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PREFACE

This documenis aninitial draft of the developingtheoryof imagealgebra.The primary objectiveof
this treatiseis to providethe readerwith anintroductionto the theory andfoundationsof imagealgebra.
Forreadersnterestedn applicationsandimagealgebraspecficationof awide variety of imageprocessing
transformswe recommendhe Handbookof ComputerVision Algorithmsin ImageAlgebra[46].

Sincethe disciplineof imagealgebrais in its infancy and a stateof flux, this documentwill undego
various changesbefore its completionin book format. The book will consistof eight chaptersand
will be largely self contained. The first chapterwill containall the introductory material;e.g., what is
image algebraall about,the history of image algebra,the peopleinvolved, organizationof the book,
etc. Chapters?2 and 3 contain basic backgroundmaterial dealingwith point set theory, topology, and
abstracilgebra.Lack of this backgrounds oftena fatal stumblingblock to understandinghe underlying
conceptsof imagealgebraand the mathematicoof computervision in general.

As to thisinitial draft, we recommendeadingthe introductionandthenproceedo a quick overview
of the basicconceptghatdefineimagealgebrawe suggesto startwith Section3.13(Chapter3) andthen
proceedirectly to Chapter4, referringto precedingsectiondor notationandtheoremsasthe needarises.
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CHAPTER 1
INTRODUCTION

Since the field of image algebrais a recentdevelopmentit will be instructive to provide some
backgroundinformation. In the broad sense,image algebrais a mathematicattheory concernedwith
the transformationand analysisof images. Although much emphasisis focusedon the analysisand
transformationof digital images,the main goal is the establishmenbf a comprehensiveand unifying
theory of imagetransformationsimageanalysis,andimage understandingn the discreteas well asthe
continuousdomain [45].

The idea of establishinga unifying theory for the various conceptsand operationsencounteredn
imageandsignalprocessings not new. Over thirty yearsago,Ungerproposedhat manyalgorithmsfor
imageprocessingand imageanalysiscould be implementedn parallelusing:ellular arrayCellular array
computercomputers[61]. Thesecellular array computerswere inspiredby the work of von Neumann
in the 1950s[63, 64]. Realizationof von Neumann’scellular array machineswas made possiblewith
the adventof VLSI technology. NASA’s massivelyparallel processoror MPP andthe CLIP seriesof
computersdevelopedby Duff and his colleaguesrepresenthe classicembodimentof von Neumann’s
original automator{2, 18,16, 17, 20]. A moregeneralclassof cellulararraycomputersare pyramidsand
Thinking MachinesCorporation’sConnectionMachines[59, 60, 25]. In an abstractsense the various
versionsof ConnectionMachinesare universalcellular automatonsvith an additionalmechanismadded
for non-local communication.

Many operationsperformedby thesecellular array machinescan be expressedn termsof simple
elementaryoperations. Theseelementaryoperationscreatea mathematicalbasis for the theoretical
formalism capableof expressinga large numberof algorithmsfor image processingand analysis. In
fact, a commonthreadamongdesignerof parallelimageprocessingarchitecturess the belief that large
classesof image transformationscan be describedby a small set of standardrules that induce these
architectures.This belief led to the creationof mathematicaformalismsthat were usedto aid in the
designof special-purposgarallel architectures.Matheronand Serra’sTexture Analyzer [28], ERIM’s
(EnvironmentaResearchnstituteof Michigan) Cytocomputef32, 57, 31], andMartin Marietta’'sGAPP
[7, 5, 6] are examplesof this approach.

Theformalismassociateavith thesecellulararchitecturess thatof pixel neighborhoodrithmeticand
mathematicaimorphology. MathematicalmorphologyMathematicamnorphologyMorphologyis the part
of imageprocessingzoncernedvith imagefiltering and analysisby structuringelements.It grew out of
the earlywork of Minkowski andHadwiger[39, 40, 22], andenteredthe modernerathroughthe work of
MatheronandSerraof the EcoledesMinesin Fontainebleaukrance[37, 52, 53,54]. MatheronandSerra
not only formulatedthe modernconceptf morphologicalimagetransformationsbut alsodesignedand
built the Texture Analyzer System.Sincethoseearly days,morphologicaloperationshave beenapplied
from low-level, to intermediateto high-level vision problems. Among somerecentresearchpaperson
morphologicalimage processingare Crimmins and Brown [8], Haralick et al. [24, 23], Maragosand
Schafel[34, 36, 35], Davidson[14, 13], Dougherty[15], Goutsiag51, 21], andKoskinenandAstola[30].

Serraand Sternbeg were the first to unify morphologicalconceptsand methodsinto a coherent
algebraictheory specifically designedor image processingand image analysis. Sternbeg was alsothe
first to usetheterm*“imagealgebra’[56, 58]. In themid 1980s Maragosintroduceda newtheoryunifying
a large classof linear and nonlinearsystemsunderthe theory of mathematicaimorphology[33]. More
recently, Davidsoncompletedthe mathematicafoundationof mathematicamorphologyby formulating



its embeddinginto the lattice algebraknown as Mini-Max algebra [11, 12]. However, despitethese
profound accomplishmentsinorphologicalmethodshave some well-known limitations. For example,
suchfairly commonimageprocessingechniquesasfeatureextractionbasedon convolution,Fourier-like
transformationsg¢hain coding, histogramequalizationtransforms jmagerotation, andimageregistration
andrectificationare— with the exceptionof a few simplecases— eitherextremelydifficult or impossible
to expresdn termsof morphologicaloperations.The failure of a morphologicallybasedimagealgebra
to expressa fairly straightforwardU.S. government-furnishe&LIR (forward-lookinginfrared)algorithm
was demonstratedy Miller of Perkin-Elmer[38].

The failure of an image algebrabasedsolely on morphologicaloperationsto provide a universal
imageprocessingalgebrais dueto its set-theoretidormulation, which restson the Minkowski addition
andsubtractionof sets[22]. Theseoperationsgnorethe lineardomain,transformationbetweerdifferent
domains(spacef differentsizesand dimensionality),and transformationdbetweendifferent value sets
(algebraicstructures)ge.g.,setsconsistingof real, complex,or vectorvaluednumbers.Theimagealgebra
discussedn this text includestheseconceptsand extendsthe morphologicaloperationg45].

The developmenof imagealgebragrew out of a need by theU.S. Air ForceSystemsCommandfor
a commonimage-processinganguage. Defensecontractorsdo not use a standardizedmathematically
rigorousand efficient structurethat is specificallydesignedfor image manipulation. Documentatiorby
contractorsof algorithmsfor image processingand rationale underlying algorithm designis often ac-
complishedvia word descriptionor analogieghat are extremelycumbersomend often ambiguous.The
resultof thesead hoc approachetasbeena proliferationof nonstandarahotationandincreasedesearch
anddevelopmentost. In responséo this chaoticsituation,the Air ForceArmamentLaboratory(AFATL
— now known as Wright LaboratoryMNGA) of the Air Force SystemsCommand,in conjunctionwith
the DefenseAdvancedResearchProject Agency (DARPA — now known as the AdvancedResearch
Project Agency or ARPA), supportedthe early developmentof image algebrawith the intent that the
fully developedstructurewould subsequenthform the basisof a commonimage-processinganguage.
The goal of AFATL wasthe developmenbf a complete,unified algebraicstructurethat providesa com-
mon mathematicaknvironmentfor image-processinglgorithm developmentpptimization,comparison,
coding,andperformanceevaluation.The developmenbf this structureprovedhighly successfulcapable
of fulfilling the taskssetforth by the governmentandis now commonlyknown asimagealgebra.

Becauseof the goalssetby the governmentthe theory of imagealgebraprovidesfor a language
which, if properlyimplementedasa standardmageprocessingsnvironmentcangreatlyreduceresearch
anddevelopmentosts. Sincethe foundationof this languages purely mathematicaandindependenof
any future computerarchitectureor language,the longevity of an image algebrastandardis assured.
Furthermore,savingsdue to commonality of languageand increasedproductivity could dwarf any
reasonablénitial investmentor adaptingimagealgebraasa standarcenvironmenfor imageprocessing.

Although commonalityof languageand cost savingsare two major reasondor consideringimage
algebraasa standardanguagdor imageprocessingthereexistsa multitude of otherreasondor desiring
the broadacceptancef image algebraas a componentof all image processingdevelopmentsystems.
Premieramongtheseis the predictableinfluenceof animagealgebrastandardn futureimageprocessing
technology.In this, it can be comparedo the influenceon scientific reasoningand the advancemenof
sciencedueto the replacemenof the myriad of differentnumbersystemge.g.,Roman,Syrian, Hebrew,
Egyptian,Chinese etc.) by the now commonindo-Arabic notation. Additional benefitsprovidedby the
use of image algebraare



* The elementalimage algebraoperationsare small in number,translucent,simple, and provide a
methodof transformingimagesthat is easily learnedand used,;

* Image algebraoperationsand operandsprovide the capability of expressingall image-to-image
transformations;

* Theoremsgoverning image algebra make computer programsbasedon image algebranotation
amenableo both machinedependenand machineindependenbptimizationtechniques;

* The algebraicnotation providesa deeperunderstandingf image manipulationoperationsdue to
concisenessnd brevity of codeandis capableof suggestinghew techniques;

* Thenotationaladaptabilityto programminganguagesllows the substitutionof extremelyshortand
conciseimagealgebraexpressionsor equivalentblocksof code,andthereforeincreasegrogrammer
productivity;

» Imagealgebraprovidesa rich mathematicastructurethatcanbe exploitedto relateimageprocessing
problemsto other mathematicalareas;

*  Without image algebra,a programmerwill never benefitfrom the bridge that exists betweenan
image algebraprogramminglanguageand the multitude of mathematicaktructurestheoremsand
identities that are relatedto image algebra;

» Thereis no competingnotationthat adequatelyprovidesall thesebenefits.

The role of imagealgebrain computervision andimage processingasksand theory shouldnot be
confusedwith the government'sAda programminglanguageeffort. The goal of the developmenbf the
Ada programmindanguagevasto providea singlehigh-orderanguagen whichto implementembedded
systems.The specialarchitecturedeing developednowadaydor imageprocessingapplicationsare not
often capableof directly executingAda languageprograms,often dueto supportof parallel processing
modelsnot accommodatedby Ada’s tasking mechanism. Hence, most applicationsdesignedfor such
processorare still written in specialassemblyor microcodelanguages.Image algebra,on the other
hand,providesa level of specfication, directly derivedfrom the underlyingmathematic®n which image
processings basedand thatis compatiblewith both sequentialand parallel architectures.

Enthusiasnfor imagealgebramustbe temperedy the knowledgethatimagealgebra like any other
field of mathematicswill neverbe a finishedproductbut remaina continuouslyevolving mathematical
theory concernedwith the unification of image processingand computervision tasks. Much of the
mathematicsassociatedwith image algebraand its implication to computervision remains largely
uncharterederritory which awaitsdiscovery. For example,very little work hasbeendonein relating
imagealgebrato computervision techniquesvhich employtools from suchdiverseareasas knowledge
representationgraphtheory, and surfacerepresentation.

Severalimagealgebraprogramminglanguagesave beendeveloped.Theseinclude image algebra
Fortran (IAF) [68], an image algebraAda (IAA) translator[65], image algebraConnectionMachine
*Lisp [67, 19], an imagealgebralanguage(IAL) implementationon transputerg9, 10], and animage
algebraC++ classlibrary (i ac++) [66, 62]. Unfortunately,thereis oftena tendencyamongengineergo
confuseor equatetheselanguageswith imagealgebra. An imagealgebraprogramminglanguageis not
imagealgebrawhich is a mathematicatheory. An imagealgebra-basegrogramminganguageypically
implementsa particular subalgebraof the full image algebra. In addition, simplistic implementations
canresultin poor computationaperformance Restrictionsandlimitationsin implementatiorare usually
dueto a combinationof factors,the mostpertinentbeing developmentostsand hardwareand software
environmentconstraints. They are not limitations of image algebra,and they should not be confused
with the capability of imagealgebraasa mathematicatool for image manipulation.



Image algebrais a heteongeneousor many-valuedalgebraHeterogeneouslgebrain the senseof
Birkhoff andLipson[3, 45], with multiple setsof operandsand operators.Manipulationof imagesfor
purpose®f imageenhancemengnalysis,andunderstandingnvolvesoperationsot only on images but
alsoon differenttypesof valuesandquantitiesassociateavith theseimages. Thus,the basicoperandof
imagealgebraareimagesandthe valuesand quantitiesassociatedvith theseimages.Roughlyspeaking,
an imageconsistsof two things, a collection of pointsanda setof valuesassociatedvith thesepoints.
Imagesare thereforeendowedwith two types of information, namely the spatial relationshipof the
points, and also sometype of numeric or other descriptiveinformation associatedwvith thesepoints.
Consequentlythe field of imagealgebrabridgestwo broad mathematicahreasthe theory of point sets
and the algebraof value sets, and investigatestheir interrelationship. In the sectionsthat follow we
discusspoint and value setsaswell asimages,templatesand neighborhoodghat characterizesomeof
their interrelationships.



CHAPTER 2
ELEMENTS OF POINT SET TOPOLOGY

In orderto readanythingaboutour subject,the readerwill haveto learnthe languagethatis used
in it. We shall try to keepthe numberof technicaltermsas small as possible,but thereis a certain
minimum vocabularythat is essential.Much of the standardanguageis takenfrom point settopology
andthe theory of algebraicsystemssubjectswith which we arenot concernedor their own sake.Both
subjectsare, indeed,independenbranchesof mathematics Point settopology and settheory havetheir
own basicunddined conceptssubjectto variousaxioms;one of theseundefinedconceptsis the notion
of a setitself. It is not our intentionto formally definethe requiredaxiomsthat governthe useof sets
but deal with setson an intuitive basis.

2.1 Sets

Intuitively, we think of a set as somethingmade up by all the objects that satisfy some given
condition,suchasthe setof integers,the setof pagesin this book, or the setof objectsnamedin a list.
The objectsmaking up the set are called the elements,or membersof the setand may themselvede
sets,asin the caseof all subsetsof a given set.

We adoptthe conventionof denotingsetsby capitallettersandthe elementsof setsby smallletters.
The following is a brief summaryof someof the things we shall simply assumeaboutsets.

2.1.1 A setX is comprisedof elementsandif z is one of the elements,we shall denotethis fact
by “z € X.” The notation“z ¢ X" shall denotethe fact that 2 is an object which is not an
elementof X

2.1.2 Thereis exactlyonesetwith no elements.lt is the emptyset andis denotedby the symbolJ.

Throughoutthis book, the notationof symboliclogic will be usedto shortenstatementsif p andq
are propositionsthen the statement'p = ¢” meansthat p implies q or, equivalently,if p is true, then
g is true. The statement'p <= ¢” is read: “p if andonly if g,” and meansthat p and g are logically
equivalent i.e. “p = g andqg = p.”

An expressiom(z) thatbecomes propositionwhenevewaluesfrom a specifieddomainof discourse
are substitutedor z is calleda propositionalfunction or, equivalently,a conditionon z; andp is called
a property, or predicate. The assertion“z haspropertyp” meansthat “p(z)” is true. Thus,if p(z) is
the propositionalfunction “z is an integer,” then p denotesthe property“is an integer,”and “p(2)” is
true, whereas“p(1/2)” is false.

The quantifier “there exists” is denotedby 3, and the quantfier “for each”is denotedby V. The
assertion'Vz Jy s.t.Vz : p(z,y, 2)" reads“for eachx thereexistsay suchthatfor eachz, p(z,y, 2)
is true.”

A setmay be describedeither by giving a characterizingoropertyor by listing the elements. The

standardvay to describea setby listing elementds to enclosethe designation®f the elementsseparated
by commas,in bracese.g. {1,2,3,4,5}. In termsof a characterizingpropertythis set could be written



as{z : p(z)}, which reads"the setof all z suchthatp(z),” wherep denoteghe property“is a positive
integer less than 6.”

If X andY aresets,then“X = Y” will meanthat X and Y have the sameelements;that is,
Ve : (reX) < (z€Y).
X C Y, read“X is a subsetof Y,” signifiesthat eachelementof X is an elementof Y, thatis,

Ve : (¢ € X) = (¢ € Y). Equalityis not excluded— we call X a propersubsebf Y wheneverX C Y
and X # Y. The setwhoseelementsare all the subsetf a given set X is called the power set of X
andis denotedby 2X. The following statementsare evident:

2.1.3 X C X for everysetX.

214 If X CcYandY C Z,thenX C Z (i.e. C is transitive).

2.15 X =Y if andonlyif bothX Cc Y andY C X .

216 @ C X for everysetX

217 @ e 2X and X e 2¥.

m

218 YCX <Y e2¥ andz € X < {2} € 2¥X.

Of these,2.1.5is very important: the equality of two setsis usually provenby showingthat each
of the two inclusionsis valid.

Throughoutthis text, various familiar setsof numberswill occur naturally. For conveniencewe
shall now reserve:

Z to denotethe set of integers,

Q the set of rational numbers,

R the set of real numbers,
and

C the set of complex numbers.

ThenotationZt, 72—, R+, andR~ will referto the setof all positiveintegers the setof all negative
integers, the set of all positive real numbers,and the set of all negativereal numbers,respectively.
Observethat the number0 is not an elementof any of thesefour sets. The setwhoseelementsare the
number0 and the positive integerswill be denotedby N. Thus,

N = {0,1,2,3,...}.
Threefinite subsetsof 7 thatwill occurthroughoutmuch of this text are

Z,=10,1,....,n -1}, 2}t = {1,2,... ,n}, and Zy, = {-n,...,—1,0,1,...,n},

wheren € 7Z%.



2.2 The Algebra of Sets

Intuitively, an algebra is simply a collection of honemptysetstogetherwith a finite number of
operations(rules) for transformingone or more elementsof the setsinto anotherelementof one of
the sets. The formal definition of an algebrawill be given in Chapter3. In this sectionwe define
the elementaryset-theoreticoperationsand presenta list of standardformulaewhich are convenientin
symbolic work.

When defining operationson and betweensetsit is customaryto view the setsunderconsideration
assubsetof somelargersetU, calleda universalsetor the universeof discourse For instancejn plane
geometry,the universalset consistsof all the pointsin the plane.

2.2.1 Example: Considerthe equation
(z+1)(2z - 3)(2* +1) =0

whose solution setis the set X = {-1,2,i,—i}, where: = /—1, providedthat C is the
universalset. However,if R is the universalset,then X = {-1,3}.

2.2.2 Definition. Let X andY be given sets. The unionof X andY, written X UY, is definedasthe
setwhoseelementsare eitherin X or in Y (or in both X andY). Thus,

XUY={z:2zeXorzeY}.

The intersectionof X andY, written X NY, is definedasthe setof all elementsthat belong
to both X andY. Thus, X NY = {z: z€ X and z € Y}. For example NUZ~ =7 and
Nn{-2,-1,0,1,2} = {0,1,2}.

Two setsX andY are called disjoint if they haveno elementsn common,thatis, if X NY = &.
Obviously, Zt and Z~ are disjoint.

If X C U, thenthe complemenif X (with respectto U) is denotedby X’ and is defined as
X' ={z: 2 €U, ¢ X}. Thedifferenceof two setsX,Y C U is denotedby X\Y anddefinedas
X\Y ={ze X: 2¢Y}. Notethat X' = U\X.

For future referencewe list below (2.2.1) someof the more importantlaws governingoperations
with sets. Here X, Y, and Z are subsetof somegiven universalsetU.

Becauseof associativity,we candesignateX U (Y U Z) simplyby X UY U Z. Similarly, a union
(or intersection)of four sets,say (W U X)U (Z UY'), canbewrittenasW U X UY U Z becauseby
associativity the distribution of parenthesess irrelevant,andby commutativity,the orderof termsplays
norole. By induction,the sameremarksapplyto the union (or intersection)of anyfinite numberof sets.

The union of n sets, X1,..., X,, is written |J X;, andthe intersectionis [ X;.
=1 i=1

The relation betweenn, U, and C is given by:

2.2.3 The statements
HXCY,@(X=XnY,@{i))Yy=XuY,(ivY'cX,and(v) X NY' =0
are all equivalent.



Identity Laws

XuUu=U XnU=X
Xug=X XN@=0
Idempotent Laws
XuX=X XnX=X
Complement Laws
(XY =X o =UU =0
XuX'=U XnX'=¢
Associative Laws
(XUY)uZz=XU(YUz) (XnY)nzZz=Xnl¥Ynz)
Commutative Laws
XUY=YUX Xny=YnX
Distributive Laws
Xul¥nzZ)y=(XuY)n(Xu2z) XNnYuZ)=(XnY)u(XnZz)
DeMorgan’s Laws
(XuY)y=X"nY’ (XNnY)y=X"UY’

Figure 2.2.1 Laws of Operationswith Sets

2.3 Cartesian Products

Let X = {z,y} andY = {w,y,z}. The setof distinct orderedpairs

Z = {(537 w)v (1'7 y)v (ZE, Z)v (y, w)v (yv y)v (yv Z)}

in which the first componentof eachorderedpair is an elementof X while the secondcomponents an
elementof Y is calledthe Cartesianproductof X andY. Orderedpairs are subjectto the one condition:
(z,y) = (z,w) <= ¢ = z and y = w; in particular,(z,y) = (y,z) <= = = y. Sincethe Cartesian
productis oneof the mostimportantconstruction®f settheory— enablingusto expressmanyconcepts

in terms of sets— we defineit formally.

2.3.1 Definition. Let X, Y betwo sets. The Cartesianproductof X andY, denotedby X x Y, is the

setof all orderedpairs {(z,y): = € X,y € Y}.

2.3.2 Example: View the elementsof X = {1,2,3} asthe coordinatesof points on the x-axis and
the elementsof Y = {1, 2, 3,4} asthe coordinatesof pointson the y-axis. Thenthe elements

of X x Y aretherectangularcoordinatef the twelve points shown (Figure2.3.1).



1,4) (2,4) (3.4)

1.3) (2,3) (3.3)

1.2) (2,2) (3.2)

(1,2) (2,2) (3.1)

1 2 3
Figure 2.3.1 The CartesianproductX x Y viewedas a subsetof the plane.

If in the above examplewe would havelet X = Y = N instead,then the elementsof the set
X xY = Nx N areall the pointsin the first quadranthaving integral coordinates. Similarly, when
X =Y =R, thesetX xY =R x R consistsof all pairs(z, y) of realnumbersr andy, andrepresents
the usual (z, y)-coordinateplane.

The Cartesiarproductof threesetsX, Y, andZ is definedby X x Y x Z = (X x Y') x Z, andthat
of n setsby induction: X; x --- x X,, = (X1 X --- X X,,_1) x X,,. The Cartesianproductof n setsis

alsodenotedby [] X;; anelementof [[ X; is written (zy,...,2,) andz; is calledtheith coodinate
If X =X, fori=1,...,n, thenwe defineX™ = [] X;. In particular,the (z, y)-coordinateplane,also

=1
known as two dimensionalEuclideanspace is denotedby R?, while Z? denotesthe discretesubsetof
R? consistingof all points having integral coordinates.

Thenotion of Cartesiarproductextendghe setof elementaryset-theoretioperations.In comparison
to U andn, however the Cartesiamproductis neithercommutativenor associativein general, X x Y #
YxXand(X xY)x Z#X x (Y X Z). Also, X XY =@ < X =QorY = (or both). The
relation betweenthe Cartesianproductand the operationsof union and intersectioncanbe summarized
as follows:

233 X =(YUZ) = (XxY)U(X x 2).
Xx(YNnZ)=(XxY)n (X x Z).

2.4 Families of Sets

If for eachelement)A of somenonemptyset A there correspondsa set X, then the collection
{X\ : A€ A} is calleda family of sets,and A is called an indexingsetfor the family. We also write
{Xa}aea for {X: A e A}, If theindexingsetA = N, thenthe indexedfamily {X;},.y is calleda
sequencgof sets)and may also be denotedby {X;}:2,.



The notion of union and intersectioncan be generalizedo any arbitrary indexedfamily of subsets
of someuniversalset U.

2.4.1 Definition. Let {X,},., beafamily of subsetof a universalsetU. The union of this family

is denotedby |J X, andis the set
AEA

{z € U: 2z € X, for at least one A € A} .

The intersectionis denotedby (] X, andis the set
AEA

{reU:ze X,forevery A € A} .

For a sequence X;}.—, of setswe also usethe notation

UXi:XluXQU..., and ﬂXi:XlﬂXﬂ]

to denoteunion and intersection,respectively.

242 Example: Let A = {A:AeR:0<A<L 1} For each A € A, let X, =
{r:7€R, 0<r<A}. Then

UX)\:{T:UST'Sl}:Aaand ﬂX/\:{O}'
NeA A€A

Example2.4.2canbe generalizedo the following usefulfact: let X be any setand,for eachz € X,

let X, be a subsetof X suchthatz € X, ¢ X. ThenX = (J X,.
rzeX
It follows from the definition that the union andintersectionof a family of setsdoesnot dependon

how the family is indexed. Thatis, union andintersectionare unrestrictivecommutativeand associative.
The complementaws, distributive laws,andDeMorman’slaws alsohold for thesegeneralizedperations.
In particular, we have

2.4.3 If {X)},c, is anyfamily of subsetsof someuniversalsetU andY C U, then
(1 YU(ﬂX/\)Z ﬂ(YUX)\)

) A€A AEA
2) Yn(U X, = U¥nXy)
A€A AEA
3) (UX)) = NX,and (NX) = U X,
AEA AEA AEA AEA
4) Yx(U X)) =U(®Y xX))
A€A AEA
(5) Yx (N X)) = N xX))
A€EA A€EA
6) N 2% = 2(QAXA) and |J 2% C Q(ALeJAXA) :
AEA AEA
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2.5 Functions

The notion of a function (or map is basicin all mathematicslntuitively, a functionf from a setX
into asetY, written f : X — Y, is a rule which assignsto eachz € X someelementy of Y, where
the assignmenof z to y by the rule f is denotedby f(z) = y or f : « »» y. However, we shall
definethe notion of a function formally in termsof the primitive concept‘set” by identifying functions
with their graphs.

2.5.1 Definition. Let X andY be two sets. A functionf from X to Y, denotedby f : X — Y is
a subsetf C X x Y with the property: for eachz € X, thereis one,andonly one,y € YV
suchthat (z,y) € f. The setof all functionsfrom X into Y will be denotedoy Y*. Thus
Y¥X = {f: fisafunction from X to Y}.

We write f(z) = y for (z,y) € f andsaythaty is the value f assumesat z, or that y is the
evaluationof f at z. For instanceddining X =Y = N, thenthesetf C X x Y definedby

i) f=A(z,y):y=22+1,2€ X} or
(i) f=A(,2e4+1): 2€ X}
is afunction f : X — Y. Observethat this function is completelyspecfied by the rule
(i) f(xz) = 2z 4 1 or, equivalently,by eithery = 2z + 1 or 2 »> 2z + 1.

Throughoutmuch of this book we shall specify functionsby assignmentules (asin (iii)) andcall
theset{(z,y):y = f(z)and 2 € X}, wheref : X — Y, the graph of the assignmentule f(z) = y
or, simply, the graphof f. Note that underthis definition the statementthe graphof f ” is synonymous

with the statementthe functionf.” We will also periodicallyreferto certainspecialpropertiesandtypes
of functions. In particular,it will be importantto distinguishbetweenthe following typesof functions:

2.5.2 A functionf: X — Y is saidto be one-to-onglor 1-1) if distinctelementsn X havedistinct
evaluationsj.e. © # z = f(xz) # f(z) or, equivalently, f(z) = f(z) = © = z.

2.5.3 A functionf: X — Y is saidto be onto (or f is a function from X onto Y) if everyy € YV
correspondso an evaluationf(z) for somez € X;i.e.if y € Y = 3z € X such that f(z) =

Y.

2.5.4 A function f : X — Y assigningall z € X to the samesingle elementy € Y is called a
constantfunction.

2.5.5 Thefunction f : X — X with the property f(z) = 2 V2 € X is called the identity function
on X and will be denotedby 7x. If A C X, the functioni : A — X givenby i(a) = a is
called the inclusion of A into X.

2.5.6 Given sets X1,..., X, the function p; : f[Xi — X;, wherel < j < n, definedby

=1
pi(21,...,2;,...,2,) = x; is calledthe projection onto the jth coordinate.
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2.5.7 Suppose Xi,...,X,, Yi,...,Y,, and X are nonempty sets, and Vi = 1,...,n

there exist functions f; : X; — Y; and ¢ : X — X, Then the families
{firi=1,...,n}and {¢g;: i =1,...,n} inducenewfunctionsf : [[ X; — J[ Y; and g¢:

X — I X; that are defined by f(z1,...,a0) = (fi(21),- ., fulea)) and g(a) =

1=1
(¢1(2),...,gn(2)), respectively. The functions f; and g¢; are called the ith-coodinate
functionsof f and g, respectively.

2.5.8 Givenafunction f : X — Y andasubsetd C X, thenthe function f consideredonly on A
(i.e. the function { (z, f(z)): « € A }) is called the restriction of f to A andis denotedby
fla. Thus, fla = fN(AxY).

2.5.9 In thereversedirection,if A C X andf: A — Y, thenanyfunction F : X — Y with the
property F'| 4 = f, is called an extensiorof f over X relativeto Y.

2.5.10 Let X = AU B. Givenfunctionsf : A — Y andg : B — Y, thenthefunctionF : X — Y
defined by

flz) ifee A
F(z) =
(=) {g<w) if v € X\A
is calledthe extensiorof f to g over X relativeto Y. We will usethe symbol f|9 to denotethis
extension.

The differencebetween2.5.9and?2.5.10is in the definition of an extensionandthe extensionof the
function f. Observealsothatin 2.5.10,F|4 = (f|%) | ,= f.

The following examplesshouldhelpin clarifying the importantconceptof “one-to-one”and“onto”
functions. Thefunction f : N — N definedby f(z) = 2z+1 is notontosince for examplef(z) # 2 € N
for any 2 € N. However,f is one-to-onesince2xz + 1 = 2z + 1 = 2 = z. On the other hand, the
functiong : R — Rt U {0} definedby g(z) = z? is ontosincefor everyy € Rt U {0} 3= € R (namely
x = £,/y) suchthatg(z) = y. But g is not one-to-onesinceg(—2) = g(2) and -2 # 2.

Giventwo functionsf : X — Y andg : Y — 7, thenthe compositiongo f : X — 7 is definedby
(go f)(z)=g(f(z)) Yz € X. Thefollowing theoremindicatesa simple methodfor establishinghat a
given function f (respectivelyg) is one-to-one(respectivelyonto).

2.5.11 Theorem. Letf: X — Y andg : Y — X satisfygo f = 1x. Thenf is one-to-oneandg is onto.

Proof: Sincef(z) = f(2) = = = (g0 f)(x) = g(f(z)) = g(f(2)) = (g0 f)(#) = #, we have
that f is one-to-one.The function g is onto sincefor anyz € X dy € Y, namelyy = f(z),

suchthatz = (go f)(z) = g(f(z)) = g(y).
Q.E.D.

As a simpleillustration of Theorem2.5.11we showthatfor any functionh : X — Z, the function
f:X =Y, whereY = X x Z and f(z) = (z,h(z)) is one-to-one.Let p; : X x Z — X bethe

12



projection onto the first coordinate. Thenp; o f : X — X is Ix. Hence,by Theorem2.5.1] f is
one-to-one(and p; is onto).

The fact thatthe compositeof one-to-oneandonto functionsis againa one-to-oneandonto function
follows from the next theorem.

2.5.12 Theorem. Supposef : X — Y andg:Y — Z.
(i) If fandg are onto,thengo f : X — Z is onto.
(ii) If f and g are one-to-onethengo f : X — Z is one-to-one.

Proof: (i) Letz € Z. Sinceg is onto,Jy € Y suchthatg(y) = z. Sincefis onto,Jz € X
suchthat f(z) = y. Butthen(go f)(z) = g(f(z)) = z. Thereforeg o f is onto.

(i) Supposeggo f)(z) = (go f)(a), i.e. g(f(z)) = g(f(z')). Then f(z) = f(z') sinceg is
one-to-one.But thenz = 2’ sincef is one-to-one.Accordingly, g o f is one-to-one.
Q.E.D.

2.6 Induced Set Functions

If f:X — Y, thenthesetX is calledthe domainof f andis denotedby domain(f). The rangeof
f, denotedby range( f), is definedasrange(f) = {f(z) : =z € X}. It follows thatdomain(f|4) = A,
range(fla) = {f(z) : = € A}, andthat f : X — range(f) is onto.

Sincefor eachA € 2% | range(f|a) € 2Y, f inducesa function f : 2% — 2Y definedby
flA)y={f(z) : e A}.
In addition, f also inducesa function f~! : 2V — 2X definedby
f ' B)y={z:2€Xand f(z) €B }.

The set f~1(B) is called the inverseimage of B.

It is commonpracticeto let f(A) and f ' (B) denotethe evaluationf(A) and f ' (B), respectively.
Sincein mostcaseghe contextof discussioravoidspossiblemisinterpretationthis economizesiotational
overhead. Although we shall follow this conventionto some extent, we point out that in machine
implementationand algorithm descriptionthe mapsf, f~', f, and f~' mustbe distinguishedas they
do representdifferent processes.

2.6.1 Example: Letf:R — R beddinedby f(z) = 22, A = {1,-v/2,v2,3}, and B = {1,4,9}.
Then f(A) = {1,2,9} and f1(B) = {1,-1,2,-2,3,-3}.

The inducedset-valuedunctions f and f~! are called setfunctionssincethey arefunctionsof sets
into sets. Inducedsetfunctionspossesvariousproperties.In particularwe state:
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2.6.2 Theorem. Letf:X — VY, AC B C X, and{A)},c, beanyfamily of subsetsf X. Then:
@) f(4) c f(B)

@ 7(U ) = U s

AEA AEA

i (0 a) € n s

A€A AEA

The following exampleshowsthat the inclusion (iii) cannot,in general be replacedby equality.

2.6.3 Example: Let A = {(z,y): 1<2<2,1<y<2}, B =
{(z,y): 1 <2 <2, 3<y<4} andp; : R x R — R the projectiononto the first coordinate
(i.e. thex-axis). SinceANB =3, p1(ANB) =D #{z: 1 <2 <2} =pi(A)Npi(B).

Of the two inducedsetfunctions,fv‘1 is the more importantone asit is much more well-behaved
in the sensethat it preserveghe elementaryset operations.

2.6.4 Theorem. Letf:X —Y,AC B CY,and{B)},, anyfamily of subsetof Y. Then:
i) f'(A) c B
@i 1B = (f74B)
@ (UB) = Ut

A€A A€EA

™ (0 m) = 0

A€EA AEA

Proof: We only prove (iv); the proofsof (i) through(iii) arejust assimple. Observethat

:cefl(ﬂBA) < f(z) € [ By <> f(z) E BA\VAEA

AEA A€EA

=zefN(By) VAeAs= e ) (B
AeA

mefl(ﬂBA> < f(z)e [| By <> f(z) e BA¥A €A

A€A A€EA

e f (B VAeAes= e ) f (B
AEA

Q.E.D.

The following importantrelationshipbetweenthe two setfunctionsis alsosimpleto verify:
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2.6.5 Theorem. Letf:X —Y,AC X,andB Cc Y. Then:
() AcC ftof(A) and
(i) fo f'(B) C B.

The inclusions(i) and (i) cannot,in general,be replacedby equality.

2.6.6 Example: Let A andp; be asin Example2.6.3 Then

A#pr(m(A) =p'({z:1<e <2} ={(z,9): 1<2 <2, —00 <y < oo}

If f:X — Y is onto, thenequality holdsin 2.6.5(ii). In particular,f is onto <= f(/~1(B)) =
B VB C Y. Similrly, f is one-to-one<= Vy € f(X) the set f~*({y}) consistsof a single
element. Thus, with each one-to-onefunction f : X — Y thereis associateda function f=' :
f(X) — X, called the inverse of f, which is definedby f~!(y) = =z, where {z} = f~'({y});
thatis, f~(y) € f'({y}) Yy € f(X). For example,if f : Rt — R is given by f(z) = /z,
then f~1(2) € f~*({2}) = {4} and, hence,f~1(2) = 4. Similarly, f~*(v/2) = 2 and, in general,
f Y z) =2V € f(RT). If f: X — Y is both one-to-oneandonto, thenthe inverseof f is a function
'Y — X sincef(X) =Y. This differs from f~1:2Y — 2X eventhough,aspointedout earlier,
it is standardpracticeto usethe samefunctional notation.

There are several useful observationsconcerningone-to-oneand onto functions. Supposethat
f:X — Y is one-to-oneandonto. Thenf ! : Y — X is one-to-oneandonto,and(f 1) ! = f. In
addition, equality holdsin 2.6.5(i) and(ii). If we alsohavea one-to-oneandonto functiong :Y — 7,
thenbothgo f and(g o f)‘1 areone-to-oneand onto functions. This follows from Theorem2.5.12and
the fact that (go f) ' = f1og™'.

2.7 Finite, Countable, and Uncountable Sets

Two setsare saidto be equivalentif thereexistsa one-to-oneandonto function f : X — Y. Hence
the ideathat the two setsX and Y are equivalentmeansthat they are identical exceptfor the namesof
the elements.Thatis, we canview Y asbeing obtainedfrom X by renamingan elementz in X with the
nameof a certainuniqueelementy in Y, namelyy = f(z). If two setsX andY arefinite, thenthey are
equivalentif andonly if they containthe samenumberof elements.Indeed,the idea of a finite setX is
the sameassayingthat X is equivalentto a subset{1, 2, ..., n} of the naturalnumbersfor somen € Z*.
To makethis andrelatedideasmore precise we list the following definitionsinvolving a setX andZ+.

2.7.1 Definition. A setX is
finite if andonly if eitherX = & or 3n € Z*+ suchthat X is equivalentto {1,2,...,n},
infinite if it is not finite,
denumerabldf and only if it is equivalentto Zt,
countableif and only if it is finite or denumerableand
uncountableif it is not countable.
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Somepropertiesof countablesetsare listed in the next example.

2.7.2 Example:

(i) X C 7t = X is countable.

(i) X is countable<—= J a set Y C ZT suchthat X is equivalentto Y.

(iii) If X is equivalentto Y andY is countablethen X is countable.

(iv) If X C Y andY is countable,then X is countable.

(V) If f: X — Y isontoandX is countablethenY is countable.

(vi) If f:X — Y is one-to-oneandY is countablethen X is countable.

(vii) If A is countableand{X) : A € A} is a collectionof countablesets,then |J X is countable;

. . . AeA
i.e. the countableunion of countablesetsis countable.

Assuming Example 2.7.2 as a fact, it is not difficult to show that the set Z? and the set @ of
rational numbersare countablesets. First, note that the function f : Z+ — Z definedby f(2n) = n
and f(2n — 1) = —n + 1, wheren = 1,2,3,... is one-to-oneand onto. Thus,Z is equivalentto Z*
and hencecountable.Now for each: € Z defineX; = {(¢,n): n € Z}. Then,sinceZ is countable,t
follows from 2.7.2 (vii) thatZ? = (J X; is countable.

i€z
To showthat @ is countabledefine f : 72 — Q by
. ifj tfj#0
fli,5) = 71 _#
0:f7=0.
Thenf is obviously onto. Henceby 2.7.2 (v), @ is countable.

We wish to attacha label card(X) to eachset X, called the cardinality of X, which will provide
us with a measureof the “size” of X. In particular,the label shoulddistinguishin someway if one or
two given setshas more membersthan the other. Assigningcard(X) = n to a setX equivalentto

{1,2,...,n} will satisfythis requiremenfor finite sets(usingthe conventioncard(X) = 0 if andonly
if X = &), for if Y is equivalentto X, thenit follows from Theorem2.5.12that Y is also equivalent
to {1,2,...,n}. Therefore,card(Y) = n andhence,card(X) = card(Y). As canbe seenfrom the

finite case,countingis not neededor the purposeof determiningwhetheror not two setshavethe same
cardinality. We needonly to pair off eachmemberof one setwith a memberof the other setand see
if any elementsareleft over. Thusthe notion of two setshavingthe “samesize” canbe formalizedas
follows: two setsX and Y havethe samecardinality if andonly if they are equivalent.

2.7.3 Examples:

(i) Let X = {2n:n € Zt} C Zt andf : Z+ — X bedefinedby f(n) = 2n. It is easyto verify
that f is one-to-oneand onto. Thus X and Z* havethe samecardinality eventhough X is a
propersubsetof Z*. This is not possiblefor finite sets. No finite setcanbe equivalentto one
of its proper subsets.

(i) Any openinterval (a,b) = {x € R : a < 2 < b} C R is equivalentto the openinterval (—1, 1),
sincethe function f : (~1,1) — (a,b) definedby f(z) = 1a(1 - 2) + 3b(1 + =) is one-to-one

andonto. Furthermoreby definingg : (-1,1) = R by g(z) = I_Lm it canbe seenthat (-1,1)
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is equivalentto R. Thus,card((—1,1)) = card(R). It thereforefollows that any openinterval
(a,b) has*“just as many points” asR itself.

In orderto comparethe size of two sets,we makethe following definition:

2.7.4 Definition. Fortwo sets,X andY, we write card(X ) < card(Y') if thereexistsa one-to-one
function from X to .

Note that we use the symbol “<” rather than the word “smaller.” Obviously, if X C Y, then
card(X) < card(Y). However, the existenceof a one-to-onefunction from X to Y doesnot exclude
the possibility that there existsalso a one-to-oneand onto function from X to Y, as Example2.7.3 (i)
and (ii) show. Example2.7.2 (iv) showsthat, roughly speaking,countableinfinite setsrepresenthe
smallestinfinity: No uncountableset can be a subsetof a countableset. In fact, it can be shownthat
card(Z%) = card(Q) andcard(Z*) # card(R) [27]. SinceZt C R, card(Z*) < card(R). Thus,R is
in a sensemuch larger thanZ* or @, which are of the sameinfinite size.

2.8 Algebra of Real-Valued Functions

If feRX (.e., f: X — R), thenf is called a real valuedfunction on X. Many of the common
arithmeticoperationsof R areinheritedby RY. We provide a quick review of theseinheritedoperations
as they are of fundamentalimportancein image algebra. Specifically,let f,g € R¥, k € R, and [K|
denotethe absoluteof k. Thenwe ddfine:

i) (f+g):X =R by (f+g)(z)

(@ f
(i) (k-f): X — R by (k-f)(z)

(idi) (

(i) (f

z) + g(z)

= f(
k- (f(x))
[ f1): X — R by (|f)(z) = [f(z)|

9): X = R by (f-g)z) = f(x)-g()

Observethat (f-¢) : X — R is not the compositionf o ¢ definedpreviously. For example, if
f: R — R is definedby f(z) = 2? andg : R — R by g(z) = 2z, then(f - g)(z) = 223, while
(fog)(z) = 422. Notealsothatf-g=g-f,but fog # gof

It is alsoconveniento identify the realnumberk € R with the constanfunctionk : X — R defined
by k(z) = k Vo € X. In particular,if f: X — R, thenVk € R we definescalaradditionof f by k as
the function (f 4+ k) : X — R, where(f + k)(z) = f(z) + k. Thus,f+k = f+ k.

The setR¥, togetherwith the above operations,possessesariousimportant properties,some of
which are includedin the next theorem.

2.8.2 Theorem. ThesetR¥ togetherwith the operationsddinedin 2.8.1 satisfiesthe following
properties:
1. Theoperationof addition of functionsf and g satisfies:

(&) (f+9)+h=Ff+(g+h)
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(i) f+g=9+f
(itd) 30 € RX, i.e. azeo function0 : X — R, suchthat f + 0 = f
(iv) VfeRY 3-feRY, ie,afunction—f: X — R, suchthat f + (- f) = 0,
the zewo function.
2. Theoperationof scalar multiplicationk - f of a functionf by the real numberk satisfies:
(i) k-(K-f) = (kK)f
(#5) 1-f=Ff
(i2) 0-f =0
3. Theoperationsof addition and scalar multiplication satisfy:
(1) k-(f+g)=(k-f)+(k-g)
() (k+k)-f=(k-f)+&-f)

Proof: We only prove part3 of the theorem.The remainingpartsarejust assimpleto prove
and are left as an exercise.

—
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forallz € X; hencek - (f+g)= (k- f)+ (k-g). Observethatwe usethe fact thatk, f(z)
and g(z) arereal numbersand satisfy the distributive law.

Q.E.D.

It follows from propertiesl through3 of Theorem2.8.2thatR* togethemwith operationglefinedin
2.8.1formsareallinear vectorspaceasdefinedin Chapter3. If X is afinite setconsistingof n elements,

thenRY may be viewed as the well-known vector spaceR™ = [[ R.
=1

2.8.3 Example: Let X = {1,2,...,n} andlet v : R® — R" be definedby v(f) =
(f(1), £(2),--., f(n)). f v(g) = v(f), then(g(1),9(2),...,9(n)) = (f(1), f(2),-.., f(n))

).
and, hence,g(i) = f(¢) Vi € X. Therefore,¢ = f andv is one-to-one. Furthermore,
if (z1,22,...,2,) € R*, and f : X — R is the function definedby f(:) = z;, then
v(f) = (z1,22,...,2,) and,therefore is alsoonto. It follows thatany function f : X — R
canbe uniquelyidentifiedwith the orderedn-tuple (f(1), f(2),..., f(n)). In addition,if f and
g correspondto the n-tuples

f=(z1,22,...,2,) and ¢ = (y1,Y2,-++,Yn),
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then
frg=(14+y,224+92,..., 2, + Yn)

and for any k € R,

k-f=(kei,kae,... kay).

Example2.8.3 showsthat RX andR™ are, from an algebraicpoint of view, essentiallythe same
vectorspace.This fundamentafact providesa key componenin the study of the imagealgebraandits
relationshipto other algebraicstructures.The precisedefinition of algebraicequivalenceof two vector
spacess given in the next chapter.

2.9 Distance Functions

A type of real valuedfunction of particularimportancein imageprocessingand patternrecognition
is the distancefunction Distancefunctionsinduce geometricstructureson setsthroughthe notion of
nearnes®f oneelementto another. The generaldefinition of a distanceor metricon a setX is asfollows.

2.9.1 Definition. Let X be a nonemptyset. A distancefunction or metric on X is a function
d: X x X — R that satisfiesthe following three conditions:

(1) d(z,y) >0 Ve,y € X and d(z,y) =0 <=2z =y.
(2) d(z,y) = d(y,z) Ve,y € X.
) d(z,2) < d(z,y) + d(y,2) Vz,y,z € X.

When speakingof setson which metricsare defined,we refer to the elementsof the setas points
andto d(z,y) asthe distancebetweenthe pointsz andy. Property(1) of the function d characterizes
it as strictly nonnegativeand (2) as a symmetricfunction of z and y. Property(3) is known as the
triangle inequality Excellentexamplesof distancefunctionsare threemetricscommonlyusedin image
processing. Theseare the Euclideandistance,the city block or diamonddistance,and the chessboat
distanceon R". For arbitrary pointsx = (z1,...,2,), andy = (y1,...,¥,) of R* we definethe
Euclideandistancebetweenx andy by

L
2

d(x,y) = [ (wk—yk)2] ,

k=1

the city block distanceby
dl(X7Y) = Z |xk - yk| )
k=1

and the chessboat distanceby

da(x,y) = max{|zr —yk| : 1 <k < n}.
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GivenasetX, adistanced on X, anda humberr > 0, thenfor any pointz € X, we candefine the
setNg.(z) of pointsy € X thatarewithin distancer of 2 : Ng,.(z) = {y € X : d(2,y) < r}. In order
to simplify notationwe let N.(z) denotethe set Ny, () if it is clearfrom the discussionasto which
metricd is beingused. We may think of N4 ,(z) asa“sphere”with centerx andradiusr. Geometrically,
however thesesetsneednot look like spheresFigure2.9.1providesexamplesof spheresn R? of radius
r = 1 aboutthe point 0=(0,0) determinedby the Euclidean,city block, and chessboardlistances.

(@) (b) ()

Figure 2.9.1 The sphereqa) Ny,(0), (b) Ng, ,(0), and (c) Ng,,(0).

2.10 Point Setsin R™

A large portion of the materialintroducedin the previoussectionsdealt with abstractsets,thatis,
setsof arbitraryobjectswhosenatureis immaterial. In this sectionwe briefly review propertiesof special
setsin R™. A nonemptysubsetof R™ will be referredto asa pointset Elementsof a point setX, called
the pointsof X, will be denotedby smallbold letters. In particular,the origin of R™, which is the n-tuple
(0,0,...,0) consistingonly of zeros,will be denotedby O.

2.10.1 Definition. Letx = (z1,...,2,) € R®. Thenthelengthor norm of x is definedas
Ix[| = /o + -+ a2 .

It follows from this definition that the norm of the differenceof two points is the sameas the
Euclideandistancebetweenthe points;i.e., if x = (z1,...,2,) andy = (y1,...,¥.), then

d(x,y) = [Z (zk — yk)2] - Ix — Il

k=1

It is now easyto establishthe essentialpropertiesof the norm.
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2.10.2 Theorem. Letx andy be pointsin R*. Thenwe have
(7)  ||x|| > 0, and ||x|| =0 if, and only if, x = 0.

() kvl = [ly - x.
7

(iii) szyk < Ixlllivll-

(iv) Iyl < lixll + Iyl

Proof: Statementgi) and(ii) areimmediatefrom the definition. Statementiii) is knownasthe
Cauchy-Schwartmequality which can be rewritten as

(&) <(E)(59)

Sincea sum of squarescan never be negative,we have

n

Y (err )’ >0

k=1

for everyreal numberr. This inequality can be written in the form
Ar2-|—23r+(]2 0,
where

n n
Aszi, Bzzxkyk, szyz-
k=1 k=1

If A>0,thenletr = —B/A in orderto obtain B2 — AC < 0, which is the desiredinequality.
If A = 0, the proof becomedtrivial.

Statement(iv), known as the triangle inequality, follows directly from the Cauchy-Schwartz

inequality:
Ix+yll* =) (en+9)* =Y (ef + 2200 + o)
k=1 k=1
= [1xI* + Iyl + 2 erye
k=1
< I+ I+ 20yl = (1] + [y 1D
Thus

=yl < (lxll+ 1y lD?

By taking the squareroot we obtain (iv).
Q.E.D.

With the notion of distance,we can now proceedto define what is meantby a neighborhoodof
a point in R™.
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2.10.3 Definition. Let xg€ R®* andr € Rt. The set
N (x0) ={x e R" : ||x — x¢|| < 1}
is called an opensphee of radiusr and centerxg. The set
N,(x0)={x€eR" : ||x —xo| <7}

is calledthe closedsphereof radiusr andcenterxy. Any openspherewith centerx, is called
aneighbohoodof x, andis denotedby N (x¢). An openspherewith its centerx, removedis
called a deletedneighbohood of x, andis denotedby N'(xg).

Observethatontheline R = R!, aneighborhoodf a point xg is a symmetricopeninterval centered
at xg, while in the pIanelR2 it is a disc centeredat xy with its boundary,which is the setof all points
x satisfying the equation||x — x¢|| = r, removed.

With respectto a set X C R", eachpoint xg € R™ hasone of threerelations,and for eachwe use
a familiar word in a preciseway:

1. xq is aninterior point of X if thereexistsa neighborhoodV (x,) suchthat N(x¢) C X,

2. xq is anexterior point of X if thereexistsa neighborhoodV (xg) suchthat N(xp)N X = &,
and

3. xp is a boundarypoint of X if xq is neitheran exterior nor interior point of X.

The setof all interior pointsof X is calledthe interior of X andis denotedby intX. The setof all
boundarypointsof X is calledthe boundaryof X andis denotedby 9 X . Note thata boundarypoint may
or may not belongto X: If welet X = N,(xp) andY = N,(xg), thendX = {x e R" : ||x — x¢|| = r}
and, hence, 0 X N X = & while 9y = 90X C Y.

Beginningstudentof multidimensionakalculusoften confusethe two distinct notionsof limit point
and boundarypoint. Limit pointsof setsin R™* are definedas follows:

2.10.4 Definition. A pointy isalimit pointof X if for everyneighborhoodV (y) ofy, N'(y) N X # @&.

It follows from the definition that everyinterior point of X is a limit point of X. Thus, limit points
neednot be boundarypoints. The next exampleshowsthat the converseis alsotrue.

2.10.5 Example: LetX = {x € R? : 0 < [|x|| < 1} U {(0,2)}. Theboundaryof X consistsof three
separateieces: The circumferencewhere||x|| = 1, andthe two points(0,0) and(0,2). The
interior of X is the setof pointsx with 0 < ||x|| < 1, andthe setof all limit pointsof X is
the set {x €R? : 0 < ||x|| < 1} U {(0,0)} = N1(0). In particular,(0,2) is a boundarypoint
which is not a limit point. A boundarypoint of X which is not a limit point is also called an
isolatedpoint of X. The reasonfor this definitionis thatfor isolatedpointsone canalwaysfind
neighborhoodswhich intersectno other points of X.

A subsetX of R™ is calledan opensetin R™ if X = intX andclosedif everylimit pointof X is a
point of X. Thus,opensetsarethe unionsof neighborhoodsand closedsetsare setsthat containall their
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limit points. We wish to stressthe differencebetweenhavinga limit point and containingone. The set
X ={1/n: neZ"} C R hasalimit point (namely,z = 0) but no point of X is a limit point of X. In
everyday usage,‘'open” and“closed” areantonymsthis is not true for the technicalmeaning.The setX
just describeds neitheropennor closedin R. The readershouldalsobe cautionedthat an openinterval
(a,b) in R! is no longer an opensetwhen consideredas a subsetof the plane. In fact, no nonempty
subsetof R! canbe openin R?, becausesucha setcan containno two-dimensionaheighborhoods.

It is importantto note that we definedthe conceptof “open” for setsin R™. This conceptcan
be extendedto “openin X.” SupposeY C X C R". ThenY is saidto be openin X if there exists
an opensetW in R™ suchthatY = W n X. Similarly, Y is closedin X if thereis a closedset W
in R™ suchthatY = W n X. Thustheset(0,1] = {re R : 0 <r < 1} is openin the closedset
[-1,1] = {r: =1 < r <1} since(0,1] = (0,2) N [~1,1] and (0, 2) is openin R!.

The following list summarizessomeimportantfacts aboutopenness&nd closedness.

2.10.6 Every neighborhoodV (x) is an opensetandevery closedneighborhoodV (x) is a closedset.

2.10.7 The union of any collection of opensetsis openand the intersectionof any finite collection
of opensetsis open. The intersectionof an infinite collection of opensetsneednot be open:

{0} = ﬁ (%, 1) is closed.
k=1

2.10.8 Theintersectionof any collection of closedsetsis closedandthe union of any finite collection
of closedsetsis closed. The union of an infinite numberof closedsetsneednot be closed:
(-1,1) = U [-7 -1, 1 - 7] is openeventhough [; — 1,1 — ] = N,(0) is closedfor

k=1
eachk.

2.10.9 A setis openif andonly if its complementis closed.

2.10.10 A pointx belongsto theboundaryof X if andonly if everyneighborhooaf x containsa point
that belongsto X and a point that doesnot belongto X.

2.10.11 X U 09X is a closedset.

It follows from 2.10.4thatthe setX = X U {x : x is a limit point of X}, calledthe closue of X,
is a closedset. In particular,X is closedif andonly if X = X. TherelationbetweenX andthe closed
setin 2.10.11is given by the equality X = X U #X. Also, from the definition of boundary,a point x
belongsto the boundaryof X if andonly if everyneighborhoof x containsa point that belongsto X
and a point that doesnot belongto X. In fact, this observationforms the usualdefinition of boundary
points of regionsin digital images. This is in contrastto limit points: Neighborhoodf limit points
neednot containpointswhich do not belongto X. Anotherdistinguishingfeatureconcerningimit points
and boundarypointsis providedby the next theoremandits corollary.

2.10.12 Theorem. If pis alimit point of X, then everyneighbohood of X containsinfinitely many
points of X.
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Proof: Supposéhereis a neighborhoodV (p) which containsonly a finite numberof points
of X. Letxy,...,x, denotethe pointsof N(p) N X, which aredistinct from p andlet

r = mintmum{||p — x;|| : x; € N'(p)n X}.
1<:<n
The minimum of afinite setof positivenumberss clearly positive,sothatr > 0. But thenthe
neighborhoodV, (p) containsno pointx of X suchthatx # p. Hence,accordingto Definition
2.10.4 p is not a limit point of X. This contradictionestablisheshe theorem.
Q.E.D.

2.10.13 Corollary. A finite subsetof R™ hasno limit points.

Accordingto thecorollary,finite setsarealwaysclosedsets. In ordinaryusagethe words“finite” and
“bounded”are sometimessynonymous.In mathematicghey are usedto describequite differentaspects
of aset. A setX is saidto be boundedif thereexistsa numberr suchthat ||x|| < r for everyx € X.
Geometrically this saysthatno point of X is fartherthanadistancer from theorigin; thatis, X C N.(0).
For example every neighborhoodn R™ is boundedandinfinite. Of course everyfinite setis bounded.

If X is a boundedset of real numbersthen, obviously, there exist numbersr and s such that
s <z < rVe € X. In this case,the numbersr and s are also called an upper bound and lower
boundfor X, respectively.Any setof real numbersthat hasan upperboundis saidto be boundedrom
above Similarly, any set of real numbersthat has a lower boundis said to be boundedfrom below
Obviously, a boundedset of real numbersis just a setthat is boundedfrom aboveand below. One of
the mostbasic propertiesthat characterizeshe real numbersis the leastupperboundproperty, namely,
any nonemptysetthatis boundedfrom abovehasa smallestupperbound,and any nonemptysetthatis
boundedrom below hasa greatestower bound. To be more precise supposeX is a boundedsetof real
numbers.Thenr € R is the leastupperboundof X, denotedby lub or by supX if andonly if r is an
upperboundof X andfor anyt € R with ¢ < r, t is not anupperboundfor X. The greatestiower bound
of X, denotedby glb or infX, is the numbers with the propertythatsis a lower boundfor X andif ¢t € R
with s < ¢, thent is not a lower bound. For exampletheset(1,2] = {z € R : 1 < 2 < 2} haslub = 2,
andglb = 1. Here2 € (1,2] but1 ¢ (1,2]. As our nexttheoremshows,closedboundedsetshavethe
importantpropertythat they containtheir leastupperboundand greatesiower bound.

2.10.14 Theorem. If X C R is closedandboundedwith lub =r andglb = s,thenr € X ands € X.

Proof: Supposer ¢ X. Foreveryt > 0, 3o € X suchthatr —t < 2 < r, for otherwise
r — ¢t would be an upperboundlessthanthe lub of X. Thuseveryneighborhoof r contains
a point x of X with  # r, sincer ¢ X. It follows thatr is a limit point of X which is not
in X. But this contradictsthe fact that X is closed.

Q.E.D.

The notion of boundedsetscan be extendedto setsother than subsetsof R*. SupposeX is an
arbitrary nonemptysetwith metricd and A C X with A # &. Thenwe saythat A is boundedif and
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only if theset{d(z,y) : =,y € A} is bounded.If A is boundedthenwe definethe diameterof A by

d(A) = sup{d(z,y) : =,y € A},

andd(A) = oo if A is not bounded.

The greatestower boundcan be usedto definethe distancebetweensets. In particular,for 2 € X
we define the distancebetweenx and A by

d(z,A) =inf{d(z,a): a € A},

andthe distancebetweentwo nonemptysubsetsA andB of X by d(A, B) = inf{d(a,B): a € A}.

It is of interestto notethatd(A, B) # 0 = AN B = &, but that the conversamplication neednot
be true, evenif both setsare closedsetsin R. As an example considerthe setsA = {n: n € Z+} and
B={n+Ll:nezt} HereAn B = @, while d(4,B) = 0.

2.11 Continuity and Compactnessin R™

Closely associatedvith the notion of boundedsetsis the conceptof compactnessCompactnesss
usually definedin termsof opencovers. By an opencover of a set X we meana collection {Y) } of

opensetssuchthat X c |JY,.
X

2.11.1 Definition. A subsetX of R is compactif everyopencovercontainsa finite subcover.

More explicitly, the requirements thatif {Y)} is anopencoverof X, thenthereexistsfinitely many
k

indices Aq,...,Ar suchthat X ¢ |J Y,,.
i=1
It is clearthateveryfinite setis compact.Recallthateveryfinite setis alsoclosedandbounded.The

nexttheorem known asthe Heine-BorelTheorem showsthat this propertyis sharedby all compactsets.

2.11.2 Theorem. (Heine-Borel) X C R™ is compactif andonly if X is closedand bounded.

We omit the proof of this theoremwhich canbe found in [49]. The notion of compactnesss of
greatimportancein connectionwith continuity. We recall the ¢ and ¢ definition of continuity.

2.11.3 Definition. Let X ¢ R* andf : X — R*. Thenf is saidto be continuousat a point xg € X
if, givenan arbitrarynumbere > 0, thenthereexistsa numberé > 0 (usuallydependingon ¢)
suchthatfor everyx € Ns(xo) N X we havethat f(x) € N.(f(x0)). Thefunctionf is saidto
be continuouson X if it is continuousat every point of X.

Anotherway of sayingthatf is continuousat xq is thatgiven e > 0, thenthereexistsé > 0 such
that for x € X

% = %of| <& = [|f(x) = f(xo)l| < €.
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This is the usual ddfinition of continuity taughtat the beginningcalculuslevel.
Continuousfunctionshave a very useful characterizationin termsof opensets:

2.11.4 Theorem. SupposeX C R™ and f : X — R*. Thenf is continuouson X if andonlyif f~'(Y")
is openin X for everyopensetY in RF.

Proof: Supposd is continuouson X andY is openin R*. We haveto showthatthereexistsan
opensetWin R” suchthat f~1(Y) = WnX. Letx € f~}(Y). Thenf(x) € Y andsinceY is
open,thereexistse > 0 suchthat N.(f(x)) C Y. Sincef is continuous thereexistsa number
6 > 0 suchthatfor everyz € Ns(x)N X we havethat f(z) € N.(f(x)) C Y. By thedefinition
of f~1(Y), we havethat Ns(x) N X C f~(Y). This showsthatfor everyx € f~}(V), we
canfind a neighborhoodV (x) suchthat N(x) N X C f~}(Y). Solet

w= |J Nx),
zef-1(Y)

whereeachneighborhoodsatisfiesthe property N(x) N X C f~1(Y). ThenWn X c f~1Y).
But clearly f~1(Y) c Wn X. Thus, f~1(Y)=Wn X.

Conversely,supposef (YY) is openin X for everyopensetY in R¥. Fix x € X ande > 0.
LetY = N.(f(x)). Thenby 2.10.6 Y is open.Hencef~'(Y) is openin X. Thus,thereexists
anopensetW in R" suchthat f~}(Y) = W n X. SinceW is openin R", thereexistsé > 0
suchthat Ns(x) C W. Therefore,

Ns(x)NX cwWnX=f14Y).

This showsthat for everyz € Ns(x) N X, f(z) € f(f~'(Y)) = Ne(f(x)). Hence,f is
continuousat x € X and - sincex was an arbitrarily chosenelementof X — f is continuous
on X.

Q.E.D.

Continuousfunctionshavethe importantproperty of preservingcompactness:

2.11.5 Theorem. SupposeX C R™ is compact.If f: X — R* is continuousthen f(X) is compact.

Proof: Let {Y),} be anopencoverof f(X). Sincef is continuous,Theorem2.11.4 shows
that eachof the sets f ' (Y)) is open. SinceX is compact,thereexistsfinitely many indices,
say Aq,..., A, suchthat

xXclJrto.
=1
Since f(f~1(Y)) C Y for everyY C R*, (i) implies that

J(xycUmn,.
=1
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This completesthe proof.
Q.E.D.

A function f : X — R is saidto be boundedf thereexistsa realnumberM suchthat|| f(x)|| < M
for all x € X. We now deducesomeconsequencesf Theorem2.11.5

2.11.6 Theorem. SupposeX C R™ is compact.If f : X — RF is continuousthen f(X)is closed
and bounded. In particular, f is bounded.

This follows from 2.11.5and the Heine-BorelTheorem. The resultis particularlyimportantwhen
f is a real valued function.

2.11.7 Theorem. SupposeX C R™ is compact.If f: X — R is continuousand
M =sup{f(x):xe X}, m=inf{f(x):xe X},
thenthere existpointsp and g in X suchthat f(p) = M and f(q) = m.

Proof: By Theorenm?.11.6f(X) is aclosedandboundedsetof realnumbershencef(X) contains
its lub M andits glb m (Theorem2.10.14.

Q.E.D.

The conclusionof Theorem2.11.7may also be statedas follows: Thee existpointsp andq in X
suchthat f(q) < f(x) < f(p) for all x € X. Thatis, f attainsits maximumand minimum valuesat
p and q, respectively.

We concludethis sectionwith anotherimportantfact concerningcontinuousfunctionson compact
sets. First we note that if X is a compactsubsetof R™, then since X is boundedthere exists an n-

dimensionalrectangulatox B = [] [a;,b;] suchthat X C B. Figure 2.11.1illustratesthis situation
=1
if n = 2.
Now given a continuousfunction f : X — R we let F': B — R be the extensionof f definedby
[ f(x)ifxe X
F(x) = {0 if x € B\X
The integral of f over X is then definedas

/f(x)dx = /F(x)dx.
X B

By consideringhe usualRiemannsumsof advancedalculuswhich approximateheintegral [ F(x) dx,
B
it is easyto seethat | f(x)dx doesnot dependupon the choice of the n-dimensionalbox containing
X

X. Furthermore since X is compactand f is continuouson X, it follows from Theorem?2.11.7 and the
definition of F that F is a boundedfunction on B. It now follows from the theory of integration(see
[1] or [43]) that [ F(x) dx existsand, hence,sodoes [ f(x) dx. The evaluationof the integral of the

B X
multivariablefunctionf over X canbe accomplishedy evaluatingn successivainglevariableintegrals.
This follows from Fubini’'s theorem[43], and[50]. We statetheseobservationsasa theorem:
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a by

Figure 2.11.1 A compactsetin R? containedin a rectangle.

2.11.8 Theorem. If f: X — Ris continuousand X C R"™ is compactthen [ f(x) dx exists.
X

Furthermoe, if X C [] [a:,b;] and F : B — R denoteghe extensiorof f definedabove then
=1

bn bn—l bl

/f(x)dx:/ / /F(x)da:l o dan 1 | e
X

An n—1 a1

whee x = (21,...,2,).

Theorem<2.11.7and2.11.8are essentialn the definition of imagealgebraoperationson continuous
images.

2.12 Topological Spaces

In the previous sectionwe discussedsuch notions as continuity, compactnesslimit point, and
boundarypoint. Thesenotionsare all topological conceptsand a careful look at theseconceptseveals
that the basicingredientof all themis the idea of an openset. Continuity of functionscan be defined
purelyin termsof inverseimagesof opensets(Theorem2.11.9; closedsetsare merely complement®f
opensets(2.10.9; the conceptof compactnessequireslittle morethanthe ideaof opensets. However,
opensetsin R™ are really just an elementaryexampleof opensetsin more generalspacesknown as
topological spaces

2.12.1 Definition. Let X bea set. A setT C 2% is atopologyon X if andonly if T satidies the
following axioms:
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01 X and @ are elementsof T.

0, The union of any numberof elementsof T is an elementof T.

O3 The intersectionof any finite numberof elementsof T is an elementof T.

A pair (X,T) consistingof a setX anda topology T on X is called a topologicalspace

Wheneverit is not necessaryo specify T explicitly, we simply let X denotethe topological space
(X,T). Elementsof topologicalspacesare called points The membersof T are called opensetsof the
topologicalspaceX. Thereis no preconceiveddeaof what“open” meansptherthanthatsetscalledopen
in any discussionsatisfy the axioms Oy, O3, and Os. Exactly what setsqualify as opensetsdepends
entirely on the topology T on X — a setopenwith respectto one topology on X may be closedwith
respectto anothertopology definedon X.

2.12.2 Definition. Let (X,T) be atopologicalspaceandz € X. By a neighbohood of x, denotedby
N(x), we meanany openset (thatis, any memberof T) containingx.

The points of N(x) are neighboringpoints of x, sometimescalled N-closeto x. Thus, a topology
T organizesX into chunksof nearbyor neighboringpoints. In this way, topology providesus with a
rigorous and generalworking definition of the conceptof nearness:The topology of a spacetells us
when two points or two objectsin the spaceare closeto eachother.

2.12.3 Examples:

(1) Let X be any setandlet 7 = {&, X}. This topology, in which no setotherthan@ and X is
open,is calledthe indiscretetopologyon X. Thereare no “small” neighborhoods.

(i) Let X be any setandlet 7 = 2X. This topology,in which everysubsetof X is an openset, is
called the discretetopologyon X, and X togetherwith this topologyis called a discrete space
Comparingthis with example(i) aboveindicatesthe sensein which differenttopologieson a
set X give different organizationsof the points of X.

(iii) Recallfrom Section2.10that a setin R™ is an “open’’ setin R™ if andonly if it is the union
of neighborhoodsthatis, asetW C R™ is openif andonly if for eachx € W thereis some
r > 0 suchthat N.(x) C W. It is notdifficult to verify thatthe collectionof all setssatisfying
this definition of “openin R™” determinesa topology T on R™. Axiom (), is trivial. Axiom O,

is alsoobvious,for if eachmemberof {W, : A € A} is “openin R"”, thensois |J W), since
AeA

x € [ Wy = 3 € Asuch that x € Wy = 3r > 0s.8. No(x) C Wy C | Wi
AEA AEA

We leaveit to thereadetto convincehimselfthat Axiom Oz holds. ThetopologyT definedin this
way is calledthe Euclideantopologyon R, andR"™ togetherwith T is calledEuclideann-space
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2.13 Basisfor a Topology

The introductionof a basisin an abstractmathematicakystemallows us to reducethe numberof
objectswe dealwith in orderto describemoreeasilytypical elementof the system.Thereaderis already
familiar with the utility of basisfrom his study of linear algebra: In an n-dimensionalvector spacethe
primitive objectswe dealwith are vectorsand any vector can be expressedsthe linear sum of a few
(at mostn) basisvectors. Similarly, the primitive objectswe deal with in a topologicalspaceare open
sets. Sincethe union of opensetsis open,it makessenseto askif thereare classeof subsets of a
topology T suchthat any elementof T canbe expressedsthe union of elementsof B. Suchclassedo,
in fact, exist and they are called basesfor the topology T.

2.13.1 Definition. Let (X,T) be a topologicalspace.A classB of opensubsetof X, i.e. B C T, is
a basisfor the topology T if and only if

0] every nonemptyset U € T is a union of elementsof B.

Equivalently, B C T is a basisfor T if andonly if

(i) for any point 2 belongingto an opensetU, thereexistsV € B suchthatz € V C U.

If B is a basisfor a topology T, thenwe say that B generatesT.

2.13.2 Examples:
0] T is a basisfor T.

(i) Let T be the discretetopologyon a setX. ThenB = {{z} : « € X} is a basisfor T.
(ii) ThesetBy = {N,(x): x € R®, r € R} is a basisfor the Euclideantopology on R".

(iv) Define By = {N.(x): x€ Q",r € @Q*}. Then B is a countablebasisfor the Euclidean
topologyonR™. Forif x € U € T, whereT denoteshe Euclideantopology,then3r» > 0 such
that N, (x) C U. Now if x ¢ @™ andr ¢ @™, pick ' € QT suchthatr’ < 1r andchoosea
pointy € Q" suchthat||x — y|| < 7. Thenx € N,.(y) CN,(x) C U. Figure2.13Iillustrates
this situation. A slight modificationof this agumentwill verify the casewherer ¢ Q*, but
x ¢ Q™. Thecasewherex € Q™ andr ¢ Q1 is trivial. Thus B is a basisfor T with B; C Bo.
The fact that By is countablefollows from 2.7.2vii).

30



Figure 2.13.1 x € N,.(y) CN,(x)C U.

(V) Let X be a nonemptysetandd a metric on X. Define the opensphereof radiusr € RT about
a point z € X by

Ny (z)={y€ X : d(z,y) < r}.

ThenB = {N.(z): 2 € X, r € Rt} is abasisfor atopologyon X. This topologyis calledthe
metric topology T, inducedby the metric d. The topologicalspace(X,Ty) is called a metric
space andit is customaryto usethe simpler notation (X,d) for the space( X, Ty).

In view of theseexampleswe seethat a given topology may have many different basesthat will
generatdt. This is analogoudo the conceptof a basisfor a vector space:Differentbasescangenerate
the samevector space. Any linearly independensetof n vectorsin R™ canbe usedas a basisfor the
vector spaceR".

We now ask the following question:Given B c 2%, whenwill B be a basisfor sometopology on
X? Clearly, X = |J V is necessanginceX is openin everytopology on X. The next exampleshows

VEB
that other conditions are also needed.

2.13.3 Example: Let X={1,2,3}. ThesetB={{1,2},{2,3}} cannotbe a basisfor any topologyon X.
For otherwisethe sets{1,2} and{2,3} wouldthemselvede openandthereforetheirintersection
{1,2} n {2,3} = {2} would alsobe open;but {2} is not the union of elementsof B.

The next theoremgives both necessarnand sufiicient conditionsfor a classof setsto be a basis
for sometopology.

2.13.4 Theorem. LetB bea collectionof subsetof X. ThenB is a basisfor sometopologyon X if
and only if it possessethe following properties:
i X=yyv.
VeB
(i) If foranylU, V € B, x € UnV,thendW € B, suchthatz €¢ W C U NV, or equivalently,

U NV is the union of elementsof B.
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Proof: SupposeB is a basisfor atopology T on X. SinceX is open,X is the union of elements
of B. HenceX is the union of all elementsof B. This satisfiesproperty(i). Now, if U, V € B,
then,in particular,U andV are opensets. Hencethe intersectionl/ N V' is also open;thatis,

UnV eT. SinceBisabasisfor T, UnV = |J W. Thus,if z e UNnV = |J W, then
WeB WeB
re W CUnNnYV for someW € B. This satisfiesproperty (ii).

Conversely supposéhatB is a collectionof subsetsof X which satisfiesproperties(i) and (ii).
LetT(B) = {U : U = @ or U is the union of elements of B}, i.e.,T(B) is the collection of
all possiblesubsetof X which canbe formedfrom unionsof elementsof B. Then, obviously,
T(B) containsboth X and@. Therefore,Axiom O holds.

If {U,} is acollectionof elementf T'(B), theneachU, is the unionof elementwf B; hence
the union U U, is alsothe union of elementsof B. ThereforeU Uy € T(B). This showsthat

Axiom ()2 is also satigied.

Lastly, supposethat U,V € T(B). We needto showthatU NV € T(B). By definition of
T(B), U=U, andV = |JV,, whereeachlU, andV, is anelementof B. By the distributive
A i

law, we have

av - (wﬂm(w) Jwnv,).

Ay

But by (ii), eachlUy NV, is the union of elementsof B. Therefore|J (U, N V) is the union of
Ay
elementsof B and so belongsto 7'(B). This verifies Axiom Os.

Q.E.D.

If X is a setand B a collection of subsetsof X satisfying (i) and (ii) of Theorem2.13.4 thenwe
saythat7'(B) is the topologyon X generatedoy B. If By and B, aretwo basesor sometopologieson
X, thenit is possiblethat T'(B1) = T(B2) eventhoughB; # B,. Thetwo basesdefinedin Example
2.13.2(jii) and(iv) illustratethis case.If T'(By) = T'(B;), thenwe say that the two basesB; and B,
are equivalent A necessanand sufficient condition that two basesB; and B are equivalentis that
both of the following two conditionshold:

(1) For eachU € By andeachz € U, thereexistsV € B, suchthatz € V C U.
(2) ForeachV € B, andeachX € V, thereexistsU € By suchthatz € U C V.

2.13.5 Example: Let dy, d2, and d3 denotethe Euclidean,city block, and chessboardistance,
respectively. Then the following three basesare all equivalent:

Bd1 = {Ndl,r(x) X E H27 re H+}v
By, = {Ndz,r(x) :x€ER?, re R+}, and

The equivalencefollows from the fact that Ny, 1,.(x) C Ny, -(x) for 1 < 4,5 < 3. The four
possibleinclusionsareillustratedin Figure 2.13.2
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(@ (b) (c) (d)

Figure 2.13.2 Equivalenceof three geometricallydistinct bases.

The specificationof a topology by giving a basisis generallyaccomplishedy specifyingfor each
z € X afamily of neighborhoodg N, (z): A € A(z)}, calleda neighbohoodbasisat x, and verifying
that the family B = {N\(z): z € X, A € A(z)} satisfiesthe conditionsof Theorem2.13.4 If the
conditions of the theoremare met, then eachmember N,(z) is called a basic neighbohood of x.
For example,the set {NT(x) :xeERZ re H+} is a neighborhoodbasisfor the Euclideantopology
on R? and each opendisc N,(x) is a basic neighborhoodof x. Similarly, if X is any set, then
B ={N(z): N(z)={z}, € X} is aneighborhoodasisfor the discretetopology on X.

2.14 Point Setsin Topological Spaces

In this sectionwe will emphasizegopologicalconceptsin termsof basicneighborhoodsn orderto
retainas muchof the geometricflavor of Section2.10as possible.We beginby giving somedefinitions
which will havea familiar meaningwhen specializedto R™.

2.14.1 Definition. Let X be a topologicalspacex € X, andY C X. Then
(i) x is aninterior point of Y if thereexistsa neighborhoodV(z) (i.e. an opensetcontaining
X) suchthat N(z) C Y;
(i) x is anexterior point of Y if thereexistsa neighborhoodV (z) suchthat N(z)NY = &;
(iii) x is a boundarypoint of Y if x is neitheran exterior nor interior point of Y; and
(iv) x is alimit point of Y if for everyneighborhoodV(z) of x, N'(z)NY # &, where N'(z)
denotesthe deletedneighborhoodN (z)\{z}.

Theclosue of Y, denotedby Y, is definedasY = {p € X : p € Y, or pis a limit point of Y'}. The
setof all interior pointsof Y is calledthe interior of Y andis denotedby intY. The setof all boundary
pointsof Y is calledthe boundaryof Y andis denotedby dY . In contrastto Euclideanspacesan interior
point of Y neednot be a limit point of Y. For example,if X is a discretespaceandY = {z,y} C X,
then N(z) = {2} is an openneighborhoodf anx in X with N(z) CY butY N N'(2) =Y N & = &.
Thus x is an interior point which is not a limit point.

2.14.2 Definition. Let X be a topologicalspaceandY C X. ThenY is closedin X if andonly if
every limit point of Y is a point of Y.
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Thus a setis closedin a topological spaceif and only if it containsall its limit points. This
is in agreementith EuclideanspaceswhereY is closedif andonly if ¥ = Y. The next theorem
characterizezlosedsetsin terms of opensets.

2.14.3 Theorem. LetX beatopologicalspaceandY C X. ThenY is closedif andonlyif Y = X\Y
is open.

Proof:  SupposeY is closed. ThenY containsall its limit points and so for any 2 ¢ Y

or, equivalently,z € Y’, thereexistssomeneighborhoodVN (z) suchthat N(z) N Y = & or,

equivalently,N(z) C Y'. Thus,for eachpointz € Y’ we canfind a neighborhoodV(z) C Y'.

But thenY’ canbe written asthe union of suchneighborhoodsthatis, Y’ = |J N(z). Since
reY'

each N(z) is an openset, Y’ is open.

For the converse supposethat Y’ is open. Now, if Y were not closed,thentherewould have

to be at leastone limit point 2 € X of Y with 2 ¢ Y. Thus,z € Y’ and,sinceY”’ is open,

Y’ is a neighborhoodf x. But clearly,Y n (Y'\{z}) = &, which contradictsour assumption

that x is a limit point of Y.

Q.E.D.

This alsoprovesstatemenf.10.9asit is a specialcaseof this theorem.The nexttheoremis obvious
and we dispensewith its proof.

2.14.4 Theorem. LetX bea topologicalspaceandY C X. ThenY is openif andonly if Y=intY.

Let (X,T) beatopologicalspaceandY C X. ThenT inducesa topologyon Y, calledthe induced
(or relativeor subspacktopologyon Y. Its importancdiesin this: To determinewhatany conceptdefined
on X becomeswhen the discussionis restrictedto Y. We simply regardY as a spacewith the induced
topology and carry over the discussionverbatim.

2.14.5 Definition. Let (X,T) be a topologicalspaceandY C X. Thenthe inducedor relative
topology 7y on Y is definedasTy = {YNnU: U e T}. The space(Y,Ty) is called a
subspaceof X.

To verify that Ty is actually a topologyon Y is trivial. In fact, it is also straightforwardto show
thatif B is a basisfor T, thentheset{Y N U : U € B} is a basisfor Ty.

2.14.6 Examples:

(i) LetY = (—1,1]U{2} c R, whereR" hasthe Euclideantopologyand(—1,1]={z € R : —1
< z < 1}. Theinducedtopologyon Y is generatedy all setsof form {2}, all openintervals
containedn (—1, 1], andall intervalsof form (r, 1] with —1 < r < 1. Theseareexactlythe sets
onecanobtainfrom Y N N,(z), wherer € RT andz € R'. Note thatthe propersubset —1, 1]
of the spaceY is both openandclosedin Y while it is neitheropenor closedin the spaceR.
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(ii) The subspace?” of R” is a discretespace:|f (m,n) € 2%, thenZ® N Ni(m,n) = {(m,n)}.
Thus, eachsingletonset {(m,n)} is openin Z2.
(iii) Let S* = {x € R? : ||x|| = 1} C R% Thenthe relative topology on 5 is generatedy small

openarcsof form S N N,(x) asshownin Figure 2.14.1 Again notethatif S' n N,(x) is
nonempty,then 5 N N,(x) is openin S* but not in R2.

Np(X)

-1

Figure 2.14.1 The intersectionof S with an opendisk N, (x).

2.15 Continuity and Compactnessin Topological Spaces

Thegeneralizatiorof the notionsof compactnesandcontinuity retainthe geometridlavor of Section
2.11

Given a topologicalspaceX andY C X, thenan opencoverof Y is any collection of opensets
{Y)\} with the propertyY c |JYh.
A

2.15.1 Definition. If X is a topologicalspaceandY C X, thenY is compactif andonly if every
opencover of Y containsa finite subcover. A spaceX is a compacttopological spaceif and
only if X is compactas a subsetof X.

It follows from this definition that an indiscretespaceand any finite space(i.e. the underlyingset
X is finite) is always compact.

2.15.2 Definition. SupposeX and Y are topologicalspacesand f : X — Y. Thenf is saidto be
continuousat a point 2o € X if given any neighborhoodN (f(z0)) C Y 3 a neighborhood
N(z0) C X suchthatfor everyz € N(zg), f(z) € N(f(z0)). The function f is saidto be
continuouson X if it is continuousat every point of X.
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The condition f(z) € N(f(zo)) for eachz € N(zg) simply meansthat f(N(zg)) C N(f(z0)).
Note the similarity betweenthis definition and 2.11.3 Also, as before, continuousfunctions can be
characterizedn terms of open sets:

2.15.3 Theorem. Suppose&X andY are topologicalspacesand f : X — Y. Thenf is continuouson X
if andonly if f~'(U7) is openin X for everyopensetU in Y.

Proof:  Supposef~!(U) is openin X for every opensetU in Y. Let zy be an arbitrary
point of X andlet N(f(zp)) be an arbitrary neighborhoodof f(zy). Then, since N(f(zg))
is openin Y, f~1(N(f(zo))) is openin X. Obviously, z € f~[N(f(zo))]. Thus, letting
N(zo) = f [N (f(x0))], we thenhave f(N(z0)) C N(f(z0)). Thereforef is continuousat
zo, andsincexy wasarbitrary, f is continuousat every point of X.

To prove the converse,assumef is continuousand U is openin Y. We must show that
f~Y(U) is openin X. Let z € f~Y(U). Then f(z) € U. ThusU is a neighborhoodof
f(z) and, sincef is continuous,there exists a neighborhoodN (z) suchthat f(N(z)) C U.
But then N(z) c f~'(N(z)) C f~'(U). This showsthat = is an interior point of f~(U).
Sincex was arbitrary, this meansthat every point of f~!(U/) is an interior point. Therefore,
f7HU) = int[f~1(U)] and,hence by Theorem2.14.4 f~1(U) is open.

Q.E.D.

One of the mostimportantconceptsencounteredn topologyis that of a homeomorphismHomeo-
morphismstell us when two objectsare topologically the same

2.15.4 Definition. SupposeX and Y are topological spaces. A homeomorphisnirom X to Y is a
continuousone-to-oneand onto function f : X — Y suchthat f~! : Y — X is continuous.If
f X — Y is ahomeomorphismthenwe saythat X and Y are homeomorphic

2.15.5 Example: Let X be the interval X = (-1,1) and let B be the set B =
{N;(z): -1< 2 <land N.(z)C (-1,1)}. Then B is a basis for a topology on X.
Define f : X — R by f(z) = tan(}zz). Thenf is continuous,one-to-one,and onto.
Furthermore,the inverse function f~! is also continuous. HenceR and the open interval
(=1,1) are homeomorphic.

A property P of setsis called a topological property or a topological invariant if whenevera
topological spaceX has property P, then every spacehomeomorphicto X also has property P. As
seenin the previousexample the realline R is homeomorphido the openinterval X = (-1, 1). Hence
lengthis not a topologicalpropertysince(—1, 1) hasfinite lengthwhile R is of infinite length. Similarly,
boundednesss not a topologicalinvariantsince X is boundedbut R is not.

2.16 Connected Sets
Much of topology concernghe investigationof consequencesf certaintopologicalpropertiessuch
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as compactnessconnectednessand Euler characteristic In fact, formally, topology is the study of
topologicalinvariants. Severalof theseinvariantsplay animportantrole in imageanalysis.

Intuitively, a spaceor a subsetof spaceis connectedf it doesnot consistof two or more separate
pieces. This simple ideais somewhaiproblematicin the analysisof computerimages. Digital images
are discreteobjectsfrom a signal processingpoint of view. They are discretespaceswvhen viewed as
subspace®f Euclideanspace. Thus, any objectin a digital image consistsof finitely many disjoint
(disconnectedjpoints. Yet the isolationand analysisof “connected’regionsin digital imagesis a typical
activity in computervision. The reasonthat oneis ableto talk aboutconnectivityin digital imagesin a
rigoroussensestemsfrom the fact that connectivityis a topologicalconcept.Connectivityof a subseif
a digital image dependson the topology defined on the image space.

2.16.1 Definition. A topologicalspaceX is connectedf it is not the union of two nonemptydisjoint
opensets.A subsety” C X is connectedf it is connectedasa subspac®f X. A spaceor subset
of a spaceis called disconnectedf andonly if it is not connected.

Observethat if Y is a subsetof a topological spaceX thenY is disconnectedf thereexistsopen
subsetdJ andV of X suchthat(UNnY)N(VNY)=@,withY cUUV andUNY #8 #AV nNY.
NotealsothatY = (U NY)n(VNY) <Y Cc UUV. Thetwo setsU NY andV NY arecalled
a decompositionof Y.

2.16.2 Examples:

(i) The setZ? C R? is disconnectedThe sets{(z,y): >z} nZ? and {(z,y): 1 <2} nZ?
form a decompositionof Z2.

(ii) The rationals @ C R are not connected since the sets {z €R: z >+2} N Q@ and
{x ER:z< \/5} N Q provide a decomposition.

2.16.3 Déefinition. Two subsetsA and B of a topological spaceX are said to be separatedif
ANB =@ = AnB.

If A andB aretwo nonemptyseparatedetsin atopologicalspaceX, thenl/ = X\ A andV = X\B
areopenin X. Furthermore(AU B)NV = A and(AU B)n U = B are nonemptysetswhoseunion
is AU B. Thus,we havea decompositiorof A U B. This showsthat if A and B are two honempty
separatedets,then AU B is disconnectedThe basicrelationshipbetweenconnectednesandseparation
is given by the next theorem.

2.16.4 Theorem. A setAis connectedf andonlyif it is notthe union of two nonemptyseparatedsets.

Proof: We show, equivalently,that A is disconnectedf and only if A is the union of two
nonemptyseparatedsets. We alreadyknow that the union of two nonemptyseparatedetsis
disconnectedIn orderto showthe converseassumehatA is disconnectedThenA is theunion
of somedecomposition/ N A andV N A. We claimthatU N A andV N A areseparatedets.
Sincel/ N A andV N A aredisjoint, we needonly showthat eachsetcontainsno limit point of
the other. Let p be a limit pointof /' N A andassumehatp € V N A. ThenV is an openset
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containingp and so V containsa point of I/’ N A distinctfrom p; i.e. (UN A)NV # &. But
by idempotencyand associativityof setintersectionwe havethe contradiction:

UNANYV =(UnAN(VNA) =2,

Thusp ¢ V N A. Similarly, if p is a limit pointof V' N A, thenp ¢ U N A. Thereforel N A
andV N A are separatecsets.

Q.E.D.

Theorem2.16.4canbe usedto showthatthe only connectedsubsetsof R containingmorethanone
point are R and the intervals (open,closed,or half-open). On the other hand, there existsa myriad of
differentconnectedsetsin R2. For example,considerthe setY = A U B shownin Figure2.16.1 where

A={(0y): —1<y<1)
B={(z,y): y=sin(l/z), 0 <2 <1}.

Eachpoint of A is a limit point of B; henceA andB are not separatecets.

\J
X

11

Figure 2.16.1 The connectedsetY = AU B.

A usefulnotion of connectivityin digital imageprocessings that of weakconnectivity

2.16.5 Definition. A subsetA of a topologicalspaceis weaklyconnectedf andonly if for eachpair
of opensetsU and V satisfying

(1) ACcUUV and (2) ANU#ADB#ANV,
it follows that U NV # @.
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Observethatcondition(1) impliesthatA = (AN U)U (AN V). Thus,in a senseweakly connected
setsare almostconnectedsince a setis weakly connectedf and only if it is not the subsetof a union
of two nonemptydisjoint opensetseachintersectingit. This is very much like Theorem2.16.4 with
the opensetsreplacingthe separatedets. In fact, in Euclideanspacesthe notions of connectedand
weakly connectedare equivalent.

2.16.6 Theorem. SupposeX C R™. ThenXis connectedf andonly if X is weaklyconnected.

Proof: SupposeX is connectedand U and V are two open subsetssatisfying conditions (1)
and(2) of Definition 2.16.5 Now if U NV = &, thensince(X NnU)N (X NV)CcUNV, we
havethat(X N U)N (X NV)=@. ThusX N U andX NV is adecompositiorof X. But this
contradictsthe hypothesisthat X is connected.ThereforeU NV # @.

Now supposethat X is weakly connected.If X is not connectedthen accordingto Theorem
2.16.4 X is the union of two separatedetsA andB. Let
U={x€eR" :d(x,A) < d(x,B)} and V ={x€R" :d(x,B)<d(x,A)}.
Supposep € A. SinceA andB are separatedets,p is not alimit point of B. Thusthereexists
a numbere > 0 suchthat N.(p)nN B = &. Therefored(p,B)>¢> 0 andp € U. Hence
A C U. Similarly, B c V andthusneitherU nor V are empty. The two setsU andV are
also disjoint because
d(x,A)>d(x,B) and d(x,A)<d(x,B)

cannothold simultaneouslylet x € U, § = d(x, B)—d(x, A), andy € Ny/5(x). Thenby the
triangle inequality

(1) d(y,A)<d(x,A)+6/2.
Also,

d(y,B)+6/2 > d(x,B) or d(y,B)+6/2>d(x,A)+ 6 or
(2) d(x,A)+6/2>d(y,B).

But (1) and (2) imply thatd(y, A) < d(y, B). Thereforey € U and, sincey was arbitrary,
Nsjp(x) C U. It follows that x is an interior point of U and, sincex was arbitrarily chosen,
everypoint of U is aninterior point of U. Thus,accordingto Theorem2.14.4 U is open. The
proofthatV is openis identical. This showsthatthereexisttwo disjoint opensetsU andV with

XcUUV, and XNU=A#4#8#B=XnV.
But this meansthat X is not weakly connectedwhich contradictsour hypothesis. Henceour

assumptionthat X is not connecteds false.
Q.E.D.

The first part of the proof actually shows that connectivity implies weak connectivity in any
topological space;no use of special propertiesof R* was made. The converse,however, does not
hold in generaltopological spaces.

As mentionedearlier,connectedness a topologicalproperty. In fact, evenmoreis true, namely:
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2.16.7 Theorem. If Xisconnectedand f : X — Y is continuousthen f(X') is connected.

Proof: ~ We proceedcontrapositivelyby proving that if f(.X) is not connected,then X
is not connected. If f(X) is not connected,then there exists a decompositionf(X) =
(f(X)NU)U (f(X)nV), whereU and V are disjoint nonemptyopen setsin Y. But then,
sincef is continuous,f~1(U) and f~1(V') are opensetsin X. Also, sinceU andV aredisjoint,
f7Y(U) and f~}(V) are also disjoint. We now have

X=X = [y n i o] o [FHUE) n v
and, therefore,the decomposition
X=(Xn/MuXnfiv).
Q.E.D.

As an applicationof Theorem?2.16.7 we obtain the following generalizationof the intermediate
value theoremof standardcalculus:

2.16.8 Theorem. Everycontinuousreal valuedfunctionon a connectedspaceX takeson all values
betweenany two it assumes.

Proof: Sincef : X — R is continuous,f(X) C R is connectedaccordingto Theorem2.16.7
By our observatiorfollowing Theorem2.16.4 f(X) is eithera point, an interval, or equalto
R. If f(X) is apoint, thenthereis nothingto prove. But if f(z) =« and f(y) = b, with say
b greaterthan a, thenwe have[a,b] C f(X). Now if ¢ is any numberwith ¢ < ¢ < b then
for any = € f~!({c}) we havethat f(z) = .

Q.E.D.

A componenbf topologicalspaceX is a maximalconnectedsubsebf X; thatis, if C is acomponent
of X, then C is connectedand C is not a proper subsetof any connectedsubsetof X. Thus, if X is
connectedthen X hasexactly one componenthamely X itself. On the otherhand,in a discretespace,
everypointis a component.f x is a pointin a topologicalspacethenthe largestconnectedsubsef X
containingx is called the componenbf 2 andis denotedby C,.. It is intuitively clearand not difficult
to prove that eachpoint z € X belongsto a uniquecomponent”’,.

Componentsare closedsets. This follows from the fact thatif Y is a setin atopologicalspaceandp
is a limit point of Y, thenthe setsY and{p} arenot separatedets.In particular,if Y is connectedthen
sois Y. Thus,if Cis acomponentthenC = C sinceC is a maximal connectedsubset.It alsofollows
thatif A andB aretwo distinct componentsthenA N B = &. If this werenot the case thenA andB
are not separatedetsand,thus, A N B is a connectedset containingA (and B). But this contradictsthe
maximality of A. We summarizethesecommentsas a theorem:

2.16.9 Theorem. Everyconnectedsubsetf a topologicalspaceX is containedin somecomponenbf
X and the componentgorm a partition of X.
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Accordingto this theorem,a topologicalspacecan be decomposediniquelyinto connectedieces,
namelyits componentsandthe numberof componentgprovidesa roughindicationof how disconnected
a spaceis. A spaceX is called totally disconnectedf the only componentsare points; i.e. if
C, = {z} Yo € X. Obviously,Z* C R"™ is totally disconnectedvhen viewed as a subspaceand
sois any discretespace.On the other hand,the subspace& C R of rationalnumbersis a spacethat is
not discretebut is totally disconnected.

2.17 Path-ConnectedSets

For most purposeof analysis,the naturalnotion of connectednesis that two points canbe joined
by a path.

2.17.1 Definition. Let X be a topologicalspaceand f : [0,1] — X continuous. Then the image
Y = f([0,1]) is calleda pathin X. The points f(0) and f(1) arecalledtheinitial andterminal
points of the pathY, respectively,andY is a pathfrom f(0) to f(1). Theinitial andterminal
points are also called the end points of the path. A point y € Y is a multiple point if the set
/" !(y) containsmore thanone point. TheimageY is an arc (or simplecurve or simplepath)
if it containsno multiple points.

It follows from the definitionthatif Y is anarc,thenf : [0,1] — Y is a homeomorphismAlso, if
Y is a pathfrom f(0) to f(1), thenit is clearthat the function

g: 7’—>f(1—7’), re [071]5
definesa path from f(1) to f(0).

2.17.2 Definition. A topological spaceis path-connectedf for eachpair of points p and g in the
spacethereexistsa pathfrom p to g. A subsetof a spaceis path-connected andonly if it
is path-connecteds a subspace.

2.17.3 Examples:

0] R™ is path-connectedand if » > 1, then for every countableset X C R", R*\X is also
path-connected.

(i) If Y ¢ R* isanarcandn > 1, thenR"\Y is path-connected.

(iii) A discretespacehaving more than one point is neverpath-connected Every indiscretespace
is path-connected.

A trivial but usefulreformulationof 2.17.2is providedby the next theorem.

2.17.4 Theorem. Let X be a topologicalspaceandp € X. ThenX is path-connectedf and only if
for everyz € X, there is a path from p to x.
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Proof: If X is path-connectedhenthe conditionholdsautomatically.Conversely assumehat
the conditionis satisfiedandthatz,y € X. Let f : [0,1] — X definea pathfrom x to p and
g:[0,1] = X apathfromptoy. Leth : [0,1] — X be defined by

L [f@r) difo<r<d
h(’)‘{gm—u if <r<l

Thenh is continuoussinceh is the continuousfunction f on the interval [0, 1], the continuous
function g on theinterval [, 1], andatr = 1, A(r) = f(1) = g(0). Thus,A([0,1]) is a path
from x to y.

Q.E.D.

The next theoremestablisheshe generalrelation of connectednesand path-connectedness.

2.17.5 Theorem. Each path-connectedpaceX is connected.

Proof: If X is not connectedthenX is the union of two nonemptydisjoint opensetsU andV.
Nowletu € U andv € V, andletY = f([0,1]) beapathfromutov. Then(U NY)u(V nY)
is a decompositiorof Y. But this contradictsTheorem2.16.7accordingto which Y = f([0, 1])
iS connected.

Q.E.D.

2.17.6 Example: A connectedspaceneednot be path-connected. Considerthe example X =
AUB,whered = {(0,y): -1 <y <1}andB = {(z,y): y = sin(1/z),0 < = < 1} (Figure
2.16.1. ThespaceX is connectedutnot pathconnectedthereis no pathfrom (0,0) to (1/7, 0).
However, it is obviousthat eachof the setsA and B are path-connectedAlso, as mentioned
earlier, B = X. Hencethe closureof a path-connectedet neednot be path-connected.

In view of Theorem2.17.4 the union of any family of path-connectedpaceshaving a point in
commonis again path-connectedBecauseof the property of unions,we candefinea path component
of a spaceas a maximal path-connectedubsetof the space.As before,the path componentgartition
the space;indeed,from 2.17.5 the path componentgartition the components.However,in contrastto
componentspath componentieednot be closedsubsetf the space:in Example2.17.6 B is a path
componentof B.

2.17.7 Theorem. Thefollowing propertiesof a spaceX are equivalent:

(1) Each path component is open (and therefore also closed).
(2) Each point of X has a path—connected neighborhood.

Proof: If eachpathcomponents open,thengivenz € X, the path componentcontainingx
is a path-connecteaieighborhoodof x. Thus, (1) = (2).

To showthat (2) = (1), let P be any path componentand z € P. By hypothesisx hasa
path-connectedeighborhoodJ. However,P is a maximal path-connectedetcontainingx and,
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therefore,UU C P. Thuseverypoint of p is aninterior point andthereforeU is open(2.14.4.
Noting that P" = X'\ P is the union of the remaining(open)path componentsye havethat P’
is also open. Hence,by 2.14.3 P is closed.

Q.E.D.

This theorem provides a tool for determiningwhen path-connectednessnd connectednessare
equivalent.

2.17.8 Theorem. A spaceX is path-connectedf and only if it is connectedand eachz € X hasa
path-connectedheighbohood.

Proof: Sincepath-connectednesapliesconnectednesandX is a path-connectedeighborhood
of everypoint, only the converserequiresproof. For this, we know from 2.17.7that eachpath
componentis both open and closedin X; since X is connected,this path componentmust
thereforebe X.

Q.E.D.

This theoremhasthe following importantconsequence:

2.17.9 Corollary. Anopensetin R™ is connectedf andonly if it is path-connected.

Proof:  Again, since path-connectednesmplies connectednessye only needto prove the
converse. If U C R™ is open, then eachpoint x of the space(U,Tt;) has a neighborhood
Nc(z) C U. But N(z) is path-connectedHenceit follows from Theorem2.17.8that U is
path-connected.

Q.E.D.

Of courseasExample2.17.6shows,non-openconnectedsubsetof R™ neednot be path-connected.

Simple pathshave a particular useful and unique property that can be expressedn terms of cut
points A point x of a topologicalspaceX is a cut point of X providedthat X\{z} = A U B, whereA
and B are nonemptyseparatedets;otherwisex is a non-cutpoint of X.

2.17.10 Examples:

0) Everypointr € [0,1] with 0 < r < 1 is a cut point of [0,1], and0 and 1 arethe only non-cut
points of [0,1].

(i) Every point of R", wheren > 1, is a non-cutpoint of R".

In view of Example2.17.1@i) andthe fact that arcsare homeomorphidmagesof the unit interval,
the next theorembecomesdntuitively obvious. However,its proof, which is givenin [26], is far from
trivial andis beyondthe scopeof this book.
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2.17.11 Theorem. If X C R"™ is compaciandconnectedvith justtwo non-cutpoints,thenXis anarc.

A pathY = f([0,1]) in aspaceX is a closedpathif f(0) = f(1). A simpleclosedpath alsocalled
a simpleclosedcurveor Jordan curve is a closedpathwith exactlyonemultiple pointy € f([0,1]) such
that f~1(y) = {0, 1}. An equivalentand more commonway of defining a simple closedcurveis asthe
homeomorphiémageof the unit circle S* = {(z,y) : 2% + y* = 1}. It is clearthatthe omissionof any
two distinctpointsfrom S! separate$' into two openarcs(objectshomeomorphido theinterval (0,1)).
It turns out that this property characterizesimple closedcurvesin R™.

2.17.12 Theorem. If X C R™ is compactand connectedand hasthe propertythat for any two points
x,y € X, X\{x,y} is not connectedthen X is a simpleclosedcurve.

As in the caseof Theorem2.17.11 the statemenbf this theorem(aswell asthatof the nexttheorem)
is intuitively obvious, but its proof is nontrivial [26].

2.17.13 The Jordan Curve Theorem. If X C R? is a simpleclosedcurve,thenR?\ X hastwo
components.

Therearevariouswaysof provingthe Jordancurvetheorem;a geometricproofis givenin [41] while
[55] providesan algebraicversion. Accordingto this theoremeverysimple closedcurvein the planeR?
separate&? into two componentseachof which mustbe necessarilypath-connecte¢R.17.9. In thenext
sectionwe showthat Theorems2.17.11 2.17.12 and 2.17.13all haveanaloguesn the discretedomain.

2.18 Digital Images

We now take a closerlook at the setZ™. Forn = 1, 2, and 3, this set plays an importantrole
in discretesignal and image processing. Viewed as a subspaceof R*, Z" is a discretespace. The
componentare points;thusthereareno interestingconnectedsubsetf Z* andno pointis a limit point
of any given subsetof Z". However,as mentionedpreviously,the isolation and analysisof connected
regionsin Z™ is a commonactivity in imageanalysis.Obviously,whentalking aboutconnectedegions,
theremustbe topologieson the setZ™ which providefor the connectivityof setsthat containmorethan
onepoint. Beforediscussinglifferenttopologieson 7", we providean alternategeometricrepresentation
of 7" and discussthe role of Z™ in image representation.

With eachp = (py, p2,...,ps) € Z" we associateann-dimensionakell, ¢(p), with centerp defined
by

1
c(p) = {x P x = (21, ...,2,) ER", |pi— 2] < 3 and 15@'571}.
The setof all n-dimensionalcells is denotedby C™; thatis, C™ = {¢(p) : p € Z"}. Settheoretically,
the setsZ™ and C'™ are the same: The functionc : Z"* — C™ definedby ¢ : p — ¢(p) is one-to-one

and onto. Figure 2.18.1illustratesthis relationshipfor n = 2. The set C"™ is also referredto asthe
dual representationof Z™.
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Figure 2.18.1 The setZ? andits dual C2.

Onereasonfor usingtherepresentatiod'™ of Z™ hasto do with samplingof continuousmagesand
the display of sampledimages.In orderto processa picture (continuousimage)or any other signal by
computer,we mustconvertit into a finite setof numbers.Samplingis the selectionof a setof discrete
points from a compacttime and/or spatialdomain. Only the valuesof the signal at those points will
usually be usedin further processing.In the one-dimensionatasethe fundamentaimathematicatesult
is Shannon’ssamplingtheorem[42]. It showsthat any continuoussignal over any durationT but band-
limited in frequencyto w cyclespersecondcanbe completelyspecified(i.e. reconstructedif we sample
its amplitudeat intervalslessthan1/2w secondslt follows thatall we needto do is to samplethe signal
at k greaterthan2w7' equidistantpointsduring the durationT in orderto encompasshe total signal.

Shannon’sheoremdoesnot suggest way for reconstructinghe continuoussignalfrom its discrete
samples;it only saysthatit is possible.In fact, it is necessaryo usefairly sophisticatedechniquedo
reconstructa signalwhenit is sampledat the minimum frequency.In addition,the choiceof algorithms
for reconstructioris usually severelimited in imageprocessingPictorial datamustusually be sampled
at a much higherrate,about160 times as often, than what one might expectfrom the trivial extension
of Shannon’sheoremto two dimensions.To illustrate the problem,considerthe high resolutionimage
(512x512) shownin Figure 2.18.4a), which to the humaneye is indistinguishablefrom a continuous
image such as a photograph. The two imagesin Figures2.18.2b) and 2.18.4c) have beenaobtained
from the former by skipping samplesso that Figure 2.18.4b) consistsof 64x 64 samplesand Figure
2.18.2c) of 32x32. They aredisplayedon a larger grid by repeatingthe valuesof eachsample8 and
16 times. The quality of their appearancés not due to undersamplingalone. Their quality improves
when squintingone’s eyesor looking at them from a distance;this is dueto the fact that most of the
informationis still there. It is our methodof piecewiseconstantreconstructioni.e. the simplereplication
of values,thatintroducesthe distortions. Evena simplelinear interpolationbetweensamplesjnsteadof
replication, would have greatly improvedthe quality of the images.
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Figure 2.18.2 Effects of reducingsamplinggrid size.

In the caseof two-dimensionalmages,suchasshownin Figure2.18.2 theimageis usuallyviewed
as being derivedfrom a continuousimage function f : R*> — R* U {0} by taking a finite numberof
samples. The value f(x) representghe intensity, photographicdensity, or somedesiredparameterof
the physicalimageat the pointx € R%. In a perfectimagesamplingsystem spatialsamplesof the ideal
imagef would, in effect, be obtainedby multiplying f by a spatialsamplingfunction s composef an
infinite array of Dirac delta functionsarrangedin a grid of spacingAx = (Az, Azy). The sampled
image f, is thengiven by f,(x) = f(x) - s(x); thatis

fs(x) = f(x)- Z 0(x —z-AX) = Z f(z-2x)-6(x—2z-A%). (2.18.1)

z€l? z€l?

In this equation,vector subtractionand multiplication are definedcomponentwiseg.g. if x = (21, 22)
andz = (z1,22), then

X—z= (21 —2,2—2)and z-x = (21 - 21,22 22).

A continuousimagefunction may be obtainedfrom the sampledmage f, by linear interpolationor
by linear spatialfiltering. If r representsheimpulseresponsef aninterpolatingdfilter, thena continuous
imagefunction f, is obtainedby convolving f; with r; i.e. f, = fs *r wherex denoteghe convolution
product. However,substitutingfs from equation2.18.1and performingthe convolutionyields

fr(x) = Z fs(z-AX)-r(x—2z- AX). (2.18.2)

zeZ?

This showsthat the impulseresponsdunction r actsas a two-dimensionalinterpolationwaveform for
the sampledimage fs.

Of course,Equation2.18.1representsin idealizeddescriptionof fs. It is physically impossibleto
obtainmeasurementat a point. The evaluationof f, ata point x representshe measuredntensity over
a small convexareacenteredat x. The dimensionof the samplingareasare approximatelyequalto their
spacing(Figure 2.18.3. Anotherphysicalrestrictionis thatf canonly be sampledat a finite humberof
places.Thus,the union of all convexsamplingareasforms a compactsubsetX C R?. Thesecomments
can be formally expressedind are the rationalefor the next definition.
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2.18.1 Definition. Supposef : R* — R is continuous. A samplingcell associatedvith a point
p € R? is a compactand convexsubsetof R? with barycenterp over which the value of a
samplefs(p) of f is calculated. The union of all the centersof the samplingcells is called
the samplinggrid. The pair (p, fs(p)) is calleda picture elementor pixel and f;(p) is called
the pixel value

Figure 2.18.3illustratesthe ideabehindthis definition. In generalthe spatially sampledor spatially
quantizedmageconsistsof ann x m arrayof equallydistributedsamplesandcanthereforebe viewedas
pointsin the discreteplanezZ? arrangedn rectangulaform. We alsoneedto point out that the sampling
cells can be disjoint, althoughin mostsamplingdevicesthey overlapasillustrated.

Y

g 7
f'f /

_
a

Figure 2.18.3 Samplinggrid with samplingcells; the different
shadingsrepresendifferent valuesof the image function f.

The mostcommongrid usedin image processings the rectangulamgrid. Hexagonalandtriangular
grids (Figure 2.18.4 are often discussedn the literaturebut are rarely implemented.
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(a) Hexagonal grid (b) Triangular grid

Figure 2.18.4 (a) The hexagonalgrid and (b) the triangular grid.

Althoughthe spatialsamplesf,(p) canberepresentedspoints,it is oftenintuitively moresatisfying
and closerto the sensingprocesso usethe dual representatiomf Z? andview the samplesascells. In
addition, this view correspondgo the actualdisplay of sensedmageson a variety of display devices.
Televisionframes,for example,might be quantizedinto 450 lines of 560 cells each.

2.18.2 Definition. ThesetD(f;) = {c(p) : p € domain(f,)} is calledthedisplaygrid of f andthe
function f; : D(fs) — R definedby f;[c(p)] = fs(p) is calledthe displayimage The pair
[c(p), fa(e(p))] is called a display pixel or simply a pixel.

In caseonedesiresa larger display or a more densesetof display cells thanprovidedfor by D( fs),
we could definethe displayfunctionin termsof aninterpolatingfunction f, by setting f4[c(p)] = f-(p)-

In orderfor the sampledimageto be processedy a digital computer,the function f mustalso be
sampledn amplitude;i.e., eachrealnumberf(p) mustbe assignedx binary code. This processs called
amplitudequantizationand canbe considerechsa mappingfrom the real numbersnto eitherthe integers
or into Z,« aseachbinary codeis of finite length. The correspondingntegersare called the gray levels
or gray valuesof theimage. It is commonpracticein imageprocessingo havethe discretegray levels
equally spacedbetween0 and somemaximumnumberL of form I = 2F — 1. Thesecommentsform
the basisof the following definition:

2.18.3 Definition: A digital imageis a spatially-quantizedaind amplitude-quantizedmage and the

full rangeof amplitude quantizationlevels availablefor a particularimage is called a gray
scale The processof obtaininga digital imagefrom a continuousmageis called digitization
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Digital imagesconstitutea specialclassof computerimagesa topic discussedn Chapterd. Herewe
areonly interestedn exploring someusefultopologieson digital images. The first problemto consider
is that of connectednessConsiderthe digitization of the continuouscurvesshownin Figure 2.18.5(a)
and (b) using the gray scale{0,1}.

: . (@) : N () :
Figure 2.18.5 Continuouscurveswith samplinggrid; the dotsindicatethe centersof the samplingcells.

The continuouscurvein 2.18.5a) is connectedyhile the objectin 2.18.8b) consistf two separate
continuouscurvesthat are spatially closeto eachother. Due to the limitations of the spatialsampling
grid, the resulting digital imagesobtainedfrom (a) and (b) are identical (Figure 2.18.§. The digital
representatiom Figure2.18.60f eithersetof curvesassubsetsf 72 appearsotally disconnecteavhile
thedualrepresentatioappearsonnectedandseemsa goodrepresentativef either2.18.5a) of 2.18.9b).
Thus,the questionarisesasto which curve2.18.6b) representsi.e. doesit represent continuoudigure
eight curve or two separatesimple closedcurvesthat are spatially close? The answerto this question
dependspf course,on the choiceof the topology. Keepingthe subspacdopologyfor 72 C R? is useless
in the analysisof connectivitysincethe digitized curvesare thentotally disconnectedHowever,we may
choosetopologiesthat provide for the desiredconnectivityof the curve shownin 2.18.€b). In the next
sectionswe shall take a closerlook at thesetopologies.
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(@) (d)

Figure 2.18.6 lllustration of the dual representatiorof digitized curves.

2.19 Digital Topology

Any topologyon Z™ or C™ is called a digital topology Topologieson C'™ are also referredto as
cellular topologies The setZ™ or C™ togetherwith a topologyis calleda digital spaceor cellular space
Topologiesother than the discretetopology can be definedin termsof the coordinatesof points of Z™.
Oneof the mostpopulardigital topologiesusesthe concsptof evenandodd points. In particular,a point

p = (p1,p2,...,pn) € Z" is calledevenif andonly if > p; is even.If p is not even,thenp is saidto
=1
beodd LetJ = {-1,0,1}, p = (p1,p2,...,Pn) € Z", anddefinea basicneighborhoodV (p) of p by

N(p) = {p} if pisodd
PI= {(pt,..,pi+J,..o,pn) 1 1 <<, j€e J} if piseven.

It is easyto verify thatthe collection B = {N(p): p € Z"} satisfiesthe conditionsof Theorem2.13.4
ThereforeB is a basisfor a topology on Z™ and the topology thus derivedis called the von Neumann
topology This topology was first describedby A. Rosenfeldfor the casen = 2 [48]. Rosenfeld’'s
pioneeringwork in digital topology hasprovideda variety of usefultools and a rigorousfoundationfor
many image processingoperations[29].

Defining basic neighborhoodsV (¢(p)) for points ¢(p) € C™ by N(c(p)) = ¢(N(p)) provides
for an equivalenttopology on C™. In particular, N(c(p)) = {c(p)} if p is odd and N(c(p)) =
{c(p1,--ypic1,Pi + J,Pig1, -+, pn) s L <4 <m, j€ J} if pis even. If n=2 or 3, then the possible
neighborhoodsV(¢(p)) of p areshownin Figure 2.19.Xa) and (b), respectively.

As an easyconsequencef the neighborhooddefinition we have

2.19.1 Theorem. Thebasicneighbohoodsfor the von Neumanrtopologyare path-connected.
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c(p) odd c(p) even c(p) odd c(p) even
Figure 2.19.1 The von Neumannbasis(a) if » = 2, and (b) if » = 3.

Proof: The proof is trivial if p is odd, for then N(p) is a point. If p is even,let g andr
be two distinct pointsin N(p). Thenat leastoneof q or r mustbe odd, sayq. Now either
r is evenor odd. If r is even,thenr = p. In this case,we definea path f : [0,1] — N(p)
with initial point g and end point r by

1 1
f(x):qif(]ga:<§ and f(z) = pif§§x§1.

since{q} = N(a) C N(p), we have f"1(N(q)) = [0,}) and f"L(N(p)) = [0,1]. This
showsthat the inverseimagesof opensetsare openin [0,1]. Hencef is continuous.
If the point r is odd, thenwe definef : [0,1] — N(p) by

Sy =ait0ge< g () =p and fo)=rif Jer<i.

In this casewe have f~1(N(q)) = [0,3), f~Y{(N(p)) = [0,1], and f~L(N(r)) = (5. 1].
Thus, again,inverseimagesof opensetsare openand, therefore f is continuous.
Q.E.D.

2.20 Path-ConnectedSetsin Digital Spaces

Thereare many metricsthat canbe definedon Z". Two commonlyusedmetricsare the city block
n

metricd;(p,q) = Y. |p; — ¢:;| andthechessboardnetricd;(p, q) = maz{|p; — ¢;|: 1 <i < n}, where
=1

p=(pi,...,pn) azndq = (¢1,...,9n). Givenapointp € Z", thenits vonNeumanmeighbohood F(p)
isthesetF(p) ={q : di(p,q) < 1}. In thecasen = 2, F'(p) is alsoknown asthe 4—neighbohood of
p sinceit consistsof the point p andits directly adjacenthorizontalandvertical neighbors.Furthermore,
if p is even,then F(p) = N(p).

The Moore neighbohoodof p is denotedby E(p) anddefinedas E(p) = {q : d2(p,q) < 1}. For
n=2, E(p) is also known as the 8—neighbohood of p.

2.20.1 Definition. A sequencef points{p1,p2,...,px} C Z" is calleda dy-pathif p,y1 € F(p;)
for1 <i< k-1, andady-pathif p;y; € E(p;) for 1 <i <k - 1.
A setS C Z" is saidto bed;-connectedd,-connectellif for eachpair of pointsp, q € S there
existsa d;-path(dz-path)p = p1,p2,-- ., Pr = q from p to q suchthatp; € S for1 <: < k.
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We call a d;-path (: = 1 or 2) a digital path if it is clearfrom the discussionwhich type of path
is meant. Unlessotherwisespecified,in the von Neumannspacea digital path shall always meana
dq-path and a digital path-connectedet a d;-connectedset. Also, in the casen=2, d;-pathsand d; -
connectivity are usually referredto as 4—pathsand 4—connectivity while ds-pathsand ds-connectivity
are called 8—pathsand 8—connectivity

It follows from the definition that every d;-pathis a d,-path and every d;-connectedsetis alsod,-
connected.The conversas obviouslyfalse;for n=2, thesetS = {(z,y), (z + 1,y + 1)} is d2-connected
but not d; -connected. The relationshipbetweenconnectivity, d; -connectivity, and path-connectivityis
given by

2.20.2 Theorem. LetZ™ be the digital spacewith the von Neumanrnopologyand S C Z™. Then
the following are equivalent:

(1) Sis connected.
(2) Sis digital path-connected.
(3) Sis path-connected.

Proof:  The equivalenceof connectedand path-connectedollows from theorems2.17.5
2.17.8 and 2.19.1

To show the equivalenceof connectivity and digital path-connectivity assumefirst that S is
connected.Let p € S andsetA, = {q € S: thereis a d; — path from p toqin S}. If
Ap = S, thereis nothingto prove. If A, # S, let B, = S\Ap. Then A, U B, = S and
ApN By = @. Nowif q € Ap, thenN(q) NS C Ap. This showsthat A, is openin S
Similarly, if q € Bp, thenN(q) NS C Byp; for otherwisethereexistsa pathfrom p to g, a
conditionthatviolatesthe definition of B,,. ThusSis the union of two relatively opendisjoint
sets,namely A, and By,. But this contradictsthe assumptiorthat S is connected.Therefore
Ap = S.

If, on the other hand, S is digital path-connectedbut not connectedthen S is the union of
two separatedetsA andB. In thiscaseletp € A, q € B, andp = p1,p2,---,P:x = q bea
di-pathin S Thenfor somej, p; € A andp;41 € B. Oneof p; or p;;1 mustbe even.If p;
is even,thenp;41 € F(p;) = N(p;) and,hence,N'(p;) N B # &. Thus,p; € A is alimit
point of B; i.e. BN A # &. But this contradictsthe assumptiorthat A and B are separated
sets. A similar agumentholdsif p;4; is even.

Q.E.D.

Accordingto the theorem the connectedsetsin Z™ are exactlythe path-connectedets. Comparing
this with Corollary2.17.9 we seethatZ™ with the von Neumanntopology enjoyssomeof the properties
of R™. Subsequentheoremswill show further similarities betweenR™ and Z™.

For the remainderof this sectionwe shall assume unlessotherwisespecfied, that Z™ is the von
Neumannspace.The nextlemmais a mainingredientin proving severalinterestingpropertiesof digital
curves.

2.20.3 Lemma. SupposeS C Z" andp € S. If Sis connectecand S\{p} = A U B a separation,
theneachA U {p} and B U {p} are connectedsets.
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Proof: We showthat A U {p} is connected.By interchangingA with B, this also proves
that B U {p} is connected.
Define f : § — AU {p} by
_[xifxe Au{p}
f(x)_{pif XEB "
We shall showthatf is continuous.The resultthenfollows from Theorem2.16.7

Letx € S, y = f(x), andW(y) a basicopenneighborhoodf y in AU {p}. We showthat
f~Y(W(y)) is openin S. Since W(y) is a basicopen neighborhoodn A U {p}, W(y) is
of form

W(y) = N(y)n(AU{p}).

Therearetwo casedo considernamelyy # p andy = p. Supposey # p. Inthiscasey € A
andy = x. SinceA andB areseparatedy cannotbea limit pointof B. ThusN(y)n B = &.
If, in addition,p ¢ N(y), thenW(y) = N(y)n A and f~'(W(y)) = N(x)n S. Therefore,
f~Y(W(y)) is arelatively opensetin S containingx.

If p € N(y), thenp is odd and
1 (W(y)) = (N(x)nA)u{p}UB.
SinceN(x)N B =@ andp € N(x),
(Nx)nA)uip}=NEx)n(Au{p})=N(x)ns,

which is openin S However,B U {p} is alsoopenin S.This canbe ascertainedrom the fact
that sincep is odd, we havefor eachz € B U {p} that N(z) n A = & and,therefore,

Bupl= |J V@ns).

ze BU{p}

Thus, f~1(W(y)) is the union of two relatively opensets(N(x) N A) U {p} and B U {p}.
This showsthat f~}(W(y)) is openin Saslong asy # p.

Next supposethat y = p. In this case,

FHW(y) = (N(p)nA)U{p}UB.

Now if p is odd, then N(p) = {p} and,therefore,/~1(W(y)) = B U {p}. By the above
argument,BU{p} is openin S If, onthe otherhand,p isevenlet/ = N(p)NAU{p} U B.
Thenif z € U we musthaveeitherz € N(p)N A withz # p,orz =p, orz € B.

If z € N(p)n A with z # p, thenz is odd and{z} is open. Hencez € {z} C U is an
interior point of U.

If z=p, then

N(z)nU=N(p)nAU{p}UN(p)NB
=N()N(AUu{p}UB) =N(p)ns.

which is openin S Thereforep € N(p)n S C U is aninterior point of U.
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Finally, if ze B , thenN(z)n A =@ and
N(z)nU=N(z)n(BU{p})=N(z)nS

which is openin S Thus,in eachcasez is aninterior point of U. Sincez wasarbitrary, this
showsthat intl/ = U. This completesthe proof that f~!(W(y)) is openin S,
Let V = f'(W(y)) andq e V. Thenf(q) € f(V) = f[f'(W(y))] = W(y). This
showsthat given a point x € S and a basic openneighborhoodW (f(x)) C A U {p}, then
thereexistsanopensetV containingx, namelyV = f~1(W(f(x))), suchthatfor eachq € V,
f(a) € W(f(x)). Therefore,f is continuousat x, and sincex was arbitrary, f is continuous
on S

Q.E.D.

Lemma?2.20.3is neededio prove the following surprisingtheorem:

2.20.4

Theorem. SupposeS C Z" andcard(S) > 2. If Sis compactand connectedthen S has
at leasttwo non-cutpoints.

Proof: LetN bethesetof all non-cutpointsof Sandsupposeo thecontrarythatcard(N) < 2.
Let p € S\N. ThenS\{p} = A U B, whereA and B are separatedetswith N contained
in one of A or B. Supposewithout loss of generalitythat N C B. For eachpointq € A4, let
S\{q} = Aq U B4, where A, and B, areseparatedetswith p € B,. Sincep € B, andby
Lemma2.20.34, U {q} is connectedwe musthave A, U {q} C A.

Partially order the collection A = {Aq},., by subsetinclusion. Since S is compact,S is

finite. ThereforeA mustbefinite. Thuswe canselecta maximalsimply orderedsubcollection
k

B = {Aq,}l_, of A suchthat4,, C A, wheneveri > j. Considerd,, = ) Aq,. Since

=1
the sets A,,, By, form a separationof S\{qr}, Aq, # &. Letq € A,,. Thensince

Aq, U{qr} C A, q mustbean elementof A andthereforea cut point of S Now considerthe
setA,. SinceAq U {q} is a connectedsubsetof 5\{q}, it musteither be a subsetof A4,
or of Bg,. Sinceq € Aq,, Aq U {q} C Aq, andhenced, C Aq,. Thusthe collectionB is
a strict subsetof the simply orderedcollection{Ag, , Aq,, . - ., Aq., Aq}. This contradictsthe
maximality of B and provesthat N must containmore than one point.

Q.E.D.

The reasonthat 2.20.4is a surprisingtheoremis thatit is true for EuclideanspaceR™ but not for
generaltopologicalspaces.In particular,2.20.4holdsfor a classof spaceknown as 7;-spacedut not
for a classknown as Ty-spaces A topologicalspaceX is a Ty-spaceif given any two pointsof X, then
at leastone of themis containedin an opensetnot containingthe other. Obviously, both Z™ andR"
are Tp-spaces.However, Euclideanspacesalso satisfy severalstrongerconditions. One of theseis the
Ti-hypothesis A spaceX is calleda 77 -spaceif given any two points of X, then eachof themlies in
an opensetnot containingthe other. For example,if p,q € R* andd(p,q) = r, thenq ¢ N,(p) and
p ¢ N.(q). Thus,R" is aT;-space.On the otherhand,if p € Z" is evenandq € Z" with d(p,q) = 1,
thenq € N(p). It follows thatq is in everyopensetcontainingp andp ¢ N(q) = {q}. HenceZ" is
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a Tp-spacebut not a 71 -space.The reasonthat 2.20.4holdsfor Z™, eventhoughit is not a 7;-space;is
dueto the von Neumanntopology which was heavily employedin the proof of the theorem.

2.21 Digital Arcsand Curves

Thereare many other propertiessharedby 7* and R, and one of theseis the similarity between
digital arcsin Z™ andarcsin R™. In the definition of digital arcsgiven below, the set /”’(p) denotes
the deletedneighborhoodF (p)\{p}.

2.21.1 Definition. A digital arc is a dy-path{p1,...,pr} C Z™ suchthat,for all 1 < 7,5 < k,
(1) pi=p; < 1=j, and

(2) pi € F'(pj) < i=j+1.

If thearcconsistof onepoint(k = 1), thenit is alsocalleda degeneratarc. A digital simple
closedcurveis a d;-path{py, ..., px} suchthatk > 4 andfor all 1 < ¢,j < k,

(1) p; =p; < =7, and

(2") pi € Fl(pj) < i=j+t1modk .

A digital arc satisfyingthe additional condition

(3) pi ¢ F(p;) and F(p;)) N F(p;) # @ = i=j+2.

is calleda digital Jordanarc. A digital Jordancurveis a digital simpleclosedcurvesatisfying
condition

(3") pi & F(p;) and F(pi)NF(p;)# 3 < i=j3+t2modk.

Note that a digital arcis a digital pathwhich, becausef condition (1), cannotdoublebackon itself
or crossitself. Condition (2) implies that a digital arc doestouchitself; a point p; with j > ¢ + 1 or
J <t —1 mustbe a (Euclidean)distancegreaterthan one from the point p;. For Jordanarcs,condition
(3) meansthat the path cannotevendoublebackwithin the distancey/2 of anotherpoint of the path. In
higherdimensionsit allows arcsto doublebackto within the Moore neighborhoodf a previouspoint
pi, but at a distancegreaterthan V2.

The requirementt > 4 for digital simple closed curvesrules out one point (degenerateflosed
curves,two point closedcurves,and four point closedcurvesthat form a 2x 2 block of cells. In fact, it
is not hardto seethat thesearethe only d;-pathswith £ < 8 that satisfy (1) and(2’). Hencea digital
simple closedcurve must containat leasteight points. Figure 2.21.1providesexamplesof digital arcs
and digital simple closedcurves.
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(@) (b)

Figure 2.21.1 (a) A digital arc (left) and a digital Jordanarc (right). (b)
A digital simple closedcurve (left) and a digital Jordancurve (right).

Digital arcsanddigital simple closedcurvesasdefinedin 2.21.1are d;-connectedsets. Obviously,
by using E(p) insteadof F'(p) onecanjustaswell definethe conceptf a digital arc anddigital simple
closedcurve in termsof dy-connectivity.

The points of a digital arc pq, ..., pr areall distinct, and p; and p; are called the end points of
the arc. It is also obviousfrom the definition that the end points are non-cutpoints of the arc and that
any other point p; is a cut point. This is one propertydigital arcssharewith topologicalarcs(Example
2.17.1@i)). Beforediscussingurther commonpropertieswe needto establishthe following result:

2.21.2 Lemma. If S C Z" isconnectedthenfor anytwo givenpointsp, q € S there existsa digital
arc fromptoqin S

Proof: By Theorem2.20.2 thereexistsa digital pathfromptoqin S Let P = {py,...,px}
be a digital pathfrom p to g in S of minimal lengthwith p = p; andq = px. Thenp; # p;
if ¢ < j; otherwise{p1,...,pi,Pj+1,---, Px} Would be a shorterpaththan P.

If ¢ < j—1,thenp; ¢ F(p;), for otherwise{pi,...,p:,p;,..., Pk} IS shorterthanP. Simi-
larly, we cannothavep; € F(p;) fori > j+1, for otherwisethepath{p1,...,p;,Pi,-- -, Pk}
is shorterthan P. It follows that P is a digital arc from p to g.

Q.E.D.

We are now ableto provethe digital versionof Theorem2.17.11

2.21.3 Theorem. If § C Z" is compactand connectedwith just two non-cutpoints, thenSis a
digital arc.
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Proof: Letp,q € S bethetwo non-cutpointsof S By Lemma2.21.2thereexistsa digital
arcPfromptoqin S If P # 5, thenthereexistsa pointx € S\ P. Sincex is a cut point
of S S\{x} = AU B, whereA andB are separatedets. SinceP is connectedP mustbe
containedin one of A or B, sayA. By LemmaZ2.20.3 B U {x} is connected.Since B # &,
card(B U {x}) > 2. Hence,by Theorem2.20.4 B U {x} hasatleasttwo non-cutpoints,one
of which, call it y, is notthe pointx. We now havetwo connectedets,namely(B U {x})\{y}
and A U {x}, andthesesetshavethe point x in common. Thus

S\y} = (AU {xhu[(BU{x}H\{y}]

is connected But this meansthaty is a non-cutpoint of Sthatis notin P, a contradiction.
Q.E.D.

A pair of points p,q € Z™ are called von Neumannneighborsor simply neighboringpoints if

P € F(a).

points

2214

If p andqg arenot von Neumannneighbors,then they are referredto as non-neighboring

Theorem. |If S C Z" is compactand connectedwvith the property that for any pair of non-
neighboringpointsx,y € 5, S\{x,y} is notconnectedthenSis a digital simpleclosedcurve.

Proof: We divide the proof into five parts.

(1) We first provethat S containsno cut points. Supposeo the contrarythatp is a cut point of
S ThenS\{p} = AU B, whereA andB are separatedgets.By Lemma2.20.3 AU {p} and
B U {p} areboth compactconnectedsets. Accordingto Theorem2.20.4 there exist points
x € A andy € B suchthat x doesnot separated U {p} andy doesnot separateB U {p}.
SinceA andB are separatecets,x andy are not neighboringpoints. But then

S\{x,y} = (AU {pH\{xHU(BU{p}H)\{y}]

is the union of two connectedsetsthat have the point p in common. Thus S\{x,y} is
connectedgcontraryto the theorem’shypothesis.

(2) Next, supposehat S\{x,y} = A U B, whereA andB areseparatedets.ThenAU {x,y}
and B U {x,y} arebothconnectedsets.For supposeo the contrarythat AU {x,y} = U UV,
whereU and V are separatedsets. If U containsboth x andy, letz € V. SinceV C A,
V\{z} andB areseparatedets. Thus 5\{z} = (V\{z}) U (B U U) is a separationcontrary
to part (1) of the proof. If U containsonly one of the points x and y, say x, then
S\{x} = (U\{x})U (B U V) is a separation. Thus againwe have a contradictionto part
2).

(3) At leastoneof AU {x,y} or BU {x,y} is adigital arc. For if not, thenit follows from
Theorems2.20.4and 2.21.3that eachof the setscontainsa non-cutpoint, sayp €A U {x,y}
andq € B U {x,y}, distinct from x andy. But then

S\x,y} = (AU Gy D\UPHUIB U {x, yH)\{a]]

is a connectedset sinceit is the union of two connectedsetshaving the points x andy in
common. In addition, p and q are non-neighboringpoints sincep € A andq € B. This
contradictsthe hypothesis.
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(4) Both A U {x,y} and B U {x,y} aredigital arcs. By (3), at leastone of thesetwo sets
is a digital arc. Let B U {x,y} be the digital arc guaranteedy (3). If AU {x,y} is nota
digital arc, thenit mustcontaina non-cutpoint p ¢{x,y}. SinceB U {x,y} is adigital arc
andx andy arenot neighboringpoints, thereexistsa point q € B which separateg from y;
thatis, (B U {x,y})\{q} = U U V is a separatiorwith x € U, y € V, andeachU andV
iSs a connectedset. But then

S\{x,y} =[(AU{x,y)\{pHU (U U V)

is a connectedset,with p andqg non-neighboringpoints. This againcontradictghe hypothesis.

(5) The pointsx andy areend pointsof A U {x,y} andof B U {x,y}. If neitherx nory is
anendpointof AU {x,y}, let p,q € A denotethe endpointsof A U {x,y}. Then

S\{p,a} = [(AU{x,yH)\{p,a}] U (BU{x,y})

is the union of two connectedsetshaving the points x andy in common. Thus S\{p,q} is

connected Sincep andq areendpointsandcard(A U {x,y}) > 2, theyarenon-neighboring
points. This contradictsthe hypothesis.Thus{x, y} containsat leastone end point of A and,
for analogousreasonspof B U {x,y}.

Supposey is the endpointof A U {x,y} butx is not. If p € A denoteshe otherend point,

thenp andy cannotbe neighbors.Also, both x andy mustbe endpointsof B U {x,y}. For

if not, let q € B denotethe other endpoint. Then

S\{p,a} = (AU {x,y})\{p}U[(B U {x,y})\{a}]

is the union of two connectedsetshaving the pointsx andy in common. Thus S\{p,q} is
connectedwherep andq are non-neighboringpoints. But this contradictsthe hypothesis.
We now havethat x andy are the end points of B U {x,y} andp andy are end points
of AU {x,y}. Then(AU {x})\{p} and B U {x} are connectedsetshaving the point x in
common. Therefore,

S\{p,y} = [(AU {x)\{pHU (BU {x})

is connected. This again contradictsthe hypothesis.

ThusSis the union of two digital arcshavingonly their endpointsin common. Furthermore,

sinceA andB are separatedets,we havethatp ¢ F(q) Vp € A andq € B. It now follows

that S hasat leasteight points and satisfiesconditions(1’) and (2’) of Definition 2.21.1
Q.E.D.

If A C Z", thenady-componentf A is a maximald,-connectedsubsetf A. In particular,if n = 2,
then an 8—components a maximal 8—connectedsubsetof A. In [47] and [48], Rosenfeldproved the
following digital versionof the JordanCurve Theorem(2.17.13:

2.21.5 Theorem. If § C 7Z? is a digital simpleclosedcurve,thenZ?\ S hastwo 8—components.

It canbe seenfrom Figure 2.21.Xb) that the 8—component®f 7%\ § neednot be connectedsetsin
the von Neumanntopology. However,the exactanalogueof the JordanCurve theoremfollows as an
easycorollary of Rosenfeld'stheorem.
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2.21.6 Corollary. If § C 7?% is a digital Jordan curve,thenZ?\ S hastwo components.

Proof: Let C be oneof the 8—componentsf 7%\ § guaranteedy 2.21.5andp € C. Let (),
denotethe componentof C containingp. We shall showthat (', = C.

Sincep € Cp, Cp # . Supposeto the contrarythat C, # C. Then thereis a point
q € C\C}p and,sinceC is 8—connectedand 8—pathP = {p1, ... ,pr} from p to g in C.

Sinceq ¢ Cp, thereexistsann with 1 < n < k suchthatp, € Cp, andp,4+1 € C\Cp. Let

(#,7) = Pn. Thenp,y1 € F(p,), for otherwiseCp U {p.+1} is a connectedsubsetof C

larger thanC',. Thus,p,4+1 mustbe oneof the four diagonallyadjacentpoints(: + 1,5 4 1).

Suppose without loss of generality,that p,,+1 = (i 4+ 1,7 +1). Now considerthe points
x = (t+1,7) andy = (4,5 + 1). SinceSis a Jordancurve, it follows from 2.21.1(3'), that
at leastone of the points, say x, is not an elementof S. But thenC}, U {x} is a connected
subsetof C larger than C,. ThereforeC, = C'.

Q.E.D.

The following digital versionof Example2.17.3ii) was also provenby Rosenfeld[47].

2.21.7 Theorem. If S C 7? is a digital arc, thenZ?\ S is 8—connected.

In view of Figure 2.21.Xa), it is obviousthat Z?\ S neednot be connected.The following digital
analogueof 2.17.3ii) follows asan easycorollary to 2.21.7

2.21.8 Corollary. If S C 7? is a digital Jordan arc, thenZ?\ S is connected.

The proof of this corollary is identical to that of Corollary 2.21.6

A topologicalinvariant that providesa methodfor countingobjectsin the digital plane Z?* is the
Euler number.

2.21.9 Definition. If S C Z? is compactthenthe Euler numberof S, E(S), is definedas
E(S)=m(S) - n(S),

wherem(S) denoteghe numberof componentf S andn(S) the numberof boundedcompo-
nentsof Z%\S. The boundedcomponentof 72\ 5 arealso called the holesof S

If oneof the numbersm(S) or n(§) is known, thenthe Euler numberprovidesa meansfor obtaining
the other. This observatiorhasdirect practicalapplications.For example therearevarious“hole filling”
algorithmswhose output are connectedobjectswithout holes. The Euler numbercan then be applied
to find the numberof objectspresent.Conversely,if we know that we are dealingwith one connected
object, then the Euler numberprovidesus with the numberof holesin the object.
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2.22 Weakly Connected Setsand dz-Connectivity

In the precedingwo sectionave formulatedmostddinitions andtheoremsn termsof d; -connectivity
and observedthat most of the theoremshave analogousinterpretationgor d;-connectivity. This holds
for the Euler numberaswell. For 8—connectivitywe define

ES(S) = 1’)7,8(5) — ng(S),

wheremg(5') denoteghe numberof 8—componentsf Sandng(5') the numberof boundedB—components
of Z?\S. Obviously,in mostcasesEs(S) # E(9).

Onereasonwe preferredusing d; -connectivityis Theorem2.20.2 It is well known that theredoes
not exist a topology on Z™ for which connectivityis equivalentto dz-connectivity[4]. However,there
existtopologieson Z™ in which everyd;-connectedetis weakly connected Note thatif p = (¢,7) is an
evenpoint in the von NeumannspaceZ? andq is any oneof the diagonallyadjacenineighboringpoints
(¢ + 1,7 £ 1), thentheset{p, q} is weakly connectedut notconnectedThisis in contrasto R", where
weak connectivityand connectivityare equivalentnotions(Theorem2.16.§. It doesnot mean,however,
that 8—connectedetsare weakly connectedthe set{(¢,j + 1), (¢ + 1, j)} is not weakly connected.

In thevon NeumanrtopologyonZ abasicopensetN (p) is of form N(p) = {p} if p € Z isoddand
N(p)={p—1,p,p+ 1} if pis even.The Cartesiarproductof thesebasicneighborhoodsvill be used
to definea basisfor a topologyon Z™ which is differentfrom the von Neumanntopology. Specifically,
with eachp = (p1,p2,...,pn) € Z™ we associate basicneighborhoodV (p) definedby

N(p) = (N(p1)s -+ N(pa)) = [T N (i)

i=1

whereeach N (p;) is a basicneighborhoodof p; € 7 of the von NeumannspaceZ. It is not difficult
to showthat the collection B = {N(p) : p € Z"} is a basisfor a topologyon Z". Sincethereare 2"
possibleneighborhooctonfigurationsthis topology is appropriatelycalled the 2"-topologyon 7Z™. The
setZ™ togetherwith this topologyis alsoreferredto asthe productspaceof the von NeumannspaceZ.

For illustrative purposesve againconsiderthe dual spaceC™ obtainedby substitutinge(p) for p and
N(c(p)) for N(p). Thefour differentneighborhoodorfigurationsfor the productspaceC? areshownin
Figure2.22.1 The shadedcell representshe cell ¢(¢,j) € N(c(¢,7)) . Herethe left-mostneighborhood
resultswheni andj arebotheven. Proceedindrom left to right, the nextneighborhoogicturedrepresents
the casei evenandj odd followed by i evenandj odd, andi andj both odd, respectively.

Figure 2.22.1 The four possiblebasicneighborhoodsn the productspaceC?.

Productspacesandvon Neumannspaceshareseveraltopologicalproperties.In particular,we have
the following analoguesf Theorems2.19.1and 2.20.2
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2.22.1 Theorem. Thebasicneighbohoodsfor the 2"-topologyare path-connected.

The proof of 2.22.1is analogoudo thatof 2.19.1 Given a neighborhoodV(p) andp, q € N(p),
we definethe path P = {p1, p2, p3s}, Wherep, = q, p2 = p, andps = r, anddefinea continuouspath
f:10,1] = N(p) from q to r accordingto the typesof coordinatesf the pointsp, g, andr.

2.22.2 Theorem. LetZ" bethedigital spacewith the2™-topologyandS C Z™. ThenSis connected
<= S is path-connected.

As in the caseof 2.20.2 the equivalencefollows from Theorems2.17.5 2.17.8 and 2.22.1 In
contrastto Theorem2.20.2 connectivityin the 2™-topologyis not equivalentto digital path-connectivity
for eitherd -pathsor d,-paths.lIt is truethateveryd; -pathis connectedn the productspaceZ™. However,
connectedsetsneednot be d; -pathconnected For example|f (i, ) € Z2 with i andj bothevenintegers,
then {(¢,7),(¢ 4+ 1,j 4+ 1)} is connectedbut not d;-connected. Although {(z,7), (¢ + 1,7 + 1)} is da-
connectedjt doesnot meanthat all d;-connectedsetsare connectedthe set{(i + 1,7),(¢,7 + 1)} is
dz-connectedutnotconnectedHowever,{(i + 1, j), (¢,j + 1)} is weaklyconnectedandsois everyd,-
connectedsetin the productspaceZ™. Theseobservationsrerelevantin connectiornwith the topological
notion of weak path-connectivity

2.22.3 Definition. Let Z" be a digital space.A sequencef points{p1, ... ,pxr} € Z" is calleda
weakpath if {p;, pi+1} is weakly connectedor 1 < ¢ < k — 1.

A setS C Z" is weaklypath-connectedf for eachpair of pointsp, q € S, thereexistsa weak
pathP = {p = p1,p2, --.,Pr = q} C 5. ThesetP is calleda weakpathfromp to g.

As a consequencef this definition we have the following:

2.22.4 Theorem. If Pis aweakpathin a digital space thenP is weaklyconnected.

Proof:  Supposeto the contrary that some weak path P = {py, ...,pr} C Z™ is not
weakly connected. Then there exist opensetsU and V suchthat P Cc U UV, PNU #
@ #£PnV,andU NV = &. Assumewithout loss of generalitythatp, € PN V. Let
j =maz{t : p; € PNU}. Sincej + 1 < k we haveby definition of j thatp;;1 € PNV,
while p; € PN U. Thus{p;,p;+1} is not weakly connectedcontraryto the hypothesishat
P is a weak path.

Q.E.D.

It is not difficult to verify that connectivity implies weak path-connectivityin the von Neumann
topologyaswell asthe 2"-topology. Also, every dy-pathis a topologicalpath and, hence,a weak path
in thesetopologies.However,aswe notedearlier,diagonallyadjacentpointsin the von Neumannspace
Z*? neednot be weakly path-connected.Henced,-pathsin von Neumannspacesneednot be weakly
path-connectedOn the other hand, d-pathsare weak pathsin the 2"-topology. This follows from the
fact thatif p;41 € E(p;), thenN(p;4+1) N N(p;) # & for the basicneighborhoodsn the 2™-topology.
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In analogyto path connectivity,we alsohavethatweak path-connectivitymplies weak connectivity
in digital spaces.For supposethat S C 72 is weakly path-connectedut not weakly connected.Then
there exist opensetsU andV suchthat S Cc UUV, SNU # @ # SnV,andU NV = &. Let
peSNU,qe SNV, andP aweakpathfomptoqin S ThenP CUUV,PNU #B #PnV,
andU NV = &. ThusP is not weakly connectedcontraryto Theorem2.22.4 The nexttheoremshows
that the conversealso holdsin the von Neumannas well as the 2™-topology.

2.22.5 Theorem. LetZ" bethe digital spacewith either the von Neumanror the 2"-topology. If
S C 72, thenSis weaklyconnectedk=> S is weaklypath-connected.

Proof: We alreadyknow that weak path-connectivityimplies weak connectivity in digital
spaces. To prove the converse supposethat S is weakly connected.Let p € S and A, =
{q € 5 : thereis a weak path from p to qin 5}. If A, = 9, thenthereis nothingto prove.
So supposethat A, # 5. Let B, = S\Ap,

U= |J N, and V= |J N(x),

q€eAd, x€B,

where N(q) and N(x) denotebasic neighborhoods.

If x € Bp, thenN(x)N N(q) = for everyq € Ap. Forif N(x)N N(q) # & for some
q € Ap, let P beaweakpathfromp to g in S ThenP U {x} is a weakpathfrom p to x in
Sand,thereforex € Ap, contraryto thefactthat A, N B, = &. It follows thatU NV = &,
UNS=UnNAp #93, VNS =VNDBp #J,andS C U U V. butthis contradictsthe
hypothesisthat S is weakly connected.ThereforeA, = 5.

Q.E.D.

Althoughd,-connectivityimpliesweakpath-connectivityand,hence weakconnectivity the converse
doesnot hold in eitherthe von Neumanntopology or the 2™-topology. For example,if (i, ) € Z* with
i andj both evenintegers,then P = {(¢,7),(¢ + 2,7)} is weakly connectedand henceweakly path-
connectedut not dz-connectedn the 2"-topology. Note, however thatif we shift the setoneunit in the
diagonaldirection, then the shiftedset{(¢ + 1,5 + 1),(¢ + 3,5 + 1)} is not weakly path-connectear
weakly connected This is dueto the fact that shifts are not continuoustransformationsn this topology.
As we shall show,d;-pathsarethe only weakpathsthatare shift invariantweakpathsin the 2™-topology.

If p=(p,...,p.)andq = (¢u,...,q,) arepointsin Z"*, and S C 2", thenwe define
Pta=(p1+aq, - Pnt+¢) and S+p={p+q: qeS}. (2.22.1)
A weakpath P = {p;,...,px} is a translationinvariant or shift invariant weakpath if P + p =

{qi1,...,qr}, whereq; = p;+p for 1 < i < k, is a weakpathfor everyp € 7".

2.22.6 Theorem. LetZ" be the digital spacewith the 2"-topologyand S C Z". ThenSis d,-
connected—> for eachpair of pointsp,q € S there existsa translationinvariant weakpath
Pfromptoqin S
In particular, P is a dy-path <= P is a translationinvariant weakpath.
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Proof: SupposeSis di-connected.Let p,q € 5, P = {p1,...,pr} adz-pathfrom p to q
in S andx € Z"*. Sincepi+1 + x € E(p;) + x = E(p;+x), P + x is adz-pathin 5 + x.
Sinced;-pathsare weak paths,P is a translationinvariant weak path.

To provethe converse supposehatfor eachpair p,q € 5, thereexistsa translationinvariant
weak pathfrom p to g in S If Sis not d,-connectedthenfor somepair of pointsp,q € S,
theredoesnotexista d;-pathfromptoqin S Let P = {p1,...,pxr} beatranslationinvariant
weakpathfrom p to g in S SinceP is not a d;-path,we havethatfor some: p;1 ¢ E(p;),
wherel <i < k—1. Letpiy1 = (p1,-..,pn) anddefinex = (z41,...,2,) € Z" by

._{0 if p;isodd
;=

1 if p;is even,

Then the coordinatesof the point p;4; + x are all odd and, therefore,

where 1 n.
{pi+1 + x}. But then

<J <
N(pit1 +x) =

N(pi+1+x) N N(pi+x) CN(piy1+x) N E(pi+x) ={pi+1+x} N N(p;+x) =D

sincepi+1+x ¢ E(p;) +x = E(p;+x). This contradictsthe hypothesighatP is a translation
invariant weak path.
Q.E.D.

A shift by a vector x € Z™ is a function fx : Z" — Z" ddined by fx(p)=p+x Vp € Z".
The fundamentalproblem with both the von Neumannand the 2"-topology is that they are not shift
invariant; a shift fx is not necessarilycontinuous. Shifts are importantoperationsin image processing,
while continuousfunctions preservesuch importantfeaturesas connectednessThereforeit would be
desirableto have shifts representeds continuousfunctions. There are topologieson Z™ that provide
for continuity of shifts. The discreteand indiscretetopologiesare two suchexamples.However,these
topologiesdo not provide the useful propertieswe associatevith R™ suchas the classificationof arcs,
the JordanCurve Theorem,and the various propertiesof surfacesembeddedn R™. Digital imagesare
usuallyviewedasdiscreterepresentationsf regionsin R™. Thuswe would like propertiesof R to carry
over into the discretedomain. As we haveseen,the von Neumannand 2™-topologiespreservemany of
theseuseful properties.In addition, eventhoughshifts are not continuousfunctionsin thesetopologies,
shifts do preserveconnectivity in the von Neumanntopology and weak connectivity of d,-connected
setsin the 2"-topology.

There are many other topicsin digital topology that provide for a theoreticalfoundationof many
importantimage processingoperations. We refer the readerinterestedin this subjectto [29] and [44]
for further references.
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CHAPTER 3
ELEMENTS OF ABSTRACT ALGEBRA

If onesurveysthe subjectsof arithmetic,elementaryalgebra,or matrix theory, certainfeaturesstand
out. One notesthat thesesubjectsdeal with somegiven or derivedset of objects,usually numbersor
symbolic expressionsandwith rulesfor combiningtheseobjects. Examplesof theseare the setof real
numbersthe setof realvaluedfunctionson a set X, andthe setof complexvaluedn x n squarematrices
with the usualrulesof addition, subtractionand multiplication. Moreover,onefindsthatthereare some
propertieswhich thesecombining operationshave in common: e.g. adding zero to any real number,
addingthe zerofunction to a function, or addingthe zero matrix to a matrix doesnot changethe value
of the realnumber,thefunction, or the matrix, respectively.Other properties suchas commutativity,do
not alwayshold. Multiplication of squarematricesis, in general,not a commutativeoperation.

Abstractalgebraaimsat providing afuller understandingf thesesubjectghrougha systematicstudy
of typical mathematicastructures.Sucha studyhasthe advantagef economyin that manysuperficially
distinct structuresare found to be basicallythe same,and henceopento a unified treatment.

Imagealgebrahasan analogougyoal in thatit aimsat providing a deeperunderstandingf image
processinghrougha systematicstudy of image processingoperations.Various structuresin the image
algebraare equivalentto thosestudiedin abstractalgebra. Familiarity with someof thesestructuress,
therefore,essentialto the understandingf image algebra.

3.1 Relations and Operations on Sets

A binaryrelationR onasetX is, intuitively, a propositionsuchthatfor eachorderedpair (z,y) of
elementsof X , one candeterminewhetherzRy is or is not true. Here, xRy meansthat “z is related
(by therelationR) to y.” For example,if L is the setof all linesin a plane,then*is parallelto” or “is
perpendicularto” are binary relationson L.

The notion of a binary relation on a set can be rigorously defined by statingit formally in terms
of the set concept.

3.1.1 Definition: A binary relation’R on asetX is asubsetR C X x X.

Thus,any subsetR of X x X is abinaryrelationon X andif sucha subsetis beingusedto define
arelationon X, thenit is customaryto write Ry for (z,y) € R.

3.1.2 Examples:
0] Setinclusionis a relation on any power set. In particular,let X be any setand

R={(A,B): ACB, A,Be2¥}.

ThenR is a binary relation on 2%,
(i) Therelationof lessor equal <, betweenreal numbersis theset{(z,y): = <y} CR x R.

(iii) For any set X, the diagonalA = {(z,z): « € X} is therelationof equality.
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(iv) The inverserelation of R, denotedoy R~1, is the relation R~ = {(y,z): (=,y) € R}.
Thus, the inverserelationof < in (ii) aboveis the relation of greateror equal >.

Note thatin binary relations,eachpair of elementsneednot be related. For instancejn (iii) above,
if 2,y € X andz # y, thenneither(z,y) nor (y,z) arein A.

An obviousgeneralizatiorof Definition 3.1.1is to defineany subsebf X x Y to beabinaryrelation
betweenthe elementsof X andthoseof Y'; thus,a function f : X — Y is a specialtype of a binary
relationbetweenX andY . Operationshetweenimagesandtemplatesas definedin Chapter4 provide
examplesof binary relationsbetweenelementsof differentsetsthat are pertinentto image processing.

Certainrelationson a set allow elementsof that setto be arrangedin someorder. For example,
whena child arrangesa setof sticksin order, from longestto shortesthe hasan intuitive graspof the
relation“is longerthan.” From this examplewe can seethat there are at leasttwo propertieswhich a
relation R must haveif it is to order a set. Specfically:

R must be antisymmetric. That is, given two sticks, one of them must be longer than the other.
Otherwise,they could not be given relative positionsin the order.

R mustbe transitive. Thatis, given threesticks z, y, and z, with 2 longerthany andy longerthan
z, then z must be longer than z.

We collect theseideasin a definition.

3.1.3 Definition. A relation< on aset X is calleda partial order on X if andonly if for every
z,y,z € X the following three conditionsare satisfied:
(i) = Xz (reflexive)
(i) 2<yandy Xz = 2 =y (anti— symmetric)
(i) R yand y X 2 = z < z (transitive)

The relationsdefinedin Example3.1.2 are all partial orderrelations. The relation of lessor equal
given in Example3.1.2 (ii) is also called the natural order on R.

A setX togetherwith the partial order <, i.e. the pair (X, <), is called a partially ordered set If
¢ < y in a partially orderedset, thenwe saythat  precedesy or that z is smallerthany andthaty
follows or is larger than z.

If R = < is a partial orderon X, thenit is easyto seethat the inverserelation !, denotedby

=, is alsoa partial orderon X. The inversepartial orderrelation > is also called the dual of < and
givesrise to the following definition:

3.1.4 Definition. Thedual of a partially orderedset X is that partially orderedset X * definedby the
inversepartial order relation on the sameelements.

Since (X*)" = X, this terminologyis legitimate.

Note that Definition 3.1.3doesnot imply thatgivenz,y € X, theneitherz < y or y < z; thatis,
in a partially orderedsetnot every pair of elementsneedto be related. A partially orderedsetin which
everypair of elementds relatedunderthe orderrelationis calleda totally (or linearly) orderedset. The
setR togetherwith the naturalorderof < is an exampleof a totally orderedset. On the otherhand,the
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relation of setinclusion (Example3.1.4i)) is a partial order which is not a total order. An extremely
useful specialcaseof a linear order is providedby the next example.

3.1.5 Example: Let X andY be totally ordered. Then the productset X x Y can be totally
orderedas follows:

(z,y) < (a:’,y') ife <2’ orife=2"andy <y .

This order is called the lexicographicalorder on X x Y asit is similar to the way words
are arrangedn a dictionary. For example,supposethat X = X x YV, where X = {1,2,3}

andY = {1,2,3,4} (seealso Example2.3.]). If the integersin X andY are considered
orderedby the naturalorder of lessor equal,then X is totally orderedby the order relation
(1,7) < (¢, ") definedabove. Thus, if we renamethe elementsof X by x; = (¢,j) € X,

wherek = 4(i — 1) 4 j, thenX = {xyq, x2, ..., X12} andx; < x; if andonly if £ < h.

If we view the elementq7, j) of X asthe usualith row and jth columnlocationof a matrix
array,thenthis orderis alsoknown asthe commorscanningorder of the matrix array X. This

corresponddo the usualway a computerreads(scans)the entriesof a matrix; namely, row

by row from left to right, startingwith the top first row thenthe second.andso on, until the
last or bottom row is read.

If X CY,thenX x X CY xY. Thus,if R is abinaryrelationonY, thenRnN (X x X ) is a
binary relationon X . We call therelation® N (X x X) therelationinducedby R on X. In particular,
a binaryrelationon Y inducesa definite binary relation on everysubsetof Y. For example the natural
orderrelation’® = < onY = R inducesthe naturalorder < on the setof integersX = Z.

Oneof the mostfundamentatelationsbetweenelementf a setis that of equivalence Equivalence
relationsare usedin practically all fields of mathematicsthey arisewheneverone desiresto regardall
thosemembersof setthat have somepreassigneaharacteristicas a single entity.

3.1.6 Definition. A relationR onasetX is calledanequivalenceelationif it satisfieshefollowing
three conditions:

1)z € X = zRz (reflexive)
(2) 2Ry = yRz (symmetric)
(8) 2Ry and yRz = 2Rz (transitive)

If R anequivalenceelationandzR y, thenwe saythatz andy areequivalent

3.1.7 Examples:

0] Considerthe relation R of setinclusion (Example3.1.9i)). For eachA c 2¥, A ¢ A andif
AC BandB C C,thenA C C. Hence,itherelation R = C is bothreflexive andtransitive.
On the otherhand,A ¢ B andA # B = B ¢ A. Accordingly, C is not symmetricand
hencenot an equivalencerelation.

(i) The diagonalrelation A of Example3.1.4iii) is an equivalencerelation.
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(iii) Let f : X — Y beafunctionandR = {(z,2') : f(z) = f(2')}. ThenR is an equivalence
relation on X.

If R is an equivalencerelationon X, thenthe equivalenceclassof any elementz € X, denoted
by [z], is the set
[z] ={y: yRz, y € X}.
The collection of equivalenceclassesof X, denotedby X /R, is called the quotientsetof X by
R. Thus,
X/R=A[z]: z€ X}
The quotientset X/R possessethe following properties:

3.1.8 Theorem. LetR beanequivalenceelationon X. Then
(1) For everyz € X, z € [z]
@) [2] = [y] & 2Ry
@) [zl #ly] & [Ny =0

Proof: (1) SinceR is reflexive,we havezRz and,hence,z € [z].

(2) Suppos€z] = [y]. By part(1), z € [z] = [y]. Thus,zRy. To prove the converse/et
z € [y]. ThenzRy. By symmetry,yRz. We now haveyR z and,by hypothesisgRy. Hence,
by transitivity, 2Rz. Again, by symmetry,zRz and, therefore,z € [z], which showsthat
[z] C [y]. Arguingin a similar fashion,we canshowthat[y] C [z] and,hence,z] = [y].

(3) Supposethe conclusionis false,i.e. [z] N [y] # @. Thendz € X with z € [z] N [y].
Hence,zRz and zRy. By symmetry,2’Rz. SincezRz and 2Ry, we have by transitivity
that 2Ry. It now follows from part (2) that[z] = [y] which contradictsthe hypothesis.The
converseargumentis just as easy.

Q.E.D.

A collection {A)},., of subsetsof X is called a partition of X if the following conditionsare
satisfied:
(1) U Ay =X and
A€EA
(2) AyN A, =@ whenever A #7v (A, 7y € A).
The following fundamentatheoremof equivalenceelationsis a consequencef Theorem3.1.8

3.1.9 Theorem: If R is anequivalenceelationon X, then X/R is a partition of X.

Proof: Obviously, |J [z] C X. If y € X, thenby Theorem3.1.81) y € [y] C U [z].
zeX reX
Hence,X C |J [z]. Theremainderof the proof follows immediatelyfrom Theorem3.1.§3).
rzeX

Q.E.D.

Eachelementy of anequivalenceclass|z] (i.e., eachy € [z]) is calledareprsentativeof [z]. Note
that if y is a representativeof [z], then[y] = [z].
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3.1.10 Examples:

(i) Two integersaresaidto havethe sameparity if eitherboth areevenor both areodd. The
relation “has the sameparity as” on Z is an equivalencerelation and partitions Z into two
equivalenceclasses.In particular,if n € Z, then

2n] ={k€Z: kiseven} and 2n+ 1] ={k € Z: kisodd}

Clearly, [2n] U [2n + 1] = Z and [2n]| N [2n + 1] = @.
(i) Eachequivalenceclassresultingfrom therelation A of Example3.1.2iii) containsexactly
one element.

(iii) In Example3.1.7jii), the equivalenceclassesarethe sets{f~(y): y € f(X)}.

3.1.11 Definition. For arbitraryintegersm, n andr, we saythatm is congruentto » modulon (or
m is congruentto r mod n), andwrite m = r (mod n), if the differencem — r is anintegral
multiple of »; thatis, if m = nk + r for someintegerk.

It is easily verified that congruencenodulon, i.e. theset(n) = {(m,r): m = r(modn)}, is an
equivalenceelationon Z. Fortherelationof congruencenodulonr is obviouslyreflexiveandsymmetric.
The transitivity also follows easily: If m = nk + » andr = nj + ¢ for someintegersk and j, then
m = n(k+j) + ¢, sothatm = ¢(mod n).

If R = (n) denotesthe relationon Z definedby “m is congruentto » mod »n”, thenthe quotient
Z/(n) is called the setof integersmod n.

3.1.12 Example: LetR = (5) be the relationon Z definedby m = r(mod5). Thenthereare
exactly five distinct equivalenceclassesn Z/(5):

Ao ={...,—10,-5,0,5,10,...} = --- = [=10] = [=5] = [0] = [5] = [10] = - --
A ={o, =9, —4,1,6,11,..} = - = [-9] = [-4] = [1] = [6] = [11] =
Ay ={o=8,-3,2,7,12,.. = =[-8 = [-3] = [2] = [7] = [12] =
As={...,~7,-2,3,8,13,.. = = [-T] = [-2] = [3] = [8] = [13] =
Ag={ .., —6,-1,4,0,14,..} = - = [=6] = [~1] = [4] = [9] = [14] =

Observethateachintegerm is uniquelyexpressiblén theform m = 5n+r, where0 < r < 5
4

andr € A, is theremainder.Clearly,Z = |J 4; and4; N A; = & whenever # j.
=0

In Example3.1.1(i), thereare exactlytwo equivalentclassesthe setof evenintegersandthe setof
odd integers,and0 and 1 arerepresentativesf theseclassesAlthough 2 and3 arealsorepresentatives
of theseclassesit is customaryto let 0 and 1 representtheseclassesi.e., to identify the setZ, = {0, 1}
with the setZ/(2) = {[2n],[2n — 1]} by identifying 0 with [2n] and 1 with [2n + 1]. In general,it
is customaryto let Z,, = {0,1,2,...,n — 1} denotethe setZ/(n) asthesetwo setsarein one-to-one
correspondencenderthe function i — [i] € Z/(n).

It is easyto showthatfor anygivenk € 7+, the setZ/(Q’f) ~ Z,x iS in one-to-onecorrespondence

k
with theset [ Z; = (Zg)k (we leaveit to thereaderto convincehimselfof this fact). Thus,the elements
=1
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k
of Z,+ canbe uniquelyidentifiedwith the elementof ] {0, 1}; i.e. with binary numbersof fixed length

=1
k. This correspondgo the usualrepresentatiorof dilgital image valuesin digital image processingoy
computers(Section2.18.

3.1.13 Example: The setof integersmod 8 consistsof eight equivalenceclassesnamelyZ,s =
{[0],[1], 2], [3], [4], [5],[6], [7]}- Identifying [0] with (0,0,0),[1] with (0,0,1),[2] with (0,1,0),
[3] with (0,1,1),[4] with (1,0,0),[5] with (1,0,1),[6] with (1,1,0),[7] with (1,1,1)providesfor
a unigueone-to-onecorrespondencbetweenZ,s and{0,1} x {0,1} x {0,1} = (Z2)*.

A binary operationis a relation betweensetswhich providesa rule for combiningtwo arbitrary
elementsof one or two sets. The precisedefinition is as follows:

3.1.14 Definition. Let X, Y, and Z be three(not necessarilydistinct) sets. A binary operation()
betweenX andY with resultantin 7 isafunction() : X xY — Z. If X =Y = Z, then
(O is simply called a binary operationon X .

The evaluation()(z, y) is commonlydenotedby = () y andis calledthe resultantof the operation.
Thus,if (z,y) € X x Y, thenz Oy = z € Z. Binary operationsdbetweensetsplay an importantrole in
imageprocessing.In this chapter,however,we will deal mostly with binary operationson a set.

Addition, multiplication, and division are examplesof binary operationson R*. Addition and
multiplication are also binary operationson R. Due to the fact that for any pair of numbersof form
(r,0), 7/0 is undefined division is not a binary operationon R. However,it is a binary operationon
R\{0}.

Somebinary operationgnay satisfyspecialproperties.Commutativityandassociativityarethe most
importantof thesespecialproperties.A binary operation() on aset X is calledcommutativevhenever
tQy=yQOz Vz,y € X, andassociativewheneverz O y)Oz=2Q((y O z) Vz,y,z € X.

3.1.15 Example: Addition and multiplication are commutativeand associativebinary operationson
R. Division is not commutativeon RT. Defining () on R by
mQOn=m+2n Vm,n € R

then
(mOn)OQk=(m+2n)Ok=(m+2n)+ 2k

and
mQOmQOk)=mQ (n+2k)=m+2(n+2k)=m+ 2n+ 4k.

Thus, the operation() is not associative Furthermore() is not commutativesincem (O n =
m+2n #n+2m =n m.

A set X is said to have an identity elementwith respectto a binary operation() on X if there
existsan elemente € X with the property

xQe=eQae=2 VeelX.
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Theidentity elementof R with respecto additionis 0 since0 +xz = 2+ 0 = 2 V2 € R; theidentity
elementof RT with respecto multiplicationis 1 sincez-1=1-z = 2 Vz € RT. ObservethatR™ has
no identity elementwith respecto addition. The next theoremshowsthat identity elementsare unique.

3.1.16 Theorem. An identity elementjf oneexists,of a set X with respectto a binary operation
(O on X is unique.

Proof: Assumethe contrary;thatis, assumee; andez aretwo distinct identity elementsof
X. Theney O es = ez sincee; is anidentity element. Similarly, e; () e; = e;. Therefore,
e1 = e1 () e3 = ey, Which contradictsthe fact that e; ande, aredistinct.

Q.E.D.

If asetX hasanidentity elemente with respecto a binary operation(), thenanelementy € X is
calledaninverseof « € X providedthatz Oy = y O = = e. Theinversewith respecto addition (also
calledadditiveinversg of 2 € R is —z sincez + (—z) = 0. The inversewith respectto multiplication
(also called multiplicative inversg of = € R\{0} is ! sincez - 2! = 1. Note that the set of all
n X n squarematricesundermatrix multiplication hasa multiplicative identity, namelythe n x n identity
matrix. However,not every n x n matrix hasa multiplicative inverse.

The proof of the nexttheoremis similar to the proof of Theorem3.1.16andis left asan exercise
for the reader.

3.1.17 Theorem. Let() bea binary operationonset X. Theinversewith respectto () of z € X,
if it exists,is unique.

Although not every binary operationon a set X providesfor inverse elements,many operations
provide for elementsthat behavealmostlike inverses. Obviously, if y is the inverseof € X with
respectto the operation), thenz Oy Oz =e Dz =z andy D2 Oy =e Oy =y. Any element
y satisfying the two conditions

rQuQOQe=zandyOQeQuy=y (3.1.0)

is called a pseudainverseof 2 € X. Thus, everyinverseis a pseudoinverse. However,in Section4.4
we shall seethat the conversedoesnot necessarilyhold.

SupposeX is a setwith two binary operations() and ()’. The operation() is said to be left
distributive with respectto ()’ if

xO(yO'z):(xOy)O'(sz) Ve,y,ze X. (3.1.1)
and right distributive if
(yO’z)Ox:(yOx)O’(sz) Ve,y,ze X. (3.1.2)

When both 3.1.1 and 3.1.2 hold, we simply say that () is distributive with respectto ()’. Note
that the right membersof 3.1.1 and 3.1.2 are equalwhenever() is commutative. Obviously, on R,
multiplication is distributive with respectto addition. However, division on R* is not left distributive
over addition. Thatis, (y + 2)/z = (y/z) + (2/z) butz/(y + 2) # (x/y) + (z/z).
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3.2 Groups and Semigroups

We beginour shortsurveyof algebraicstructuresy listing characteristideaturesof specialabstract
algebraicsystemsthat are importantin the study of imagealgebra.

3.2.1 Definition. A groupoidis any set X togetherwith a binary operationon X. A groupoid
whosebinary operationis associatives called a semigoup.

To becompletelyprecisein denotinga semigroupwe shouldusesomesymbolismsuchas( X, O, =),
which specifieghe setof elementsthebinaryrelation,andthe equalityrelationusedto specifytheequality
of elementse.g.,2 O (y O z) = (z O y) O z. However,it is customaryto useeitherthe pair (X, O)
or simply the letter designatiorof the setof elementsijn this caseX , asa designatiorof the groupoidor
semigroup providedthereis no dangerof confusionasto the notationbeingusedfor binary composition.
Also, algebraistsasa rule do not usea specialsymbol“()” to denotea binary operationdifferentfrom
the usualadditionandmultiplication. They stick with the conventionabkdditive or multiplicative notation
andevencall theseoperationsaddition or multiplication, dependingon the symbolused. The symbolfor
additionis of course“+”, andfor multiplication“-". Thus,in placeof the notation“z () y”, we shallbe
usingeither“z + y” or “z - y”. Thereis alsoa sortof gentlemen’sagreementhatthe symbol“0” is used
to denotean additive identity and the symbol“1” to denotea multiplicative identity, eventhoughthey
may not be actually denotingthe integers0 and 1. Of course,if a personis alsotalking aboutnumbers
at the sametime, other symbolsare usedto denotetheseidentitiesin orderto avoid confusion.

To the uninitiated, semigroupsmay seemtoo poor in propertiesto be of much interest. However,
the setof all n x n squarematricesunder matrix multiplication forms a semigroup. Anyone who has
had experiencewith matrix theoryis well awarethat this system,far from beingtoo poorin properties
to be of interest,is, indeed,extremelyrich in properties. Researctinto the fascinatingramificationsof
matrix theory has providedthe stimulusto a greatdeal of mathematicadevelopmeniandis an active
and growing branchof mathematics.

The setof » x n squarematricesundermatrix multiplication hasthe additionalpropertyof having
a multiplicative identity. This leadsus to the next definition:

3.2.2 Definition. A monoidis a semigroupwith identity.

3.2.3 Examples:

0] LetY beasetandX = 2. Then X togetherwith the operationof unionis a monoid. By
the laws of setoperationg2.2.1), unionis an associativeoperationwith identity &.

(i) The set of positive integersZt togetherwith the operation+ is not a monoid. Thereis no
identity for + in Z*. However,(Z*,+) is a semigroup.

(iii) The system(Z*,-) is a monoid with identity the integer1.

Of the variouspossiblealgebraicsystemshavinga single associativeoperation the type known asa
group hasbeenby far the mostextensivelystudied. Also, the theory of groupsis one of the oldestparts
of abstractalgebra,aswell as one particularly rich in applications.
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3.2.4 Definition. A groupis a monoidwith the propertythat eachelementhasan inverse.

It is customaryto denotethe inverseof an elementz in a group X by “z~!” if multiplicative
notationis used,and by “—z" if additive notationis used.

Recallingthe definition of a monoid, we may definea group alternativelyasa set X togetherwith
a binary operation,say (X, -), suchthat :

(1) The operation - is associative, i.e., Va,y,z € X, z-(y-2)= (2 -y) 2.
(2) Thereis an identity element 1 € X such thatVe e X, z-1=1-2 ==z.

(3) Va2 € X, Janinverse element 2 ' € X such thatz -2 '=2 ' 2 =1.

If in addition to thesethree propertiesthe operationis commutative,then the group X is called
an abelian group.

3.2.5 Examples:

0] The setN with the operationt+ is not a group. Thereis anidentity elementO, but no inverses
for integersgreaterthan O.

(i) The setof integersZ with the operation+ is a group. This groupis abelian.

(iii) On Z,, we definea binary operation(which we shall againwrite as+, althoughit is certainly

not ordinaryaddition) by [j] + [k] = [j + k]. Herej andk are any elementf the respective
sets[j] and[k] of Z,,, andthesumj + k is the ordinarysumof j andk. In orderto showthat
we actuallyhavedefinedan operation,i.e., thatthe function (operation)([j], [k]) — [j] + [k] is

well-defined we mustshowthatthe imageelementof the pair (5], [k]) is uniquelydetermined
by [j] and[k] alone,and doesnot dependin any way uponthe representativeelements; of

[7] and k& of [k] which we happento choose. So, supposethat ¢ and h ~ are also arbitrary
elementsof the sets[j] and [k], respectively. We then have that

t=j+an and h=Fk+ bn
for someintegersa andb. But then
i+h=G+an)+(k+bn)=(G+k)+(a+d)n

by virtue of the associativityand commutativityof addition,andthe distributivity of multipli-
cationoveradditionfor theintegers.Thus,we havethat[: + k| = [j + k], andour operationis
well-defined,independenof the choiceof representativesf therespectiveequivalenceslasses.
That this operationof addition modulon is associativeollows from the associativityof ordi-
nary integeraddition. The identity elementis [0] andthe inverseof [k] is [—k] (we leavethe
verification of thesetwo factsto the reader).Thus,Z,, with this operationof additionforms a
group. It alsofollows from the commutativity of addition of ordinaryintegersthat the group
Z,, is abelian. This groupis known asthe group of integersmodulon.

An important property inherentto all groupsis the cancellationlaw provided by the following
theorem:
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3.2.6 Theorem. If X is a group with binary operation-, thenthe left and right cancellationlaw
holdsin X, thatis,z -y = - z impliesy = z, andy -z = z -2 impliesy = z,Vz,y,2 € X

Proof. Supposer -y = = - z. Then,multiplying by =1, the inverseof z, we obtain

e l(zey)=27t (- 2).

By the associativelaw,
(afl :13) -y = (:tfl a:) -z,
By definition of an inverse,z~ ' -z = 1 and, hence,
1-y=1-2z, and by definition of identity, y = z.

Similarly, from y - = 2 - 2 onecandeducethaty = z.
Q.E.D.

Note that we had to usethe definition of a groupin orderto provethis theorem.

A commonactivity amongscientistsand engineerds to solve problems.Often theseproblemslead
to equationsinvolving someunknown numberor quantity z which is to be determined. The simplest
equationsare the linear onesof the forms a + » = b for the operationof addition,anda - 2 = b for
multiplication. Equationsof form -z = b arein generahot solvablein themonoid(Z*, -). Forinstance,
2 -2 = 3 hasa solutionz = 3/2, which is not an integer. However, equationsof form a - z = b are
alwayssolvablein the structure(R*, -). The reasonfor this is thatthe structure(R*, -) is a group. As
the next theoremshows,the propertiesnecessaryo solve linear equationswithin a systemare precisely
the propertiesof a group.

3.2.7 Theorem. If X is a groupwith binary operation-, andif « andb are element®f X, thenthe
linear equationsa - 2 = b andy - a = b haveuniquesolutionsin X .

Proof: Note that

a-(a'b)=(a-a') b, (associativelaw)
- b, (deﬁnition of a_l)
, (property of 1).

Thus,z =

a~l-bis asolutionof a -z = b. In asimilar fashion,y = b-a~! is a solution
of y-a = b.

To showthat y is unique,supposethaty -« = b andy; -a = b. Theny -a = y; - a, andby
Theorem3.2.6 y = y;. The uniquenesf z follows similarly.
Q.E.D.

It is importantto notethatz = a ! -b andy = b-a~! neednot be the sameunless- is commutative.
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Following commonmathematicatonvention,to indicatethe compositeof an elementz of a group
with itself n times,wheren is a positiveinteger,we shallwrite 2" = z-z-.. .-z (nfactorsof ) whenever
we usemultiplicative notation,or, whenusingadditivenotation,nz = 2+ 2z +...+ 2 (n summand®f z).

Similarly, if n is any positiveinteger,z=" = (z~!)" and —nz = n(—z), where—z is, of course,
the inverseof = in the additive notation. Still following customarynotation,z® = 1 and0 -z = 0, where
1 and O representhe identity elementin the multiplicative and additive notations,respectively.

The usualrules of power follow at once:

xn A :vm — :vn-l—m
(xn)m — pnm

ne +me = (n+m,

?

In particular, it follows that (z71) ' = «.

3.2.8  Definition. A group(X,-) is calledcyclic if for someg € X, everyz € X is of the form
r = g", wheren € Z. The elementy is calleda generatorof X .

Clearly, every cyclic groupis abelian.

3.2.9 Examples:

0] Let X = {wo,wr,...,ws}, Wwhere
27k 2rk .
Wi = cos% +i-sin% = 76k =0,1,...,5 and i = /—1.
Thus, X is the setof solutionsof the equationz® = 1, wherez € C. Eachwy, is calleda sixth
root of unity. X togetherwith the operationof complexmultiplication is a cyclic group with
generatorsy; andws. For examplew; = wi andw,; = w?.

(i) (Z,+) is cyclic with generatorl, sincein the additive notationwe havefor everyn € Z, n =
n - 1. Notethat —1 is alsoa generatoifor this group sinceany integerkcan be expressedis
k =n-(-1), wheren = —k.

(iii) The groupof integersmodulon is cyclic with generatof1], sincefor any[k] € Z,,, [k] = k[1].

3.3 Permutations

3.3.1 Definition. A permutationof a set X is a function from X to X which is both one-to-one
and onto.

SupposeX is a finite setof » elementssay X = {1,2,...,n}, and p a permutationof X. No
significanceis to be given to the fact that X consistsof the first n naturalnumbersiit is only a matter
of notationalconvenience.lt is customaryto usethe notation

_1 2 3 -+ n
P= ry T T3 - Ip
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P1 P2 P3 P4 Ps Pe
P1 P1 P2 P3 P4 Ps Pe
P2 P2 P3 P1 Ps Ps P4
P3 P3 P1 P2 Pe P4 P5
P4 P4 Pe Ps P1 P3 P2
Ps Ps P4 Pe P2 P1 P3
P6 Pe Ps P4 P3 P2 P1

Figure 3.3.1 Productsof permutations.

to describethe permutationp, wherez; = p(i) fori = 1,...,n.

Consider for example the casewhere X consistsof threeelementssay X = {1,2,3}. In this case
we have the following six possiblepermutations:
3
2 ?

1 3 1
012(1 3)3 P4=<1
(1 3 (1
P2—(2 1>, P5—(3 1>7
1 3 1 3
P3=(3 2)3 P6:(2 3>-

The inverseof a permutationis simply the reversemapping. For example,

(2 3 1\ (1 2 3\ _
P22 =\1 2 3) " \3g 1 2) " P

Thus, p;1(2) = 1, p7*(3) = 2, and so forth. Similarly,

(1 2 3
p4 = 1 2 = P4,
L (1 2 3
Ps = 9 1 = P2,

etc. A productof two permutationgs simply the compositionof the two permutationfunctions. Since
the compositionof two one-to-oneand onto functionsis againa one-to-oneand onto function (Theorem
2.5.19, the productof two permutationds againa permutation. For example,

_ 1 2 3 1 2 3 1 2 3
P3'P4=P3OP4=312'132=321:Ps-

The productdefineshow two elementspermuteor interchangeby repeatedapplicationof permu-
tations. For instance,(ps - p4)(1) = (p3opa)(1l) = ps(ps(l)) = ps(l) = 3, while (p3-ps)(3) =
p3(pa(3)) = p3(2) = 1. The setof all possibleproductsis given by the multiplication table in Figure
3.31

It follows from the multiplication table that the set of all permutationson X togetherwith the
operationof permutationmultiplication is a group with identity p;. Note that this groupis not abelian

RN W N NN
N NN W N
w

W N W N
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(ps - pa = ps # ps = pa - p3). It is the smallestpossibleexampleof a nonabeliangroup as any group
with fewer than six elementsmust be abelian[16].

Figure 3.3.2 Symmetriesof an equilateraltriangle.

Thereis a natural correspondencbetweenthe elementsof this group and the symmetriesof the
equilateraltriangle shownin Figure3.3.2 The permutations; for : = 1,2, 3, representhe rotationsof
thetriangleontoitself aboutits barycenterwith py representinghe “no move” rotation. The permutations
pi, for ¢« = 4,5, 6, representhe mirror imagesacrossthe bisectorsof the angles. Thesesymmetriesare
alsonicely reflectedin the four quadrantsof the multiplication table (Fig. 3.3.7).

We now show that the collection of all permutationsof any nonemptyset X forms a group under
permutationmultiplication.

3.3.2

Theorem. Let X bea nonemptyset,andlet Sx be the collectionof all permutationsof X .
ThenSx is a group under permutationmultiplication.

Proof: We havethreeaxiomsto check. Since permutationsare functions,in orderto show
for permutationsp, o, and r that

(pro)-T=p-(o-7),

we haveto showthat eachcompositefunction mapseachz € X ontothe sameimagein X.
That is, we must show that

(p-0)- 7)) = [p-(c-7)(x) Yo € X.

We have

[(p-0)-7l(z) = (p-0)(7(2)) = p(o((2))) = p((o - 7)(z)) = [~ (0 - 7)]().

Thus,(p-o)-7 andp- (o -7) mapeachz € X into the sameelementin X. This satisfies
the associativityaxiom for groups.

Obviously,theidentity function 1 x actsasthe multiplicative identity. This satisfieghe second
group axiom.

As we remarkecdearlier,the inverseof a permutatiorp is simply definedto be the permutation
which reversesthe direction of the function p. More precisely, since p is one-to-oneand
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onto, eachy € X is the image of someuniquez € X andwe simply define, for each
y € X, p~l(y) = = suchthat p(z) = y. It follows from this definition of p=! that
p-p ' =pt-p = 1x. This provesthe existenceof inverses,which satisfiesthe third
group axiom.

Q.E.D.

Groupsof permutationsgplay an importantrole in geometry. For example,considerthe set of all
translationsof the coordinateplaneR?, thatis, mappingsp : R? — R?, definedby

p(z,y) = (2',y), wherea’ =2 + s,y =y +1.

Heres andt aresomefixed realnumbersand(z, y) € R? is arbitrary. The readershouldverify thatsuch
a mappingp is a permutationof R2. It is also easyto verify thatthe setof all translationsof this type
formsa groupunderthe operationof permutationrmultiplication. Thereademwill no doubtthink of many
othergroupsof permutationf the plane,or R™, which are of geometridnterest.Indeed,oneof the most
famousapproacheso geometry,known asthe “Erlanger Programni, is by meansof the determination
of the geometricpropertieswhich remaininvariantundera particulargroup of transformationg15].

Thereis nothing in our definition of a permutationthat requiresthe set X to be finite. Our last
examplewith X = R? is a casein point. However,mostof our examplesof permutationgroupswill be
concernedvith permutationf finite sets. Clearly,if X andY both havethe samenumberof elements,
thenthe group of all permutationsof X hasthe samestructureasthe group of all permutationof Y;
i.e., one group can be obtainedfrom the other by just renamingthe elements. This is the conceptof
isomorphicstructuresof which more will be saidin Section3.4.

3.3.3  Definition. If X is the finite set{1,2,...,n}, thenthe group of all permutationsof X is
called the symmetricgroup on » letters andis denotedby S,.

Note that 5,, hasn! elementswheren! = n(n — 1)(n — 2)---(3)(2)(1).
Thereis anotherstandardnotationfor a permutationwhich is often used. The permutation

(12 3
P2= 19 3 1

of theset X = {1,2,3} canbe written in cyclic notationas p; = (1,2, 3), wherethe cycle(1,2,3) is
interpretedto mean: 1 is replacedby 2, 2 is replacedby 3, and 3 is replacedby 1. The permutation

(12 3
P5=\3 2 1

can be written as (1,3), where the cycle (1,3) is interpretedas: 1 is replacedby 3, 3 by 1, and the
missing symbol 2 remainsunchanged.

Not every permutationcan be written asa cycle. Considerthe permutation
(1 2 3 45
P=\1 3 2 5 4
onthesetX = {1,2,3,4,5}. Thereis no consistentway of writing p asa cycle. However,we can
write p as(2,3)(4,5). The interpretationis clear: 1 is unchanged? is replacedby 3 and 3 is replaced
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by 2; 4 is replacedby 5 and 5 by 4. Note that p correspondgo the productof the two permutations
T =(2,3) ando = (4,5) on X. For this reasonwe call (2,3)(4,5)the productof cycles. Thesetwo

cyclesarealsodisjoint, i.e., they haveno symbolin common. Thus,in cyclic notationwe shall expect
a permutationon n symbolsto consistof a single cycle or the productof two or more mutually disjoint

cycles. This fact is expressedy the next theorem.

3.34

Theorem. Everypermutationp on a finite set X is a productof disjoint cycles.

Proof: We assumewithoutlossof generalitythatX = {1,2, ... ,n}. Consideithe elements

1, (1), (1), P°(1), ..
Since X s finite, theseelementscannotall be distinct. Let p*(1) be the first term in the
sequencewhich has appearedpreviously. Then p*(1) = 1, for if p*(1) = p/(1), with
0 < j < k, wewould havepk—f(l) = 1, with £ — j < k, contradictingour choice of k.
Let
o1 = (1L,p(1),22(1), 22(1),.... 0 1(D))

It is easyto seethat oy hasthe sameeffect asp on all elementsof X appearingn this cyclic
notation for o;.

Let ¢ be the first elementof X not appearingin this cyclic notationfor o;. Repeatingthe
aboveamgumentwith the sequence

i, p(1), P*(4), p°(0), - ..
we arrive at a cycle o,. Now o2 and oy are disjoint, for if they had any elementm of

X in common,they would be identical, since eachcycle could be constructedby repeated
applicationof the permutationp startingat m.

Continuing,we pick the first elementin X not appearingn the cyclic notationsof either oy
or o, andconstructos, etc. SinceX is finite, this processmustterminatewith someo,. The
product

0102 ...:0yp

then clearly hasthe sameeffect on eachelementof X asp does. Therefore,
p=01"02"..."0p.

Q.E.D.

The readercan easily convince himself that the representatiorof a permutationas a product of
disjoint cycles,noneof which is the identity permutation,is uniqueup to the ordersof the factors.

A cycle of length?2 is calleda transposition Thus,a transpositiorieavesall but two elementdixed,
and mapseachof theseonto the other. A computationshowsthat

(1,2,3,4,5) = (1,2) - (1,3) - (1,4) - (1,5)

and, in general,

(a1,az,...,0,) = (a1,az2) - (a,a3)-...-(a1,a,).

Therefore,any cycle is a productof transpositions We havethe following corollary of Theorem3.3.4
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3.3.5 Corollary. Anypermutatiorof afinite setof atleasttwo elementss a productof transpositions.

The cycle (1,3,5) can be written asthe following productof transpositions:
(1,3,5)=(1,3)-(1,5) = (1,5) - (3,5),

thatis, asthe productof two differenttranspositionsSimilarly, in the previoustwo examplesthe cycles
(1,2,3,4,5)and (a4, az, . . ., a,) werewritten as productsof four andn» — 1 transpositionsrespectively.
This illustratesthe fact thata cycle of lengthn canalwaysbe written asa productof » — 1 transpositions.
Thus, if n is even, then the numberof transpositionsis odd, and if » is odd, then the number of
transpositionss even. For a permutationwhich is not necessarilya cycle, the following theoremholds.

3.3.6 Theorem. If p is a permutationon n symbolsxpessedasthe productof k£ transpositionsand
alsoasa productof j transpositionsthenk andj are either both evenor both odd.

This is quite animportantfact, the usualproof of which may seema bit artificial and canbe found
in [17]. A permutationwill be calledevenor odd accordingto whetherit canbe expresseasthe product
of an evenor odd numberof transpositionsyespectively.

Permutationof datais one importantreasonfor studying permutationsand permutationgroupsin
signal processingand computerscience. Matrix versionsof the FastFourier Transform(FFT) involve
sophisticatedshufling of datawhich is accomplishedvith the useof permutationmatrices.

Let S, denotethe groupof permutationon {0, 1,...,n — 1} and A’ the transposef the matrix A.

3.3.7 Definition. Let o € 5, anddefinethe n x n matrix P, by

1 ifj=0(¢
Fo = (pij) where p; = { 0 otljlerwige)'

P, is called a permutationmatrix.

It is well known that permutationmatricesare invertible andthat P;1 = P/, = P, .. Using this
fact, it is easyto seethe setof all » x n permutationmatricesforms a groupundermatrix multiplication
which hasthe samestructure(i.e. is isomorphicto) as 5,,. Notethatif A = (a;;) is ann x n matrix,
thenmultiplication on the left by P, permuteshe rows of A by ¢! andmultiplication on the right by
P,-1 = P} permutesthe columnsof A by o~'. Hence,we canwrite P, AP} = (ay(;) 0(;)) -

3.4 Isomorphisms

Throughoutthis book, we deal with various kinds of abstractmathematicalsystems. The name
“abstractmathematicabystem”is usedto describeany well-defined collection of mathematicabbjects
consisting,for example,of a settogetherwith relationsand operationson the set, and a collection of
postulatesdefinitions, and theoremsdescribingvarious propertiesof the structure.

It is a fundamentallyimportantfact that evenwhensystemshavevery little structure suchassemi-
groupor groups,it is often possibleto classifythemaccordingto whetheror not they are mathematically
similar or equivalent. Thesenotions are made mathematicallypreciseby the morphismrelationship
betweenabstractsystems.
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3.4.1  Definition. LetG = (G,0)andG’ = (G', (') denotetwo systems.A homomorphisnfrom
G to GG’ is afunction+ : G — G’ suchthat for eachg,h € G,

U(g O h)=¢(g) O ¢(h).

Thus, a homomorphismis requiredto preservethe operationsof the systems;i.e., performingthe
operationg (O h in G and thenapplying the function ¢ to the resultis the sameasfirst applying+ to
eachg and h andthen applying the operationy(¢g) O’ #»(h) in G’. If sucha function exists,thenthe
two systemsare said to be homomorphic

By ddfinition, a homomorphismmeednot be a one-to-onecorrespondenceetweenthe elementsof
G andG’. One-to-oneand onto functionsthat preservethe mathematicabtructuresof systemsead to
the extremelyimportant conceptof an isomorphism

3.4.2  Definition. LetG = (G,0) andG’' = (G', (') denotetwo systems.An isomorphisnmof ¢
into G’ is a homomorphismy : G — G’ which is both one-to-oneand onto.

If sucha homomorphismexists,thenwe saythat the two systemsareisomorphic Hencethe idea
that the two systems7 and G’ areisomorphicmeansthat they are identical exceptfor the namesof the
elementsand operations. That is, we can obtain G’ from G by renamingan elementg in G with the
nameof a certainelementg’ in G’, namely¢’ = ¢(g), and by renamingthe operation() as()’. Then
the counterparof g O h will beg’ O’ h’. The nexttheoremwe proveis very obviousif we consideran
isomorphismto be a renamingof one systemso thatit is just like another.

3.4.3 Theorem. Let( and(G’ betwo groupsand supposee is theidentityof G. If ¢ : G — G is
an isomorphismthen(e) is the identity of G. Moreover,

v(g™h) =9 Vgea.
Proof: Letg’ € (. Since is onto,dg € G suchthaty(g) = ¢’. Then

9" =v(g) = (e g) = v(e)-¥(g) = ¥(e)- ¢
Similarly,
g =v(g)=U(g-e)=v(g) v(e) =g -¥le).
Thus, for every ¢’ € G’ we have
ble)-g' =g =g v(e).

Therefore,(e) is the identity of G.
Moreover,for ¢ € G we have
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Q.E.D.

The essenceof the theoremis that isomorphismamap identities onto identities and inversesonto
inverses.

It is immediatefrom our discussionthat every systemis isomorphicto itself; we simply let ¢ be
the identity function. To show whetheror not two different systemsare isomorphiccan be a difficult
task. Proceedingfrom the definition, the following algorithm can be usedto show that two systems
G = (G,0) andG' = (G’,()’) are isomorphic:

STEP1. Definethe function ¢ from G to G which is proposedas a candidatefor isomorphism.
STEP 2. Showthat is a one-to-onefunction.

STEP 3. Showthat ¢ is an onto function.
STEP4. Showthat (g O k) = ¥(g) O ¥(h).

Step4 is usuallyjust a questionof computation.Onecomputedoth sidesof the equationandchecks
out whetheror not they are the same. We illustrate this procedurewith an example.

3.44  Example: We wantto showthat (R, +) is isomorphicto (R*,-).
STEP1. Definethe function?) : R — R™ by #(z) = € Vr € R.

STEP2. If ¢(2) = ¥(y), thene” = ¢¥, and taking the naturallog we obtainthatz = y. Thus,
iS one-to-one.

STEP3. |f z € Rt, theny(Inz) = '™ = 2. Thus,for everyz € Rt, 3y € R, namelyy = Inz, such
that ¢/(y) = z. Therefore,? is onto.

STEP4. Forz,y € R, we have

Yz ty)=eT =€l = () P(y).

Anotherexampleof two isomorphicgroupswas mentionedin the previoussection. Therewe noted
thatthe symmetricgroup 5;, is isomorphicto thegroupof n x n permutationrmatrices.This fact signifies
the importanceof the symmetricgroupin applications.In the theoryof groups,S,, playsanevenmore
centralrole; it canbe shownthatany finite groupis isomorphicto somesubgroupof 5, for somen [17].
However,finding the right candidategor isomorphismsn orderto establishthis fact is a nontrivial task.

To showthattwo systemsare not isomorphicmeansthat therecannotexist a one-to-onecorrespon-
dencewhich preserveghe algebraicstructureof the systems. This is a trivial problemwheneverthe
two systemshavea differentnumberof elements.For example,Z, and S¢ are not isomorphicasthere
cannotexist a one-to-onecorrespondencbetweentheir elements.Similarly, sinceZ is countableand R
is uncountablethey can neverbe isomorphicas algebraicstructures.
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3.5 Rings and Fields

The systemswe have consideredhus far have beenconcernedwith setson which a single binary
operationhasbeendefined. Our earliestexperiencewith arithmetic, however,hastaughtus the use of
two distinct binary operationson setsof humbers,namely addition and multiplication. This early and
important experienceshould indicate that a study of setson which two binary operationshave been
definedis of greatimportance.Modeling our definition on propertiescommonto thesenumbersystems,
aswell assuchstructuresasthe setof all n x n matriceswith elementsn one of the numbersystems,
or the setof all polynomialswith coeficientsin, say, the setof all integers,we now definea type of
algebraicstructureknown as a ring.

3.5.1 Definition. A ring (R, +,-) is aset R togetherwith two binary operationst and- of addition
and multiplication definedon R suchthat the following axiomsare satisfied:

Ry (R,+) is an abeliangroup.
Ry (R,-) is a semigroup.
R Va,b,ce R, a-(b+c)=(a-b)+(a-c)and(a+b)-c=(a-c)+(b-c).

If axiom R, is weakenedto

R (R,+) is a commutativesemigroup
then R is called a semiring

In subsequenthaptersit will becomeapparentthat the theory of rings and semiringsplays an
importantrole in the analysisand applicationof imagealgebra. Of the many examplesof rings which
comereadilyto mind from experiencevith commonsystemsof elementarymathematicsthe mostnatural
is, perhapsthe ring 7 of integerswith the usualaddition and multiplication. However,if we examine
the propertiesof the ring of integers,we note that it has propertiesnot enjoyedby rings in general.
Among thesepropertiesare:

0] The existenceof a multiplicative identity element, which must be unique, called the unit
element,and which is usually designatedy the number1.

(i) The commutativity of multiplication.

(iii) The nonexistencef an elemente # 0 suchthat for somepositive integern, na = a + a +

...+ a = 0 (wherena is definedto be the sumof n a’s).
On the otherhand, the integersthemselvedail to possess& mostuseful property,namelythat:
(iv) For every nonzeroa € R thereis an elementin R, denotedby ¢!, suchthata - ! =
al-a=1,ie,(R,-) is agroup.
Whenit doesexistin a particularring, the elementa—! is calledthe inverseof a. In fact, (Z,+,")
also fails to havethe slightly weakerproperty:

(V) For every nonzeroa € R thereis an elementin R, denotedby a, suchthatae -a-a =
a and a-a-a = a; i.e., everynonzeroelementhasa pseudoinverse.

Thesepropertieslead us to somefurther ddfinitions.
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3.5.2

Definition: If a ring satisfies(i), it is called a ring with unity. If a ring satisfies(ii), it is
called commutativeor abelian If aring satisfieg(iii) it is saidto havecharacteristiczeo. If
it satisfies(iv) it is calleda divisionring or a quasi-field A field is a commutativedivision
ring. A ring which satisfies(v) is called a von Neumanrring.

As we noted,(Z, +, ) is acommutativering but not a division ring. On the otherhand,(R, +, -) is
an exampleof a commutativedivision ring and,hence,afield. It is alsoan exampleof aring with unity
andcharacteristizero. Otherwell known examplesof commutativerings are(Q, +, -) and(C, +, -).

In orderto give someindication of the generality of the conceptof a ring, we turn to someless
familiar examplesof rings.

353
(i)

(ii)

Examples:

The setof real valuedfunctionson a set X togetherwith the operationof function addition
and multiplication (HX, +, ) is a commutativering with unity. We know from Theorem?2.8.2
that (R¥, +) is an abeliangroup. That (R, ) is a commutativesemigroupfollows from
Definition 2.8.1(iv) of multiplication of real valuedfunctions. For example,

[(f -9) - hl(2) = [(f - 9)(@)]h(2) = [f(2)g(z)]h(z)
= f(@)lg(2)h(e)] = f(2)[(g - h)(@)] = [f - (g - W)(=).

Thus,
(f-g)-h=f-(g-h).

Commutativity and distributivity of multiplication over addition can be demonstratedn a
similar fashion. The multiplicative identity is, of course the constantfunction1(z) = 1Vz €
X. For any function f with the property f(z) # 0 VY2 € X we may definea multiplicative
inverse(f)~* by (f)"*(z) = 1/ f(«). However,sincetherearefunctionsf € R* with f # 0
but f(z) = 0 for somez € X, (R¥, +,-) — in contrastto (R, +,-) — is not a division ring.

Considerthe cyclic group(Z,,, +). Fori,j € Z,, we definethe product: - j to be theremainder
of the usualproductof the integers: and j; whendivided by n. For example,in Z5 we have
3-4 = 2. This operationon Z,, is multiplicationmodulon. We leaveit to thereaderto check
that the system(Z,,, +, -) satidies the ring axioms.

An importantobservationconcerningexample(i) is the fact that the operationson R* areinduced
by the operationson R. Thatis, the addition of two functions f 4 ¢ is definedin termsof addition of
real numbers,e.g. (f + g)(z) = f(z) + g(=), and multiplication of two functionsis defined in terms
of multiplication of real numbers. In view of this observation,it should be clear that the setR can
be replacedwith any field F in thesetwo examplesand that the result would be a commutativering
with unity (F¥, +,-), wherethe addition f + g on F¥ is definedin termsof the additionon F, e.g.,
(f+ ¢)(z) = f(z)+g(z), andlikewise for multiplication. In addition,dueto thefact thatthe operations
onF¥ areinducedby the operationson F, the ring (IFX, +, ) behavesrery muchlike thering (F, +, -).
The only missingingredientis the lack of multiplicative inversesfor FX .

Hopefully the readeris beginningto realizethatin the study of any sort of mathematicaktructure,
an ideaof basicimportanceis the conceptof two systemsheing structurallyalike or identical,i.e., one
being similar to the other or one being exactly like the other exceptfor its nameand the namesof its
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elements. In algebra,the conceptof being identical is always called “isomorphism.” The conceptof
two rings being just alike exceptfor namesof elementsleadsus, just asit did for systemswith one
operation,to the following definition.

3.54

3.5.5

Definition. An isomorphisme of aring R with aring R’ is a one-to-onefunction mapping
R onto R’ suchthatVr,s € R

(1) b(r+s) =d(r) +9(s),
(2) P(r-s)=1d(r)-9(s).

If sucha function exists,thenwe say that the two rings are isomorphic

Example: Considerthe ring (R", +, -), where addition correspondgo vector addition and
multiplication is definedby multiplying the correspondingrector componentsi.e.,

($17x27"'7xn)+(y17y27"'7yn):(;El‘l'ylvx?‘l'y?v"'a xn+yn)

and Hadamad multiplication

(xlax%"'vxn) '(y17y27"'7yn) = (51313/17 T2Y2,-- -, xnyn) .

We leaveit to the readerto convincehimselfthat (R™, 4, -) is a commutativering with unity.

Supposethat X is a finite setwith » elementssay X = {1,2,...,n}. Letv : RY = R"
be the function defined by

v(f)=(f(1), f(2),..., f(n)).
We know from Example2.8.3that v is one-to-oneand onto. Furthermore,

v(f)+v(g) = (f(1), f(2),...,f(n) + (9(1), 9(2),...,9(n))
= (f(1) +g(1), f(2) +9(2),..., f(n) + g(n))
= ((f+9)(1), (f +9)2),..., (f+g)(n) =v(f +g)

An analogousagumentshowsthatv(f - g) = v(f)-v(g). This provesthattherings(R", +, -)

and (IRX, +, ) areisomorphic. Of course,by arguing in an analogoudashion,we canprove
that for any field F the correspondingings (F", 4, -) and (IFX, +, ) areisomorphic.

Thusfar, all our exampleshavedealtwith commutativerings. However,noncommutativeings play
an importantrole in the structureof the image algebrawhich is the centralthemeof this treatise. We
presentthe most pertinentexampleof sucha ring.

3.5.6

Example: Let F be any field, say @, R, or C, and considerthe set M,2(F) of all 2x2

matricesof form
(a--)— (6111 a12)
) =
! a1 @22 ’

wherethea;;’s areall in F. ThesetM,«,(F) of all n x n matricesoverF is similarly defined.
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Matrix addition on Msy2(F) is definedby

(an a12) n (bn 512) _ (an + 011 a2+ 512)

@21  A22 b1 D22 agr +ba1 azp + b2/’

thatis, by addingcorrespondingntriesusingadditionin F. After a few momentsof thought,it
is clearfrom the axiomsof afield that (ngg(":), +) is anabeliangroupwith additiveidentity

0 0
0 0/’
_(an a12>:(—a11 —al2>
as1 a2 —a21 —a2

Matrix multiplication on M:2(F) is definedby
(011 012) (bu b12) N (011511 + a12ba1  a11b12 + 012522)
X = .
a1  a22 bar b2 az1bi1 + az2b21  az1b12 + a22b22

If F equalsR or C, thenthis multiplication correspond®f courseto the regularmatrix product
over thesefields and can bestbe rememberedy

and with additive inverse

(aij)(bij) = (cij) ,
where

2
cij = Y aikby; -
k=1

Of course the analogouglefinition holdsfor matrix multiplicationin which the sumgoesfrom
k = 1 to n. In short, everythingwe said aboutthe system(MQXQ([F), +, x) is alsovalid for
the system (M xx(F), +, x).

To show that (Mnxn([F),Jr, ><) is a ring, it remainsto prove the associativeand dis-
tributive laws. Using the field propertiesof F and the definition of matrix multiplica-
tion in (M,x.(F),+,x), thenif d., denotesthe entry in the rth row and sth column of
(ai;)[(bi;)(cij)], we have

drs = i am( y bkjcjs> = i(i arkka‘)st = €rs
1

wheree, is the entry in the rth row and sth column of [(a;;)(b;;)](¢i;). The distributive
propertyis provedin a similar fashion.

The last exampleprovesthe following theorem:

90



3.5.7 Theorem. If F is a field, thenthe set M,,«,(F) of all » x n matriceswith entriesfrom F
formsa ring under matrix addition and matrix multiplication.

The rings of matricesover a field F are an importanttool in the theory and practice of image
transformationsin this context,they canbeviewedascorrespondindo certainfunctionscalledtemplates
andmatrix multiplication, whenviewedin this light, canbe shownto correspondo templateconvolutions
(Chapterd). This providesan elegantdemonstratiorof the associativdaw for templateconvolutions.

Onthedownside,we needto pointoutthatthering (Mnxn(lF), +, ><) lackssomeimportantalgebraic
properties. Sincematrix multiplication is not commutative,M,, . (F) is not a commutativering. Also,
one of the most important propertiesof the real numbersystemis that the product of two numbers
canonly be zeroif at leastone of the factorsis zero. The working engineeror scientistusesthis fact
constantly perhapswithout realizingit. Supposeor example,one needsto solve the equation

20 + 92 - 5=0.
The first thing to do is to factor the left side:
202 + 92 — 5= (22 — 1)(z +5).

Onethenconcludeghatthe only possiblevaluesfor « are% and-5. Why? Becauséheresultingproduct
is zeroif andonly if oneof the factors2z — 1 or  + 5 is zero.

The propertythatif a productequalszerothenatleastoneof the productfactorsmustalsoequalzero,
doesnot hold for ringsin general.For instance the definition of matrix productin M,y (F) showsthat

66 0)-6 )

Similarly, the Hadamardproduct of the two nonzerovectors(1,0,0,...,0)and (0,0,...,0,1)in R™ is the
zero vector (0,0,...,0).

Theseideasare of suchimportancethat we formalize themin a definition.

3.5.8 Definition. If » ands aretwo nonzeroelementsof aring R suchthatr - s = 0, thenr and
s aredivisors of zeio or zewo divisors In particular,r is a left zeio divisor and s is a right
zeo divisor of the productr - s.

An importantconsequencef the conceptof zero divisors is provided by Theorem3.5.10 below.
Let R bearing andlet r,s,t € R. We saythat the cancellationlaws hold in R if r -s = r - ¢, with
r #0,impliess =t ands-r = t-r, impliess = t. Thesearemultiplicative cancellationlaws. Additive
cancellationlaws hold since (R, +) is a group.
3.5.9 Definition. An integral domainis a commutativering with unity containingno zerodivisors.
3.5.10 Theorem. Thecancellationlaws hold in integral domains.

Proof: Supposehat D is anintegraldomainandthat ab = ac with @ # 0. Then

ab—ac=alb—c)=0.
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Sincea # 0, andsince D hasno right divisor of zero,we musthaveb — ¢ = 0. Thus,b = c.
A similar amumentshowsthat ba = ca, with @ # 0, impliesthatb = ¢.
Q.E.D.

Supposethat R is a division ring andr - s = 0 with » # 0. Then
U:T_I'U:T_l-(T'S): (r‘l-r) s=1-s=3s.

Similarly, if s-r = 0, then multiplication on the right by »—! leadsto the conclusionthat s mustbe
zero. This demonstrateshat a division ring containsno divisors of zero. Thus a division ring lacks
only commutativityof beingan integraldomain. However,sincecommutativitywasnot usedin proving
Theorem3.5.1Q we seethat the theoremalso holds for division rings.

3.6 Polynomial Rings

An importantconsequencef Theorem3.5.10is that we can solve polynomial equationsin which
the polynomialscan be factoredinto linear factorsin the usualfashionby setting eachfactor equalto
zero,aslong aswe are dealingwith polynomialswith coeficients from an integraldomainor division
ring. This leadsus directly into the topic of polynomialswith coeficientsin a ring.

3.6.1 Definition. A polynomialp(z) with coefficientsin a ring R in the indeterminatez is an
informal sum

o0
> e’ =ap+ e+t az" o
=0

wherea; € R are called the coefficientsof p(z), anda; = 0 for all but a finite numberof
valuesi. If for somei > 0 a; # 0, thenthe largestsuchvalue of : is the degeeof p(z). If
no such: > 0 exists,then p(z) is of degeezep.

We also use the notation
p(z) =ao + a1z + -+ apa”

whenever; = 0 for all ¢ > n. Any elementof R is a constanipolynomial The mostimportantconstant
polynomialsare the zeio polynomial0 € R and,if R hasunity, the unit polynomiall.

Addition and multiplication of polynomialswith coeficients in a ring R are definedin a way
formally familiar to the reader. If

p(z) =ao+ a1z + -+ ana”™ + -

and
q(x) = bo + byx + -+ -+ bpa™ 4 - -,

then for polynomial addition, we have

px)+q(z)=cot ez +-+epa" 4,
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