Nearly linear time algorithms for graph partitioning, graph sparsification, and solving linear systems

Abstract
We design preconditioners for symmetric diagonally-dominant linear systems that enable their solution in time nearly-linear in their number of non-zero entries. Our algorithm for constructing the preconditioners makes use of two novel algorithmic tools. The first is a nearly-linear time algorithm that takes as input any weighted graph \(A \) and outputs a weighted graph \(B \) with at most \(O(n \log^{O(1)} n) \) edges such that the Laplacian matrices of these graphs, \(L_A \) and \(L_B \), satisfy

\[
\forall x, \quad x^T L_B x \leq x^T L_A x \leq (1+\epsilon) x^T L_B x,
\]

for any \(\epsilon > 0 \). In turn, this graph \(B \) is obtained from a fast algorithm for the following approximation version of the graph partitioning problem: on input \(\phi \) and a graph \(G \), output a cut of isoperimetric number at most \(O(\phi^{1/3} \log^{O(1)} n) \) separating at least \(2/3 \) as many nodes as the best cut of isoperimetric number \(\phi \). That is, it attempts to find the most balanced cut of isoperimetric number close to \(\phi \).