ï providesfor inverseelements,many operations
provide for elementsthat behavealmost like inverses. Obviously, if Ô is the inverseof ÅÁÊ�Ï with
respectto the operation

Ð
, then Å Ð Ô Ð Å�ÇwÑ Ð Å¿Ç<Å and Ô Ð Å Ð ÔcÇ<Ñ Ð ÔcÇ<Ô . Any elementÔ satisfying the two conditions

Å Ð Ô Ð ÅcÇwÅáã�äPåcÔ Ð Å Ð ÔRÇ�Ô (3.1.0)

is calleda pseudoinverseof Å�Ê�Ï . Thus,every inverseis a pseudoinverse.However,in Section4.4
we shall seethat the conversedoesnot necessarilyhold.

SupposeÏ is a set with two binary operations
Ð

and
Ð�æ

. The operation
Ð

is said to be left
distributive with respectto

Ð æ
if

Å Ðèç Ô Ð æ�é�ê Çw×�Å Ð Ô�Ø Ð æ ×�Å Ð é Ø�ÈµÅ�ëJÔ&ë é Ê�Ï�ì (3.1.1)

and right distributive if ç Ô Ð æ é ê Ð Å�Çw×�Ô Ð ÅíØ Ð æ × é Ð ÅíØ�ÈµÅ�ëJÔ&ë é Ê�Ï�ì (3.1.2)

When both 3.1.1 and 3.1.2 hold, we simply say that
Ð

is distributive with respectto
Ð æ

. Note
that the right membersof 3.1.1 and 3.1.2 are equal whenever

Ð
is commutative. Obviously, on Â ,

multiplication is distributive with respectto addition. However,division on Â¶Ë is not left distributive
over addition. That is, ×�ÔKÄ é Ø6î�Å�ÇC×�Ô�î�Å[ØïÄ�× é î�Å[Ø but ÅíîN×�ÔµÄ é Ø�ðÇº×�Å[î�Ô�Ø�ÄÁ×�Åíî é Ø .
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3.2 Groups and Semigroups

We beginour shortsurveyof algebraicstructuresby listing characteristicfeaturesof specialabstract
algebraicsystemsthat are important in the study of imagealgebra.

3.2.1 Definition. A groupoid is any set ñ togetherwith a binary operationon ñ . A groupoid
whosebinary operationis associativeis called a semigroup.

To becompletelyprecisein denotingasemigroup,weshouldusesomesymbolismsuchas ò�ñ�ó	ô�ó	õ�ö ,
whichspecifiesthesetof elements,thebinaryrelation,andtheequalityrelationusedto specifytheequality
of elements,e.g., ÷Rôøò�ù�ôûú#öAõ<ò!÷Rô(ù�ögôûú . However,it is customaryto useeither the pair òañ�ó8ô`ö
or simply the letterdesignationof the setof elements,in this caseñ , asa designationof thegroupoidor
semigroup,providedthereis no dangerof confusionasto thenotationbeingusedfor binarycomposition.
Also, algebraistsasa rule do not usea specialsymbol “ ô ” to denotea binary operationdifferent from
theusualadditionandmultiplication. Theystick with theconventionaladditiveor multiplicativenotation
andevencall theseoperationsadditionor multiplication, dependingon thesymbolused.Thesymbolfor
additionis of course“+”, andfor multiplication “ ü ”. Thus,in placeof the notation“ ÷�ô¦ù ”, we shall be
usingeither“ ÷�ýþù ” or “ ÷�ü6ù ”. Thereis alsoa sort of gentlemen’sagreementthat the symbol“0” is used
to denotean additive identity and the symbol “1” to denotea multiplicative identity, eventhoughthey
may not be actuallydenotingthe integers0 and1. Of course,if a personis alsotalking aboutnumbers
at the sametime, othersymbolsareusedto denotetheseidentitiesin order to avoid confusion.

To the uninitiated,semigroupsmay seemtoo poor in propertiesto be of much interest. However,
the set of all ÿ���ÿ squarematricesundermatrix multiplication forms a semigroup.Anyone who has
hadexperiencewith matrix theory is well awarethat this system,far from being too poor in properties
to be of interest,is, indeed,extremelyrich in properties.Researchinto the fascinatingramificationsof
matrix theory hasprovidedthe stimulus to a greatdeal of mathematicaldevelopmentand is an active
and growing branchof mathematics.

The setof ÿ���ÿ squarematricesundermatrix multiplication hasthe additionalpropertyof having
a multiplicative identity. This leadsus to the next definition:

3.2.2 Definition. A monoid is a semigroupwith identity.

3.2.3 Examples:

(i) Let
�

be a set and ñ õ�� � . Then ñ togetherwith the operationof union is a monoid. By
the laws of setoperations(2.2.1), union is an associativeoperationwith identity � .

(ii) The set of positive integers �
	 togetherwith the operation+ is not a monoid. There is no
identity for + in � 	 . However, ò�� 	 ó8ýeö is a semigroup.

(iii) The system ò�� 	 ó5ü�ö is a monoid with identity the integer1.

Of the variouspossiblealgebraicsystemshavinga singleassociativeoperation,the type known asa
group hasbeenby far the mostextensivelystudied.Also, the theoryof groupsis oneof the oldestparts
of abstractalgebra,as well as one particularly rich in applications.
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3.2.4 Definition. A group is a monoidwith the propertythat eachelementhasan inverse.

It is customaryto denotethe inverseof an element 
 in a group � by “ 
���� ” if multiplicative
notation is used,and by “ ��
 ” if additive notation is used.

Recallingthe definition of a monoid,we may definea groupalternativelyasa set � togetherwith
a binary operation,say �����
��� , such that :

����� �! #"%$'&("*),+.-�/0$'12�3/546+74�48$:9;/5+<-�/�='"7�>/�?@"'?A�CBD
C�,E(�8FHGI�J�6
K����EL�*F:�6MN�O
P�*EQ�R�.F%?
�OST� �! #"U)�"V/W4X+<1Y/5ZT"[1T-8/\-�]Y"_^\"[`K"U1a-b�LGc�d4�e(9� P-� f+<->BD
gGI�J�6
K�'��Mh�%�*
cMi
L?
�OjT� BD
IGI�J�!kl+<1Y/\1T='"[)_4�"m"_^0"[`H"[1T-3
 �f� GI�n4�ef9; o-; f+�-6
K�*
 �f� Mi
 �f� �.
PMp�3?

If in addition to thesethree propertiesthe operationis commutative,then the group � is called
an abelian group.

3.2.5 Examples:

(i) The set q with the operation+ is not a group. Thereis an identity element0, but no inverses
for integersgreaterthan 0.

(ii) The set of integers r with the operation+ is a group. This group is abelian.

(iii) On rXs we definea binary operation(which we shall againwrite as+, althoughit is certainly
not ordinaryaddition)by t uTvTwxtzyTv�M{t uLw|yQv . Here u and y areany elementsof the respective
sets t uTv and t}yTv of r~s , andthesum u%w�y is theordinarysumof u and y . In orderto showthat
we actuallyhavedefinedanoperation,i.e., that the function(operation)�_t uTvW�Ut@y:vW�6��t uTv[w|t@y:v is
well-defined, we mustshowthat the imageelementof the pair �_t uTvO�*t y:vW� is uniquelydetermined
by t uTv and tzy:v alone,and doesnot dependin any way upon the representativeelementsu of
t uTv and y of tzy:v which we happento choose. So, supposethat � and h � are also arbitrary
elementsof the sets t uTv and t}yTv , respectively.We then havethat

�~M�u�w��a��+<1fZ2�cMiy�w��[�
for someintegers � and � . But then

�Rw|�IMN�0uLw|�T�X�Rw��OyYw|�[�C�6MN�0u�w�y��
wx����w|�.���
by virtue of the associativityandcommutativityof addition,andthe distributivity of multipli-
cationoveradditionfor theintegers.Thus,we havethat t}��w|�(v�M�t u�w|yTv , andour operationis
well-defined,independentof thechoiceof representativesof therespectiveequivalenceclasses.
That this operationof additionmodulo � is associativefollows from the associativityof ordi-
nary integeraddition. The identity elementis [0] andthe inverseof tzy:v is tA��y7v (we leavethe
verificationof thesetwo factsto the reader).Thus, rXs with this operationof additionforms a
group. It also follows from the commutativityof additionof ordinary integersthat the group
r~s is abelian. This group is known as the group of integersmodulo � .

An important property inherent to all groups is the cancellationlaw provided by the following
theorem:
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3.2.6 Theorem. If � is a group with binary operation � , then the left and right cancellationlaw
holdsin � , that is, �H�*�H�i�K�*� implies �H�i� , and ���*�P�N���*� implies �K��� , �D�
�_�f�_�Y�I�

Proof: Suppose�K�*�����P�*� . Then,multiplying by �R�f� , the inverseof � , we obtain

� �f� �<�O�o�*�Q���i� �f� �.���K�*�:���
By the associativelaw,

  � �Q� �*�(¡%�*�H�   � �f� �[�(¡b�[�%�
By definition of an inverse, � �f� �����£¢ and, hence,

¢%�.�Y��¢%�.�#�V¤.¥�¦Y§a¨K¦Q©_ªf¥#«A¬�«\­7¥K­�®�«5¦T©U¥a¬8«\¬�¨��¯�Y�N�%�
Similarly, from �H�'���2�K��� one can deducethat �J�°� .

Q.E.D.

Note that we had to usethe definition of a group in order to prove this theorem.

A commonactivity amongscientistsandengineersis to solveproblems.Often theseproblemslead
to equationsinvolving someunknownnumberor quantity � which is to be determined.The simplest
equationsare the linear onesof the forms ±Y²i�³��´ for the operationof addition, and ±K�'�³��´ for
multiplication. Equationsof form ±��W�P�i´ arein generalnot solvablein themonoid ��µ
¶3�*�}� . For instance,· �����2¸ hasa solution ���¹¸:º · , which is not an integer. However,equationsof form ±H�'���2´ are
alwayssolvablein the structure �O» ¶ �*�}� . The reasonfor this is that the structure �O» ¶ �*�}� is a group. As
the next theoremshows,the propertiesnecessaryto solve linear equationswithin a systemareprecisely
the propertiesof a group.

3.2.7 Theorem. If � is a groupwith binary operation � , andif ± and ´ are elementsof � , thenthe
linear equations±Y�¼�½�{´ and �Y��±g�p´ haveuniquesolutionsin � .

Proof: Note that

±��   ± �Q� �*´[¡��   ±Y�*± �f� ¡%�*´�����¤'¾�¾�­#¿;«5¤<¬�«�À'©!ÁW¤[Â��
�Ã¢%�*´��   ¦T©_ªf¥:«\¬�«0­'¥Y­<®V± �f� ¡
�n´�� �WÄfÅ;­'Ä(©[Å�¬�¨l­�®b¢<�,�

Thus, ���¹± �f� �'´ is a solution of ±Y�'���2´ . In a similar fashion, �J�2´%�'± �f� is a solution
of �I�#±��Æ´ .

To show that � is unique,supposethat �Y��±c��´ and � � �.±I�{´ . Then �K�*±c�p� � �.± , andby
Theorem3.2.6, �g�2� � . The uniquenessof � follows similarly.

Q.E.D.

It is importantto notethat �c�i± �f� ��´ and �Ç��´~��± �f� neednot be the sameunless� is commutative.
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Following commonmathematicalconvention,to indicatethe compositeof an elementÈ of a group
with itself É times,where É is a positiveinteger,we shallwrite ÈQÊPËiÈ6Ì0È3Ì�Í.Í*ÍWÌ0È (n factorsof È ) whenever
we usemultiplicativenotation,or, whenusingadditivenotation, É�ÈgËiÈ3ÎoÈ3ÎÏÍ*Í.ÍWÎoÈ (n summandsof È ).

Similarly, if É is any positive integer, È�Ð Ê Ë£Ñ�ÈRÐ(Ò[Ó Ê and ÔbÉ�ÈgËpÉCÕ,Ô�È(Ö , where Ô�È is, of course,
the inverseof È in theadditivenotation.Still following customarynotation, È#×�Ë�Ø and Ù!Ì�ÈcËiÙ , where
1 and0 representthe identity elementin the multiplicative andadditivenotations,respectively.

The usual rules of power follow at once:

È Ê Ì*È#ÚÛËiÈ Ê¼Ü ÚlÝ
Õ�È Ê Ö Ú ËNÈ Ê ÚLÝ

É�ÈKÎ�ÞIÈPË�ÕOÉPÎ�ÞgÖOÈLÝ
ÉCÕ�ÞIÈRÖXË�ÕOÉ�Þ�Ö�ÈDß

In particular, it follows that ÑOÈ ÐfÒ Ó ÐfÒ Ë£È .

3.2.8 Definition. A group ÕWàJÝ*Ì}Ö is called cyclic if for some á�â½à , every È�â½à is of the form
È½ËNá Ê , where É�â�ã . The elementá is called a generatorof à .

Clearly, every cyclic group is abelian.

3.2.9 Examples:

(i) Let à Ënä[å × Ý8å Ò Ý*Í*Í.Í,Ý8åCæ.ç , where

åXè�Ëié[ê�ë�ì7í�îï Î|ð
Ì*ë.ð�ÉVì'íCîï Ëiñ*ò è;ó�ôAõOö Ý î ËiÙ#Ý.Ø'Ý*Í.Í�Í[Ý,÷Nø<ùfúxð~Ëiû Ô�Ø>ß
Thus, à is the setof solutionsof the equationü ö Ë�Ø , where üKâÏý . Each å è is calleda sixth
root of unity. à togetherwith the operationof complexmultiplication is a cyclic groupwith
generatorså Ò and å æ . For example,å>þPË�å þÒ and å>þKË¹å òæ .

(ii) Õ�ã¯Ý[Î�Ö is cyclic with generator1, sincein theadditivenotationwe havefor every ÉJâÏã¯ÝKÉgË
ÉIÌTØ . Note that Ô�Ø is alsoa generatorfor this groupsinceany integer î canbe expressedas

î ËdÉ½Ì#Õ�Ô�Ø�Ö , where ÉhËÿÔ î .
(iii) Thegroupof integersmodulo É is cyclic with generator[1], sincefor any � î � âÏã�� , � î � Ë î � Ø � .
3.3 Permutations

3.3.1 Definition. A permutationof a set à is a function from à to à which is both one-to-one
and onto.

Supposeà is a finite set of É elements,say à Ë äaØ7Ý ì Ý*Í�Í.Í[Ý,ÉRç , and � a permutationof à . No
significanceis to be given to the fact that à consistsof the first É naturalnumbers,it is only a matter
of notationalconvenience.It is customaryto usethe notation�KË � Ø ì � Ì.Ì*Ì É

È Ò È ò È�� Ì.Ì*ÌnÈ Ê
	
79



� ��
 ��� ��� ��� ��� �����
 ��
 ��� ��� ��� ��� ������ ��� ��� ��
 ��� ��� ���� � � � � 
 � � � � � � � �� � � � � � � � � 
 � � � �� � � � � � � � � � � 
 � �� � � � � � � � � � � � � 

Figure 3.3.1 Productsof permutations.

to describethe permutation� , where ����� ������� for � �! �"$#%#$#&"(' .

Consider,for example,the casewhere ) consistsof threeelements,say )*�,+� -"�./"�0�1 . In this case
we have the following six possiblepermutations:��
 �32  . 0 . 054 " ��� �62  . 0 0 .54 "��� �32  . 0. 0  4 " ��� �62  . 00 .  4 "� � � 2  . 00  . 4 " � � � 2  . 0.  0 487
The inverseof a permutationis simply the reversemapping. For example,��9 
� �62 . 0   . 0:4 �32  . 00  .54 � � � 7
Thus, � 9 
� � . � �; -" � 9 
� � 0 � �<. , and so forth. Similarly,�=9 
� � 2  . 0 0 . 4 � ��� "�=9 
� �62  . 0. 0  4 � ��� "
etc. A productof two permutationsis simply the compositionof the two permutationfunctions. Since
the compositionof two one-to-oneandonto functionsis againa one-to-oneandonto function (Theorem
2.5.12), the productof two permutationsis againa permutation.For example,���>�?���A@B���DCE��� � 2  . 00  . 4 � 2  . 0 0 . 4 � 2  . 00 .  4 � ��� 7

The productdefineshow two elementspermuteor interchangeby repeatedapplicationof permu-
tations. For instance, �F� � �?� � �&�  � � �G� � CE� � �H�  � � � � �F� � �  �&� � � � �  � �I0 , while �G� � �?� � �J� 0 � ����$�K���$� 0 �H� � ���L� . � �! . The set of all possibleproductsis given by the multiplication table in Figure
3.3.1.

It follows from the multiplication table that the set of all permutationson ) togetherwith the
operationof permutationmultiplication is a groupwith identity ��
 . Note that this group is not abelian
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. It is the smallestpossibleexampleof a nonabeliangroup as any group

with fewer than six elementsmust be abelian[16].

3
Z

1 2
[

Figure 3.3.2 Symmetriesof an equilateraltriangle.

There is a natural correspondencebetweenthe elementsof this group and the symmetriesof the
equilateraltriangleshownin Figure3.3.2. The permutations\-] for ^:_a`�b&c�b&d , representthe rotationsof
thetriangleontoitself aboutits barycenter,with \�e representingthe“no move” rotation. Thepermutations\�] , for ^f_,ghb&i�b&j , representthe mirror imagesacrossthe bisectorsof the angles.Thesesymmetriesare
alsonicely reflectedin the four quadrantsof the multiplication table (Fig. 3.3.1).

We now show that the collection of all permutationsof any nonemptyset k forms a group under
permutationmultiplication.

3.3.2 Theorem. Let k be a nonemptyset,and let lhm be the collectionof all permutationsof k .
Then l m is a group underpermutationmultiplication.

Proof: We havethreeaxiomsto check. Sincepermutationsare functions,in order to show
for permutations\nbSo , and p that q \sr$o�tur$pW_v\Sr q owr$p=thb
we haveto showthat eachcompositefunction mapseach xzy{k onto the sameimagein k .
That is, we must show that| q \sr$o�tur$p�} q x~tE_ | \sr q owr$p=tG} q xntw��x{ywk��
We have| q \�r$o�tur$p�} q x~tE_ q \sr%o5t q p q x~t&tE_v\ q o q p q x~tJt&tE_v\ qJq owr$p=t q xntHtf_ | \Sr q owr?p~tF} q x~t/�
Thus,

q \Sr$o5t:r�p and \�r q owr$p=t map each x�y�k into the sameelementin k . This satisfies
the associativityaxiom for groups.

Obviously,theidentity function ` m actsasthemultiplicativeidentity. This satisfiesthesecond
group axiom.

As we remarkedearlier,the inverseof a permutation\ is simply definedto be thepermutation
which reversesthe direction of the function \ . More precisely,since \ is one-to-oneand
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onto, each �a��� is the image of someunique ����� and we simply define, for each�!��� , ���n�%�G���8��� such that �=���~����� . It follows from this definition of �=�/� that���-�h�h�����=�h�s�-�a���(� . This proves the existenceof inverses,which satisfiesthe third
group axiom.

Q.E.D.

Groupsof permutationsplay an important role in geometry. For example,considerthe set of all
translationsof the coordinateplane �:� , that is, mappings�� A�f��¡¢�:� , definedby�=�G�¤£¥�/�:��¦G�/§¨£(�-§ª©�£:«­¬�®?¯&®A�/§°�±�S²�³-£E�-§h�,�´²¶µ¤·
Here ³ and µ aresomefixed realnumbersand ���¸£¥���
��� � is arbitrary. Thereadershouldverify thatsuch
a mapping � is a permutationof �:� . It is alsoeasyto verify that the setof all translationsof this type
formsa groupunderthe operationof permutationmultiplication. Thereaderwill no doubtthink of many
othergroupsof permutationsof theplane,or �5¹ , which areof geometricinterest.Indeed,oneof themost
famousapproachesto geometry,known as the “ErlangerProgramm,” is by meansof the determination
of the geometricpropertieswhich remaininvariantundera particulargroupof transformations[15].

There is nothing in our definition of a permutationthat requiresthe set � to be finite. Our last
examplewith �*�º� � is a casein point. However,mostof our examplesof permutationgroupswill be
concernedwith permutationsof finite sets.Clearly, if � and » both havethe samenumberof elements,
then the group of all permutationsof � hasthe samestructureas the group of all permutationsof » ;
i.e., one group can be obtainedfrom the other by just renamingthe elements.This is the conceptof
isomorphicstructuresof which more will be said in Section3.4.

3.3.3 Definition. If � is the finite set ¼��-£�½/£?¾$¾$¾(£¥¿¸À , then the group of all permutationsof � is
called the symmetricgroup on ¿ letters, and is denotedby Á ¹ .

Note that Á ¹ has ¿:Â elements,where ¿5Â5�Ã¿¸�J¿ÅÄB�L�&�G¿wÄ�½-�n�$�$�H�GÆ��H��½��J�(�L� .
Thereis anotherstandardnotationfor a permutationwhich is often used.The permutation� � �6Ç � ½ Æ½ Æ �¤È

of the set ����¼���£¥½�£(ÆLÀ can be written in cyclic notationas � � ���(��£¥½/£¥ÆL� , where the É?��É?ÊÌËÍ�¥�-£¥½�£¥ÆÍ� is
interpretedto mean:1 is replacedby 2, 2 is replacedby 3, and3 is replacedby 1. The permutation��Î�� Ç � ½ ÆÆ ½ � È
can be written as (1,3), where the cycle (1,3) is interpretedas: 1 is replacedby 3, 3 by 1, and the
missing symbol 2 remainsunchanged.

Not every permutationcan be written as a cycle. Considerthe permutation��� Ç � ½ Æ Ï Ð� Æ ½ Ð Ï È
on the set �Ñ�!¼��-£¥½�£¥Æ/£FÏh£¥Ð-À . There is no consistentway of writing � as a cycle. However,we can
write � as (2,3)(4,5). The interpretationis clear: 1 is unchanged;2 is replacedby 3 and 3 is replaced
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by 2; 4 is replacedby 5 and 5 by 4. Note that Ò correspondsto the productof the two permutationsÓ�Ô�Õ�Ö�×&Ø�Ù and Ú Ô!ÕGÛh×&Ü�Ù on Ý . For this reasonwe call (2,3)(4,5) the productof cycles. Thesetwo
cyclesarealsodisjoint, i.e., they haveno symbol in common. Thus, in cyclic notationwe shall expect
a permutationon Þ symbolsto consistof a singlecycle or the productof two or moremutually disjoint
cycles. This fact is expressedby the next theorem.

3.3.4 Theorem. EverypermutationÒ on a finite set Ý is a productof disjoint cycles.

Proof: We assume,without lossof generality,that Ý Ô,ß�à�×(Ö�×ná$á$án× Þnâ . Considertheelementsà�× Ò Õ&àLÙ(× Ò�ã Õ(àLÙ(× Ò�ä Õ(àLÙ&×$á$á%á
Since Ý is finite, theseelementscannotall be distinct. Let Ò�å Õ¥àÍÙ be the first term in the
sequencewhich has appearedpreviously. Then Ò�å Õ(àLÙ�Ô à , for if Ò�å Õ(àLÙ�Ô ÒLæ Õ(àLÙ , withç8èêéBè!ë

, we would have Ò å(ì�æ Õ¥àÍÙ�Ô¢à , with
ëîí�éBè!ë

, contradictingour choice of
ë
.

Let Úhï Ôñð�à�× Ò Õ&àLÙ&× Ò ã Õ(àLÙ&× Ò ä Õ¥àÍÙ&×òá%á$á&× Ò å?ì ï Õ¥àÍÙ¨ó�ô
It is easyto seethat Ú ï hasthe sameeffect as Ò on all elementsof Ý appearingin this cyclic
notation for Ú ï .
Let õ be the first elementof Ý not appearingin this cyclic notation for Ú ï . Repeatingthe
aboveargumentwith the sequenceõ × Ò Õ õ Ù&× Ò ã Õ õ Ù&× Ò ä Õ õ Ù&×$á$á%á
we arrive at a cycle Ú ã . Now Ú ã and Ú ï are disjoint, for if they had any element ö ofÝ in common,they would be identical, since eachcycle could be constructedby repeated
applicationof the permutationÒ startingat m.

Continuing,we pick the first elementin Ý not appearingin the cyclic notationsof either Úhï
or Ú ã andconstructÚ ä , etc. Since Ý is finite, this processmust terminatewith some Ú�÷ . The
product Ú ïùø Ú ã ø á$á%á ø Ú�÷
thenclearly hasthe sameeffect on eachelementof Ý as Ò does.Therefore,Ò Ô Ú ï
ø Ú ã ø á$á%á ø Ú�÷ ô

Q.E.D.

The readercan easily convincehimself that the representationof a permutationas a product of
disjoint cycles,noneof which is the identity permutation,is uniqueup to the ordersof the factors.

A cycleof length2 is calleda transposition. Thus,a transpositionleavesall but two elementsfixed,
and mapseachof theseonto the other. A computationshowsthatÕ&à�×¥Ö/×¥Ø�×&Û=×GÜ�Ù:Ô,Õ(à�×¥Ö-Ù ø Õ(à�×¥Ø-Ù ø Õ¥à-×&Û�Ù ø Õ¥à-×¥Ü-Ù
and, in general, Õ�ú ï ×¥ú ã ×$á$á&á%×¥úLû=Ù:Ô,ÕJú ï ×¥ú ã Ù ø Õ�ú ï ×¥ú ä Ù ø á%á$á ø ÕGú ï ×¥ú-û�Ùhô
Therefore,any cycle is a productof transpositions.We havethe following corollary of Theorem3.3.4.
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3.3.5 Corollary. Anypermutationof a finitesetof at leasttwoelementsis a productof transpositions.

The cycle (1,3,5) can be written as the following productof transpositions:ü(ý�þ(ÿ�þ������,ü(ý�þ¥ÿ����Lü&ý-þ	���
�,ü(ý�þ	�����%ü�ÿ/þ	���°þ
that is, astheproductof two differenttranspositions.Similarly, in theprevioustwo examples,the cycles
(1,2,3,4,5)and

ü���
$þ����Lþ������(þ	�����
were written as productsof four and ��� ý transpositions,respectively.

This illustratesthe fact thata cycleof length � canalwaysbewritten asa productof ��� ý transpositions.
Thus, if � is even, then the numberof transpositionsis odd, and if � is odd, then the numberof
transpositionsis even.For a permutationwhich is not necessarilya cycle, the following theoremholds.

3.3.6 Theorem. If � is a permutationon � symbolsexpressedastheproductof � transpositionsand
alsoas a productof � transpositions,then � and � are either bothevenor bothodd.

This is quite an importantfact, the usualproof of which may seema bit artificial andcanbe found
in [17]. A permutationwill becalledevenor oddaccordingto whetherit canbeexpressedastheproduct
of an evenor odd numberof transpositions,respectively.

Permutationof data is one important reasonfor studyingpermutationsand permutationgroupsin
signal processingand computerscience. Matrix versionsof the FastFourier Transform(FFT) involve
sophisticatedshuffling of datawhich is accomplishedwith the useof permutationmatrices.

Let � � denotethe groupof permutationson  "! þ%ý�þ������?þ �#� ý�$ and %'& the transposeof the matrix % .

3.3.7 Definition. Let (*)+� � and definethe �-,.� matrix /10 by

/10 �Tü325476��98;:5<�=><
25476?�A@ ý BDC � � ( ü�EF�! G�H :5<�=>8IBKJL<NM/10 is called a permutationmatrix.

It is well known that permutationmatricesare invertible and that /PO 
0 � /�&0 � / 0RQ�S . Using this
fact, it is easyto seethe setof all �T,U� permutationmatricesformsa groupundermatrix multiplication
which hasthe samestructure(i.e. is isomorphicto) as � � . Note that if % �êüF��4V6��

is an �-,W� matrix,
thenmultiplication on the left by / 0 permutesthe rows of % by ( O 
 andmultiplication on the right by/10 Q�S � / &0 permutesthe columnsof % by ( O 
 . Hence,we can write /10X%�/ &0 �ZY[� 0R\ 43]_^ 0R\ 6L]a` .
3.4 Isomorphisms

Throughoutthis book, we deal with various kinds of abstractmathematicalsystems. The name
“abstractmathematicalsystem” is usedto describeany well-defined collection of mathematicalobjects
consisting,for example,of a set togetherwith relationsand operationson the set, and a collection of
postulates,definitions,and theoremsdescribingvariouspropertiesof the structure.

It is a fundamentallyimportantfact that evenwhensystemshavevery little structure,suchassemi-
groupor groups,it is oftenpossibleto classifythemaccordingto whetheror not theyaremathematically
similar or equivalent. Thesenotions are mademathematicallypreciseby the morphismrelationship
betweenabstractsystems.
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3.4.1 Definition. Let bdcfe�bhg�i*j and blkmcne�blkog�ipk3j denotetwo systems.A homomorphismfromb to blk is a function qsrtbvuwblk suchthat for each x9g�y{zpb ,

q'eKx|i}y~j�cfq'eKx~j�i k q?e�y�j��
Thus, a homomorphismis requiredto preservethe operationsof the systems;i.e., performingthe

operationx�i�y in b and thenapplying the function q to the result is the sameas first applying q to
each x and y and then applying the operation q'eKx~j�i k q'e�y~j in b k . If sucha function exists,then the
two systemsare said to be homomorphic.

By definition, a homomorphismneednot be a one-to-onecorrespondencebetweenthe elementsofb and blk . One-to-oneand onto functionsthat preservethe mathematicalstructuresof systemslead to
the extremelyimportant conceptof an isomorphism.

3.4.2 Definition. Let b�cse�bhg�i{j and b k cse�b k g�i k j denotetwo systems.An isomorphismof b
into b k is a homomorphismqfr;b�u�b k which is both one-to-oneandonto.

If sucha homomorphismexists,then we say that the two systemsare isomorphic. Hencethe idea
that the two systemsb and b k are isomorphicmeansthat they are identicalexceptfor the namesof the
elementsand operations.That is, we can obtain b k from b by renamingan element x in b with the
nameof a certainelementx k in b k , namely x k c�q?eKx�j , andby renamingthe operation i as i k . Then
the counterpartof xtiZy will be x k i k y k . The next theoremwe proveis very obviousif we consideran
isomorphismto be a renamingof one systemso that it is just like another.

3.4.3 Theorem. Let b and blk be two groupsandsupposee is the identityof b . If q*r
bdu�blk is
an isomorphism,then q'e���j is the identity of b . Moreover,

q��Kxm�~�	�lc��Vq'eKx~j�� ���-� x�z�b+�
Proof: Let x5k�z.blk . Since q is onto, ��xWzpb suchthat q'eax~j�c�x5k . Then

x k c�q'eKx~j�c�q'e��;��x~j�c�q'e���j1��q?eKx�j�c�q'e���j1��x k �
Similarly, x k c�q'eKx~j�c�q'eKx�����j�c�q'eax~j���q'e���j
c{x k ��q'e���j��
Thus, for every x5k?zfblk we have

q'e���j1��x k c{x k c{x k ��q'e���j��
Therefore, q'e���j is the identity of b .

Moreover, for xfz�b we have

q'e���j
c�qP�ox��m����xX�tc�qP�Dx~�m��� ��q?eKx�j
and q'e���j
c�q � x���x �m��� c�q'eKx~j���q � x �m��� �
Thus, q � x �m� � c��¡q'eax~ja� �m� .
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Q.E.D.

The essenceof the theoremis that isomorphismsmap identities onto identitiesand inversesonto
inverses.

It is immediatefrom our discussionthat every systemis isomorphicto itself; we simply let ¢ be
the identity function. To show whetheror not two different systemsare isomorphiccan be a difficult
task. Proceedingfrom the definition, the following algorithm can be usedto show that two systems£¥¤}¦�£h§�¨{©

and
£lª;¤}¦F£tªK§�¨NªD©

are isomorphic:

STEP1. Define the function ¢ from
£

to
£ ª

which is proposedasa candidatefor isomorphism.

STEP 2. Show that ¢ is a one-to-onefunction.

STEP 3. Show that ¢ is an onto function.

STEP 4. Show that ¢ ¦K«|¨}¬~©P¤ ¢ ¦K«~©�¨ ª ¢ ¦�¬�© .
Step4 is usuallyjust a questionof computation.Onecomputesbothsidesof theequationandchecks

out whetheror not they are the same.We illustrate this procedurewith an example.

3.4.4 Example: We want to show that
¦�­ §�®t©

is isomorphicto
¦�­�¯I§�°±©

.

STEP1. Define the function ¢A² ­p³�­´¯
by ¢ ¦�µ~©�¤·¶�¸�¹Uº�»{­

.

STEP2. If ¢ ¦�µ�©l¤ ¢ ¦_¼�© , then
¶½¸.¤¾¶�¿

, and taking the natural log we obtain that
µ+¤Z¼

. Thus, ¢
is one-to-one.

STEP3. If
µÀ»�­�¯

, then ¢ ¦_ÁaÂ~µ�©
¤�¶�ÃÅÄ�¸P¤�µ . Thus,for every
µ�»À­�¯I§IÆ?Ç#»�­

, namely
¼h¤�ÁaÂ~µ

, such
that ¢ ¦�¼�©|¤Zµ

. Therefore, ¢ is onto.

STEP 4. For
µ1§	¼�»�­

, we have

¢ ¦�µP®È¼�©�¤f¶ ¸�¯�¿ ¤�¶ ¸ °�¶ ¿ ¤ ¢ ¦�µ�©1° ¢ ¦�¼�©�É
Anotherexampleof two isomorphicgroupswasmentionedin the previoussection.Therewe noted

that thesymmetricgroup Ê Ä is isomorphicto thegroupof
ÂPË�Â

permutationmatrices.This fact signifies
the importanceof the symmetricgroup in applications.In the theoryof groups, Ê Ä playsan evenmore
centralrole; it canbeshownthatany finite groupis isomorphicto somesubgroupof Ê Ä for some

Â
[17].

However,finding the right candidatesfor isomorphismsin orderto establishthis fact is a nontrivial task.

To showthat two systemsarenot isomorphicmeansthat therecannotexist a one-to-onecorrespon-
dencewhich preservesthe algebraicstructureof the systems. This is a trivial problem wheneverthe
two systemshavea different numberof elements.For example,Ì�Í and ÊmÎ arenot isomorphicas there
cannotexist a one-to-onecorrespondencebetweentheir elements.Similarly, since Ì is countableand

­
is uncountable,they can neverbe isomorphicas algebraicstructures.
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3.5 Rings and Fields

The systemswe haveconsideredthus far havebeenconcernedwith setson which a single binary
operationhasbeendefined. Our earliestexperiencewith arithmetic,however,hastaughtus the useof
two distinct binary operationson setsof numbers,namelyaddition and multiplication. This early and
important experienceshould indicate that a study of setson which two binary operationshave been
definedis of greatimportance.Modeling our definition on propertiescommonto thesenumbersystems,
aswell assuchstructuresas the setof all ÏÑÐÑÏ matriceswith elementsin oneof the numbersystems,
or the set of all polynomialswith coefficients in, say, the set of all integers,we now definea type of
algebraicstructureknown as a ring.

3.5.1 Definition. A ring Ò�Ó�Ô�ÕPÔ�Ö7× is a set Ó togetherwith two binary operations+ and Ö of addition
andmultiplication definedon Ó suchthat the following axiomsaresatisfied:ÓtØ Ò�Ó�Ô�Õt× is an abeliangroup.ÓtÙ Ò�Ó�Ô�Ö7× is a semigroup.Ó�Ú ÛÝÜ Ô�Þ�Ô�ßPà.ÓPÔ Ü Ö�Ò�ÞáÕNß�×;â�Ò Ü Ö�Þ½×ãÕ*Ò Ü Ö�ß�× Ü Ï9ä#Ò Ü ÕÈÞ½×�Ö�ßtâ�Ò Ü Ö�ß"×�Õ*ÒFÞIÖ�ß"×�å
If axiom Ó Ø is weakenedtoÓ�æØ Ò�Ó�Ô�Õt× is a commutativesemigroup

then Ó is called a semiring.

In subsequentchaptersit will becomeapparentthat the theory of rings and semiringsplays an
importantrole in the analysisand applicationof imagealgebra.Of the many examplesof rings which
comereadilyto mind from experiencewith commonsystemsof elementarymathematics,themostnatural
is, perhaps,the ring ç of integerswith the usualaddition and multiplication. However,if we examine
the propertiesof the ring of integers,we note that it has propertiesnot enjoyedby rings in general.
Among thesepropertiesare:

(i) The existenceof a multiplicative identity element,which must be unique, called the unit
element,and which is usually designatedby the number1.

(ii) The commutativity of multiplication.

(iii) The nonexistenceof an element Üpèâêé suchthat for somepositive integer Ï , Ï ÜÀëAÜ Õ Ü Õì�ì�ì Õ Ü â·é (where Ï Ü is definedto be the sum of Ï Ü ’s).

On the otherhand,the integersthemselvesfail to possessa mostusefulproperty,namelythat:

(iv) For every nonzero Ü à�Ó there is an elementin Ó , denotedby Ü5í Ø , such that Ü Ö Ü�í Ø âÜ í Ø Ö Ü âïî , i.e., ÒFÓPÔ�Ö7× is a group.

When it doesexist in a particularring, the elementÜ í Ø is called the inverseof a. In fact, ÒFç�Ô�ÕPÔ�Ö ×
also fails to have the slightly weakerproperty:

(v) For every nonzero Ü àðÓ there is an elementin Ó , denotedby ñÜ , such that Ü Ö9ñÜ Ö Ü âÜ}ò�ómô ñÜ Ö Ü Ö5ñÜ â·ñÜ ; i.e., every nonzeroelementhasa pseudoinverse.

Thesepropertieslead us to somefurther definitions.
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3.5.2 Definition: If a ring satisfies(i), it is called a ring with unity. If a ring satisfies(ii), it is
calledcommutativeor abelian. If a ring satisfies(iii) it is said to havecharacteristiczero. If
it satisfies(iv) it is called a division ring or a quasi-field. A field is a commutativedivision
ring. A ring which satisfies(v) is called a von Neumannring.

As we noted, õ�ö�÷�øP÷�ù7ú is a commutativering but not a division ring. On the otherhand, õ�û ÷�ø|÷�ùÅú is
anexampleof a commutativedivision ring and,hence,a field. It is alsoanexampleof a ring with unity
andcharacteristiczero. Otherwell known examplesof commutativerings are õ�üh÷�øP÷�ù ú and õ�ýt÷�øP÷�ù ú .

In order to give someindication of the generalityof the conceptof a ring, we turn to someless
familiar examplesof rings.

3.5.3 Examples:

(i) The set of real valuedfunctionson a set þ togetherwith the operationof function addition
andmultiplication ÿ�û��l÷�øP÷�ù � is a commutativering with unity. We know from Theorem2.8.2
that ÿ[û�� ÷½ø � is an abeliangroup. That ÿ[û�� ÷�ù � is a commutativesemigroupfollows from
Definition 2.8.1 (iv) of multiplication of real valuedfunctions. For example,� õ��Tù��mú�ù
	��aõ�
�ú�� � õ��Uù���ú�õ�
~ú���	~õ�
~ú�� � �1õ�
�ú��~õ�
�ú���	�õ�
�ú���1õ�
�ú � �~õ�
�ú�	�õ�
�ú������1õ�
�ú � õ��Pù
	~ú>õ�
~ú���� � �Tù�õ���ù�	�ú��aõ�
�ú��
Thus, õ��Uù��mú�ù�	����Tù�õ���ù�	�ú��
Commutativity and distributivity of multiplication over addition can be demonstratedin a
similar fashion.Themultiplicative identity is, of course,the constantfunction ��õ�
�ú�� �"!#
%$þ . For any function f with the property �9õ�
~ú'&�)(*!+
,$pþ we may definea multiplicative
inverse õ��9ú.-0/ by õ��1ú1-2/�õ�
�ú�� �435�1õ�
�ú . However,sincetherearefunctions �6$�û87 with �9&��(
but �1õ1
~ú���( for some 
%$Tþ , ÿ[û�� ÷½øP÷�ù � — in contrastto õ�û ÷�øP÷�ù7ú — is not a division ring.

(ii) Considerthecyclic group õFö8:m÷�ølú . For ;�÷�<=$�ö8: we definetheproduct ;�ù�< to betheremainder
of the usualproductof the integers; and < whendivided by > . For example,in ö"? we have@ ù�A'��B . This operationon öC: is multiplicationmodulo > . We leaveit to the readerto check
that the system õFö8:X÷½øP÷�ù¡ú satisfies the ring axioms.

An importantobservationconcerningexample(i) is the fact that the operationson û�� are induced
by the operationson û . That is, the addition of two functions ��ø9� is definedin termsof additionof
real numbers,e.g. õ���øD��úFõ�
~úE�F�1õ�
�ú�ø9�~õ�
�ú , and multiplication of two functions is defined in terms
of multiplication of real numbers. In view of this observation,it should be clear that the set û can
be replacedwith any field G in thesetwo examplesand that the result would be a commutativering
with unity ÿ�G � ÷½øP÷�ù � , where the addition ��ø9� on G � is definedin termsof the addition on G , e.g.,õ��høH��ú�õ�
~úC�I�1õ�
�úRøJ�~õ�
~ú , andlikewisefor multiplication. In addition,dueto thefact that theoperations
on G�� areinducedby the operationson G , the ring ÿ�G8K ÷�øP÷�ù � behavesvery muchlike the ring õ�GI÷�øP÷�ùÅú .
The only missingingredientis the lack of multiplicative inversesfor G�� .

Hopefully the readeris beginningto realizethat in the studyof any sort of mathematicalstructure,
an idea of basicimportanceis the conceptof two systemsbeingstructurallyalike or identical, i.e., one
being similar to the other or one being exactly like the other exceptfor its nameand the namesof its
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elements. In algebra,the conceptof being identical is always called “isomorphism.” The conceptof
two rings being just alike exceptfor namesof elementsleadsus, just as it did for systemswith one
operation,to the following definition.

3.5.4 Definition. An isomorphismL of a ring M with a ring MON is a one-to-onefunction mappingM onto M#N such that P#Q4R1S9TIM UWV4X L U QZY[S X \ L U Q X Y[L U S X RU�]^X L U QO_�S X \ L U Q X _
L U S X `
If sucha function exists,thenwe say that the two rings are isomorphic.

3.5.5 Example: Considerthe ring

U�acb RdY'R�_ X , whereaddition correspondsto vector addition and
multiplication is definedby multiplying the correspondingvectorcomponents,i.e.,U e2f R e�g R
h�h
hWR e^i X Y U j f R j g R
h�h�h�R j i X \ U e�f Y j f R e2g Y j g R�h
h�h1R e�i Y j i X
and Hadamard multiplicationU e�f R e2g R�h�h
h1R e0i X _ U j f R j g R
h�h�h.R j i X \ U e�f j f R e�g j g R
h�h�h.R e�i j i X `
We leaveit to the readerto convincehimself that

U�acb RdY'R�_ X is a commutativering with unity.

Supposethat k is a finite set with l elements,say k \nm V R ] R�h1h�hdR�l"o . Let prq a�s t a b
be the function definedby p U�u"X \ U�u"UWVvX R u"U�]^X R�h
h�h1R u"U l X�X `
We know from Example2.8.3 that p is one-to-oneandonto. Furthermore,p U�uwX Y[p U x X \ U�u"UWVvX R u"U�]^X R�h
h�h1R uwU l X.X Y U x U1V4X R x U�]^X R�h�h
h1R x U l X1X\ U�uwU�V4X Y x U1VvX R u"U�]yX Y x U�]^X R�h�h.h�R u"U l X Y x U l X1X\ U.U�u Y x X.UWVvX R U�u Y x X�U�]yX R�h�h�h.R U�u Y x X1U l X.X \ p U�u Y x X `
An analogousargumentshowsthat p U�u _ x X \ p U�uwX _�p U x X . This provesthat therings

U�azb R{Y|R�_ X
and } a s RdY'R�_ ~ are isomorphic.Of course,by arguing in an analogousfashion,we canprove
that for any field � the correspondingrings

U � b RdY'R�_ X and }�� s R{Y'R�_ ~ are isomorphic.

Thusfar, all our exampleshavedealtwith commutativerings. However,noncommutativeringsplay
an importantrole in the structureof the imagealgebrawhich is the central themeof this treatise. We
presentthe most pertinentexampleof sucha ring.

3.5.6 Example: Let � be any field, say � ,

a
, or � , and considerthe set � g{�^g U � X of all 2 � 2

matricesof form U ����� X \n� �^f1f �^f1g�^g1f �^g1g2� R
wherethe ����� ’s areall in � . Theset � i���i U � X of all lE��l matricesover � is similarly defined.
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Matrix addition on �,�d�^�
����� is definedby�+�^�1� �^� �� � � � �1����� ���d�1� �d� �� � � � �1����� �����.� � �d�1� �^� � � �d� �� � � � � � � � �1� � � �1�0�[ 
thatis, by addingcorrespondingentriesusingadditionin � . After a few momentsof thought,it
is clearfrom theaxiomsof a field that ¡��9���^�4���c�  ��£¢ is anabeliangroupwith additiveidentity�+¤ ¤¤ ¤ �  
and with additive inverse ¥ � � �1� � � �� � � � �1� � � �

¥ � �1� ¥ � � �¥ � � � ¥ � �1� �§¦
Matrix multiplication on �9���^�
���c� is definedby� � �1� � � �� � � � �1� �©¨ � � �1� � � �� � � � �1� �ª� � � �1� � �1� � � � � � � � � �1� � � � � � � � � �1�� � � � �1� � � �1� � � � � � � � � � � � �1� � �1� � ¦
If � equals« or ¬ , thenthis multiplicationcorrespondsof courseto theregularmatrix product
over thesefields and can bestbe rememberedby� ��­�® ��� ��­�® � � ��¯ ­�® �  
where ¯ ­�® � �°±W² � � ­ ± � ± ® ¦
Of course,theanalogousdefinitionholdsfor matrix multiplication in which thesumgoesfrom³ �µ´ to ¶ . In short,everythingwe saidaboutthe system ¡�� ���^� ���c�  ��' �¨·¢ is alsovalid for
the system ¡��9¸ � ¸����z�  d�' �¨¹¢ .
To show that ¡ � ¸ � ¸ ���c�  ��' �¨ ¢ is a ring, it remains to prove the associativeand dis-
tributive laws. Using the field propertiesof � and the definition of matrix multiplica-
tion in ¡�� ¸ � ¸ ���z�  d�' �¨z¢ , then if º�»1¼ denotesthe entry in the ½ th row and ¾ th column of� � ­�® �W¿À� � ­�® �1��¯ ­�® ��Á , we haveº »1¼ � ¸°±�² � � » ±�Â ¸°® ² � � ± ® ¯ ® ¼�Ã � ¸°® ² � Â ¸°±W² � � » ± � ± ® Ã ¯ ® ¼ �ÅÄ »1¼  
where Ä »1¼ is the entry in the ½ th row and ¾ th column of ¿À� � ­�® �1� � ­�® ��Á���¯ ­�® � . The distributive
property is proved in a similar fashion.

The last exampleprovesthe following theorem:
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3.5.7 Theorem. If Æ is a field, then the set ÇDÈyÉ�È2Ê�ÆcË of all ÌHÍ9Ì matriceswith entriesfrom Æ
formsa ring undermatrix addition and matrix multiplication.

The rings of matricesover a field Æ are an important tool in the theory and practiceof image
transformations.In thiscontext,theycanbeviewedascorrespondingto certainfunctionscalledtemplates,
andmatrix multiplication,whenviewedin this light, canbeshownto correspondto templateconvolutions
(Chapter4). This providesan elegantdemonstrationof the associativelaw for templateconvolutions.

On thedownside,weneedto pointout thatthering Î�Ç ÈyÉ�È Ê�ÆzË.ÏdÐ'Ï�ÍCÑ lackssomeimportantalgebraic
properties.Sincematrix multiplication is not commutative,Ç ÈyÉ�È Ê�ÆcË is not a commutativering. Also,
one of the most important propertiesof the real numbersystemis that the product of two numbers
can only be zero if at leastone of the factorsis zero. The working engineeror scientistusesthis fact
constantly,perhapswithout realizing it. Supposefor example,oneneedsto solve the equationÒ�Ó2Ô Ð§Õ ÓJÖH×ÙØ�Ú·Û
The first thing to do is to factor the left side:Ò�Ó Ô Ð§Õ ÓÜÖ§×ÝØ Ê Ò�ÓÜÖßÞ Ë.Ê Ó Ð × Ë Û
Onethenconcludesthat theonly possiblevaluesfor

Ó
are àÔ and–5. Why? Becausetheresultingproduct

is zero if and only if one of the factors
Ò�ÓáÖÅÞ

or
Ó Ð × is zero.

Thepropertythatif a productequalszerothenat leastoneof theproductfactorsmustalsoequalzero,
doesnot hold for rings in general.For instance,the definition of matrix productin Ç Ô É Ô Ê�ÆcË showsthatâ Ú ÚÚ Þwã â Ú ÞÚ Ú�ã Ø â Ú ÚÚ Ú�ã Û
Similarly, the Hadamardproduct of the two nonzerovectors(1,0,0,...,0)and (0,0,...,0,1)in ä·å is the
zero vector (0,0,...,0).

Theseideasare of suchimportancethat we formalize them in a definition.

3.5.8 Definition. If æ and ç are two nonzeroelementsof a ring è suchthat æEé�ç ØêÚ , then æ andç are divisorsof zero or zero divisors. In particular, æ is a left zero divisor and ç is a right
zero divisor of the product æ'é^ç .

An importantconsequenceof the conceptof zero divisors is providedby Theorem3.5.10below.
Let è be a ring and let æ4ÏWç�Ï�ë'ì[è . We say that the cancellationlaws hold in è if æÝé5ç Ø æ�é
ë , withæ=íØ�Ú , implies ç Ø ë and ç·é�æ Ø ë+é�æ , implies ç Ø ë . Thesearemultiplicative cancellationlaws. Additive
cancellationlaws hold since Ê�è'ÏdÐEË is a group.

3.5.9 Definition. An integral domainis a commutativering with unity containingno zerodivisors.

3.5.10 Theorem. Thecancellationlaws hold in integral domains.

Proof: Supposethat î is an integraldomainand that ï^ð Ø ï^ñ with ï6íØIÚ . Thenï^ð Ö ï^ñ Ø ï0Ê�ð Ö ñ
Ë Ø�ÚòÛ
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Since ó%ôõêö , andsince ÷ hasno right divisor of zero,we musthave ø·ù§ú õÅö . Thus, ø õ ú .
A similar argumentshowsthat ødó õ údó , with óDôõµö , implies that ø õ ú .

Q.E.D.

Supposethat û is a division ring and ü�ý4þ õÿö with üDôõÿö . ThenöÝõ ü�� � ý öÙõ ü�� � ý � üOý�þ�� õ�� ü�� � ý�ü	�Oýdþ õ�
 ýdþ õ þ
�
Similarly, if þEý�ü õFö , then multiplication on the right by ü � � leadsto the conclusionthat þ must be
zero. This demonstratesthat a division ring containsno divisors of zero. Thus a division ring lacks
only commutativityof beingan integraldomain.However,sincecommutativitywasnot usedin proving
Theorem3.5.10, we seethat the theoremalso holds for division rings.

3.6 Polynomial Rings

An importantconsequenceof Theorem3.5.10 is that we can solve polynomial equationsin which
the polynomialscan be factoredinto linear factors in the usual fashionby settingeachfactor equalto
zero,as long as we are dealingwith polynomialswith coefficients from an integraldomainor division
ring. This leadsus directly into the topic of polynomialswith coefficients in a ring.

3.6.1 Definition. A polynomial � ��� � with coefficientsin a ring û in the indeterminate
�

is an
informal sum �� �

��� ó � � � õ ó ��� ó � � � ý�ý
ý � ó�� � � � ý�ý
ý��
where ó ��� û are called the coefficientsof � ��� � , and ó � õ�ö for all but a finite numberof
values � . If for some �! ö ó � ôõ ö , then the largestsuchvalueof � is the degreeof � ��� � . If
no such �" ö exists, then � �#� � is of degreezero.

We also use the notation

� ��� � õ ó � � ó � � � ý�ý
ý � ó � � �
wheneveró � õ�ö for all �$ &% . Any elementof û is a constantpolynomial. Themostimportantconstant
polynomialsare the zero polynomial ö � û and, if û hasunity, the unit polynomial1.

Addition and multiplication of polynomials with coefficients in a ring û are defined in a way
formally familiar to the reader. If

� �'� � õ ó)( � ó � � � ý�ý
ý � ó � � � � ý�ý
ý
and * ��� � õ ø �
� ø � � � ý
ý�ý � ø+� � � � ý�ý�ý,�
then for polynomial addition, we have

� �#� � � * ��� � õ ú �
� ú � � � ý
ý�ý � ú+� � � � ý�ý�ý��
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