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Abstract. We present a denoising technique in the domain of time series data
that presumes a model for the uncorrupted underlying signal rather than a model
for noise. Specifically, we show how the non-linear reconstruction of the under-
lying dynamical system by way of time delay embedding yields a new solution
for denoising where the underlying dynamics is assumed to be highly non-linear
yet low-dimensional. The model for the underlying data is recovered using a
non-parametric Bayesian approach and is therefore very flexible. The proposed
technique first clusters the reconstructed phase space through a Dirichlet Process
Mixture of Exponential density, an infinite mixture model. Phase Space Recon-
struction is accomplished by time delay embedding in the framework of Taken’s
Embedding Theorem with the underlying dimension being determined by the
False Neighborhood method. Next, an Infinite Mixtures of Linear Regression via
Dirichlet Process is used to non-linearly map the phase space data points to their
respective temporally subsequent points in the phase space. Finally, a convex
optimization based approach is used to restructure the dynamics by perturbing
the phase space points to create the new denoised time series. We find that this
method yields significantly better performance in noise reduction, power spec-
trum analysis and prediction accuracy of the phase space.

1 Introduction

Noise is a high dimensional dynamical process which limits the extraction of quantita-
tive information from experimental time series data. Successful removal of noise from
time series data requires a model either for the noise or for the dynamics of the un-
corrupted time series. For example, in wavelet based denoising methods for time series
[14,20], the model for the signal assumes that the expected output of a forward/inverse
wavelet transform of the uncorrupted time series is sparse in the wavelet coefficients.
In other words, it is presupposed that the signal energy is concentrated on a small num-
ber of wavelet basis elements; the remaining elements with negligible coefficients are
considered noise. Hard-threshold wavelet [25] and Soft-threshold wavelet [4] are two
widely known noise reduction methods that subscribe to this model. Principal Compo-
nent Analysis, on the other hand, assumes a model for the noise: the variance captured
by the least important principal components. Therefore, denoising is accomplished by
dropping the bottom principal components and projecting the data onto the remaining
components.

In many cases, the time series is produced by a low-dimensional dynamical system.
In such cases, the contamination of noise in the time series can disable measurements



of the underlying embedding dimension [12], introduce extra Lyapunov Exponents [2],
obscure the fractal structure [9] and limit prediction accuracy [5]. Therefore, reduction
of noise while maintaining the underlying dynamics generated from the time series is
of paramount importance.

A widely used method in time series denoising is Low-pass filtering. Here noise is
assumed to constitute all high frequency components without reference to the character-
istics of the underlying dynamics. Unfortunately, low pass filtering is not well suited to
non-linear chaotic time series [23]. Since the power spectrum of low-dimensional chaos
resembles a noisy time series, removal of the higher frequencies distorts the underlying
dynamics, thereby, adding fractal dimensions [15].

In this article, we present a phase space reconstruction based approach to time series
denoising. The method is founded on Taken’s Embedding Theorem [21], according to
which a dynamical system can be reconstructed from a sequence of observations of the
output of the system (considered, here, the time series). This respects all properties of
the dynamical system that do not change under smooth coordinate transformations.

Informally stated, the proposed technique can be described as follows: Consider
a time series, (1), z(2),x(3)..... corrupted by noise. We first reconstruct the phase
space by taking time delayed observations from the noisy time series (for example,
(x(4), z(i + 1)) forms a phase space trajectory in 2-dimensions). The minimum embed-
ding dimension (i.e., number of lags) of the underlying phase space is determined via
the False Neighborhood method [11], as detailed in Sec. 2.1. Next, we cluster the phase
space non-parametrically without imposing any constraints on the number of clusters.
Finally, we apply a non-linear regression to approximate the temporally subsequent
phase space points for each point in each cluster via a Non-parametric Bayesian ap-
proach. Henceforth, we refer to our technique by the acronym NPB-NR, standing for
non-parametric Bayesian approach to noise reduction in Time Series.

To elaborate, the second step clusters the reconstructed phase space of the time se-
ries through an Infinite Mixture of Gaussian distribution via Dirichlet Process [7]. We
consider the entire phase space to be generated from a Dirichlet Process mixture (DP)
of some underlying density [6]. DP allows the phase space to choose as many clus-
ters as fits its dynamics. The clusters pick out small neighborhoods of the phase space
where the subsequent non-linear approximation would be performed. As the latent un-
derlying density of the phase space is unknown, modeling this with an Infinite mixture
model allows NPB-NR to correctly find the phase space density. This is because of the
guarantee of posterior consistency of the Dirichlet Process Mixtures under Gaussian
base density[18]. Therefore, we choose the mixing density to be Gaussian. The poste-
rior consistency acts as a frequentist justification of Bayesian methods—as more data
arrives, the posterior density concentrates on the true underlying density of the data.

In the third step, our goal is to non-linearly approximate the dynamics in each clus-
ter formed above. We use a DP mixture of Linear Regression to non-linearly map each
point in a cluster to its image (the temporally subsequent point in the phase space).
In this Infinite Mixtures of Regression, we model the data in a specific cluster via a
mixtures of local densities (Normal density with Linear Transformation of the covari-
ates (8X) as the Mean). Although the mean function is linear for each local density,
marginalizing over the local distribution creates a non-linear mean function. In addition,



the variance of the responses vary among mixture components in the clusters, thereby
varying among covariates. The non-parametric model ensures that the data determines
the number of mixture components in specific clusters and the nature of the local re-
gressions. Again, the basis for the infinite mixture model of linear regression is the
guarantee of posterior consistency [22].

In the final step, we restructure the dynamics by minimizing the sum of the deviation
between each point in the cluster and its pre-image (previous temporal point) and post-
image (next temporal point) yielded by the non-linear regression described above. To
create a noise removed time series out of the phase space, readjustment of the trajectory
is done by maintaining the co-ordinates of the phase space points to be consistent with
time delay embedding.

We demonstrate the accuracy of the NPB-NR model across several experimental
settings such as, noise reduction percentage and power spectrum analysis on several
dynamical systems like Lorenz, Van-der-poll, Buckling Column, GOPY, Rayleigh and
Sinusoid attractors, as compared to low pass filtering. We also show the forecasting per-
formance of the NPB-NR method in time series datasets from various domain like the
“DOW 30” index stocks, LASER dataset, Computer Generated Series, Astrophysical
dataset, Currency Exchange dataset, US Industrial Production Indices dataset, Darwin
Sea Level Pressure dataset and Oxygen Isotope dataset against some of its competitors
like GARCH, AR, ARMA, ARIMA, PCA, Kernel PCA and Gaussian Process Regres-
sion.

2 Mathematical Background
2.1 Time Delay Embedding and False Neighborhood Method

Time Delay Embedding has become a common approach to reconstruct the phase space
from an experimental time series. The central idea is that the dynamics is considered
to be governed by a solution traveling through a phase space and a smooth function
maps points in the phase space to the measurement with some error. Given a time series

of measurements, z(1),z(2),....,x(NN), the phase space is represented by vectors in
D-dimensional Euclidean space.
y(n)=(x(n),z(n+7),...x(n+(D-1T)) (1

Here, T is the time delay and D is the embedding dimension. The temporally sub-
sequent point to y (n) in the phase space is y (n + 1). The purpose of the embedding
is to unfold the phase space to a multivariate space, which is representative of the orig-
inal dynamics. [21] has shown that under suitable conditions, if the dynamical system
has dimension d4 and if the embedding dimension is chosen as D > 2d 4, then all
the self-crossings in the trajectory due to the projection can be eliminated. The False
Neighborhood method [11] accomplishes this task, where it views the dynamics as a
compact object in the phase space. If the embedding dimension is too low (the system
is not correctly unfolded), many points that lie very close to each other (i.e., neighbors)
are far apart in the higher dimensional correctly unfolded space. Identification of these
false neighbors allows the technique to determine that the dynamical system has not
been correctly unfolded.



For, the time series, x(n), in d" and (d + 1)** dimensional embedding, the Eu-
clidean distance between an arbitrary point, y(n) and its closest neighbor y'(n) is,
R3(n) = Silgla(n + kT) — 2'(n + kT)J2 and B3, (n) = Si_gle(n + kT) —
z (n + kT)]? respectively. If the ratio of these two distances exceeds a threshold Ry
(we took this as 15 in this paper), the points are considered to be false neighbors in
the dt" dimension. The method starts from d = 1 and increases it to D, until only
1 — 2% of the total points appear as false neighbors. Then, we deem the phase space to
be completely unfolded in R”, a D-dimensional Euclidean Space.

2.2 Dirichlet Process and its Stick-breaking Representation

A Dirichlet Process [7], D («g, Go) is defined as a probability distribution over a sample

space of probability distributions, G ~ DP («g, Gy). Here, ag is the concentration

parameter and G is the base distribution. According to the stick-breaking construction

[19] of DP, GG, which is a sample from DP, is an atomic distribution with countably

infinite atoms drawn from Gy.

’Ui|0z0,G0 ~ Beta(l,ao), 91|Oz0,G0 ~ Go, Mi = VU; H;;ll (1 — ’UL) , G = Z—?il MZ(SQI
(2

In the DP mixture model [6], DP is used as a non-parametric prior over parameters of
an Infinite Mixture model.

zn| {v1,v2, ...} ~ Categorical {My, M, Ms....} , Xn|zn, (0i)ie, ~ F (0.,) 3)

Here, I is a distribution parametrized by 0, . { M1, M2, M3, ...} is defined by Eq.3.
3 NPB-NR Model

3.1 Step One: Clustering of Phase Space

Given a time series {z (1), 2 (2),..x (IV)}, let the minimum embedding dimension be
D (using the False Neighborhood). Hence, the reconstructed phase space is,

z(1) z(2) .. x(N—=(D-1)T)
2(1+7) 22+T) ... a(N—(D-2)T)
. . : “
m(l-l—(b— 1T) x(2+(b— nrT) ... z(N)

Here, each column represents a point in the phase space. The generative model of
the points in the phase space is now assumed as,
vi|an, as ~ Beta(ar, a2), {pid, Nia} ~N (ui,d|md, (Ba, )\i,d)_l) Gamma (\;,d|ad, ba)
zn| {v1,v2, ...} ~ Categorical {Mr, Ma, Ms....} , Xaq(n)l|zn ~ N (lz,,d, A2y ,d)

&)

Here, X4 (n) is the d* co-ordinate of the n*" phase space point. {z,v, f1; 4, Ai.a}
is the set of latent variables. The distribution, {s; 4, A; .4}, is the base distribution of
the DP. { M7, My, Ms....} denotes the Categorical Distribution parameters determined
by Eq.3. In this DP mixture, the sequence, { M7, Ma, Ms....}, creates an infinite vector
of mixing proportions and {5, 4, Az, 4} are the atoms representing the mixture com-
ponents. This Infinite Mixtures of Gaussians picks clusters for each phase space point
and lets the phase space data determine the number of clusters. From this perspective,
we can interpret the DP mixture as a flexible mixture model in which the number of
components (i.e., the number of cells in the partition) is random and grows as new data
is observed.



3.2 Step Two: Non-linear Mapping of Phase Space Points
Due to the discretization of the original continuous phase space, our assumption is that
a point in the phase space is constructed by a nonlinear map R whose form we wish
to approximate. In this section, we approximate this non-linear map of the subsequent
phase space points via the proposed non-linear regression. We assume that a specific
cluster has N points. We reorder these points according to their occurrence in the time
series. We then pick the corresponding image of these points (which are the tempo-
rally subsequent phase space points according to the original time delay embedding).
We map each phase space points in the cluster through an Infinite Mixtures of Linear
Regression to their respective images. The model is formally defined as:
y1(n) = Ri(z(n)) w2(n) =Rz (z(n))...yp (n) = Rp (z(n)) (©)

Here, Ry.p are non-linear Regressors which is described by the following set of
equations. Here, X, (n) and Y; (n) represent the d'" co-ordinate of the n'” phase space
point and the first co-ordinate of its post image respectively. {2, v, ft; d, Azi.ds Bi,d> Ay,i }
is the set of latent variables and the distributions, {(t; 4, Az.;,a} and {B; 4, Ay} are the
base distributions of the DP. {M;, My, M3, ...} is defined by Eq.3. Although these set
of equations are for Ry, the same model applies for Ra.p, representing Ya.p (n).

Ui‘ala Q2 ~ Beta(ala 062)7 {ﬂi,dv )‘yﬂ'} ~N (ﬂi,d|my,d, (ﬁyv Ayai)_l) Gamma ()‘yyi|ay» by)
zn| {v1,v2, ... } ~ Categorical { M1, M2, Ms....},

Vi (1) |X (0) 20 ~ N (Beno + Ty BenaXa (), 0512,

@)
The Infinite Mixture model approach to the Linear Regression makes the covariate

be associated with the model via a non-linear function, resulting from marginalizing
over the other mixtures with respect to a specific mixture. Also, now the variance is
different across different mixtures, thereby capturing Heteroscedasticity.

3.3 Step Three: Restructuring of the Dynamics

The idea here is to perturb the trajectory to make the modified phase space more con-
sistent with the dynamics, which is equivalent to reducing the error by perturbing the
phase space points from its original position and also the error between the perturbed
position /an\d the mapped position. We have to choose a new sequence of phase space

points, x (n), such that following objective is minimized.

Sz (2 (n) =2 ()|* + |z () = R (@pre—image) |* + IR (fv (n)) — (posi—image) |

(®)

R is the non-linear Regressors (R;.p) that are used to temporally approximate the
phase space (Described in the section above). IV is the number of points in the specific
cluster. This is done across all the clusters. In addition, to create the new noise removed
time series, perturbations of x4 (n)’s are done consistently for all subsequent points,
such that we can revert back from the phase space to a time series. For example, if
the time delay is 1 and the embedding dimension is 2, then, the phase space /&)ints

are perturbed in such a way that when x (n) = (t(n),t(n + 1)) is moved to = (n) =

—

(t(/;),t(n/; 1)) we make the first co-ordinate of x (n + 1) to be ¢ (n/I 1). These

form a set of equality constraints. What results is a convex program, that is then solved
to retrieve the denoised time series.



The entire algorithm is summarized in Table 1.

1. Form the phase space dynamics from the Noisy Time Series according to Eq. 4 with the
embedding dimension determined by False Neighborhood method described in Section 3.1

2. Cluster the points in the phase space via Infinite Mixture of Gaussian Densities formally
defined in Eq. 5

3. For each cluster, map each phase space point via an infinite mixtures of linear
regression(R1.p) to its temporally subsequent point (post-image) which is formally defined
in Eq. 6. and Eq. 7

4. Infer the latent parameters for both Infinite Mixture of Gaussian Densities and Infinite Mix-
ture of Linear Regression. {z, v, i a, Ai,a} and {z, v, i d, Ae,i,d, Bi,d, Ay,i} Were inferred
through variational inference which we could not include due to lack of space problem. The
inference gives us the form of the regressors,(R1.p)

5. Restructure the dynamics via optimizing the Convex function in Eq. 8. The restructuring is
done consistently for all the subsequent points, which leads to the reconstruction of the noise
removed time series.

Table 1. Algorithm: Step-wise Description of NPB-NR Process.

4 Experimental Results
4.1 An Illustrative Description Of The NPB-NR Process

First, we present an illustrative pictorial description of the complete NPB-NR process
with a real world historical stock price dataset. Our model for the historical time se-
ries of the stock price is a low-dimensional dynamical system that was contaminated
by noise and passed through a measurement function at the output. Our task was to
denoise the stock price to not only recover the underlying original phase space dynam-
ics and create the subsequent noise removed stock price via the NPB-NR process, but
also to utilize it to make better future predictions of the stock price. We picked his-
torical daily close out stock price data of IBM from March-1990 to Sept-2015 for this
task. The original noisy time series is plotted in Fig.2. The various stages of NPB-
NR are illustrated in the subsequent figures. The underlying dimension of the phase
space turned out to be 3 from the False Neighborhood Method. The Reconstructed
Phase Space with noise is shown in Fig.3. The completely clustered phase space and
one specific cluster in the phase space by Dirichlet Process Mixture of Gaussian of
NPB-NR (step one) is shown in Fig.4. For a 3-dimensional phase space, as is the
case with the IBM stock price data, consider X and Y to be two temporally suc-
cessive points in one cluster. Therefore, the non-linear regression model (Step Two)
in NPB-NR is Y (1) = Ry1(X(1),X(2),X(3)),Y(2) = R2(X(1),X(2),X(3)) and
Y (3) = R3(X(1),X(2), X(3)). In Fig.5, we plot Y (1) against X (1), X(2) and X (3)
(The first regression-R(1)) to depict the non-linearity of the regression model which we
have modeled through the Dirichlet Process Mixtures of linear regression (step two).
The trajectory adjusted (step three) and consequently the noise removed specific cluster
and the complete noise removed phase space are shown in Fig. 6. Finally, the denoised
time series is shown in Fig. 7. The error information for prediction for IBM stock data
is reported in Table 2.
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Fig. 2. Depiction of The Noiseless and Noisy Phase Space (Reconstructed).
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Fig. 4. The Regression Data: Y (1) Regressed with Covariate as X(1), X(2) and X(3)
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Fig. 6. Plot of the Noise Removed Time Series Data

4.2 Prediction Accuracy

NPB-NR was used for time series forecasting. The first dataset was drawn from the
stock market. We choose 5 stocks (IBM, JPMorgan, MMM, Home-Depot and Walmart)
from March, 2000 to Sept., 2015 with 3239 instances (time points) from “DOW30”. The
next four datasets came from the Santa Fe competition compiled in [8]. The first is a
Laser generated dataset which is a univariate time record of a single observed quan-
tity, measured in a physics laboratory experiment. The next is a Currency Exchange
Rate Dataset which is a collection of tickwise bids for the exchange rate from Swiss
Francs to US Dollars, from August 1990 to April 1991. The next dataset is a synthetic
computer generated series governed by a long sequence of known high dimensional
dynamics. The fourth dataset is a set of astrophysical measurements of light curve of
the variable white dwarf star PG 1159035 in March, 1989. The next set of datasets are
the Darwin sea level pressure dataset from 1882 to 1998, Oxygen Isotope ratio dataset
of 2.3 million years and US Industrial Production Indices dataset from Federal Reserve
release. All of these are taken from [24]. NPB-NR was compared with the GARCH,
AR (p), ARMA (p,q) and ARIM A (p,d, q) models, where p,p, d, g were taken by
cross-validations ranging from 1 to 10 fold. We also compared NPB-NR to PCA and
kernel PCA [3] with sigma set to 1, and Gaussian Process Based Auto-regression with
p taken by cross-validations ranging from 1 to 5 fold. We also compared results from
Hard Threshold Wavelet denoising using the “wden” Matlab function. All competitor
algorithms were run with a 50-50 training-testing split. We report the Mean Square Er-
ror (MSE, L2) of the forecast for all the competitor algorithms in Table 2. Individual
time series were reconstructed into a phase space with the dimension determined by



the False Neighborhood method, was passed through NPB-NR to find the most con-
sistent dynamics by reducing noise, and subsequently fed into a simple auto-regressor
with lag order taken as the embedding dimension of the reconstructed time series. In
most datasets, NPB-NR not only yielded better forecasts, but also a smaller standard
deviation among its competitors among the 10 runs.

4.3 Noise Reduction Experiment

We evaluated the NPB-NR technique for noise reduction across several well known
dynamical systems, namely, Lorenz attractor (chaotic) [13], Van-der-poll attractor [16]
and Rossler attractor [17] (periodic), Buckling Column attractor (non strange non chaotic,
fixed point), Rayleigh attractor (non strange non chaotic, limit cycle) [1] and GOPY at-
tractor (strange non-chaotic) [10].

Although noise was added to the time series such that the SNR ranged from 15 db
to 100 db, it is impossible to calculate numerically or from the Power Spectrum how
much noise was actually removed from the noisy time series. Therefore, for both the
noise removed and the noisy time series we calculated the fluctuation error:,

fi=lzs —@im1 — (@) - f (Tim1,Yi-1, 2i-1)]|

This measures the distance between the observed and the predicted point in the
phase space. Here, measurement of the noise reduction percentage is given by,
1
R=1-— EnmtsEe;OriZZz,oued , E= (ZTJ‘?) 2
We tabulated the noise reduction percentages of the NPB-NR, the low pass filter,
and also wavelet denoising methods in Table 3. For the wavelet method, we used the
matlab “wden” function in ’soft’ and "hard’ threshold mode. The NPB-NR yielded the
highest noise reduction percentage for 15-100 db SNR. Since the faithful reconstruction
of the underlying dynamics intrinsically removes the noise, as the noise increases the
noise reduction performance of NPB-NR got significantly better as opposed to the other
techniques.

4.4 Power Spectrum Experiments

We ran a Power Spectrum experiment for a noise corrupted Van-der-poll attractor (pe-
riodic) [16] as well as a time series created by superimposing 6 Sinusoids and subse-
quently corrupting it with noise. The noise was additive white Gaussian noise with the
SNR (Signal-to-Noise ratio) set at 15 db. Var-der-poll is a simple two dimensional at-
tractor with b = 0.4; 20 = 1;y0 = 1 and the superimposition of Sinusoids is a simple
limit cycle attractor with negative Lyapunov Exponents and no fractal structure. We
plot the phase space and the Power Spectrum of the noisy time series generated from
these attractors, the noise removed solution with a 6th-order Butterworth low-pass filter
(cut-off freq. 30 Hz and 1000 Hz respectively) and the NPB-NR technique. The Power
Spectrum and the phase space plot of the Van-der-poll and Sinusoid Attractors is shown
in Fig.1. Note that NPB-NR successfully made the harmonics/peaks more prominent
which was originally obscured by the noise. The filtering method was unable to restore
the harmonics, although it removed some of the higher frequency components. We also
observe that NPB-NR smoothened out the phase space dynamics better than the low
pass filter.



PSD-Noisy PSD-NPB-NR PSD-Low-Pass-Fiter PSD-OLS

220 g 0 7 0 g 0
g g 8 g
[} [} Q [}
ER L A LTI B T
c c € c
o o) o o
a g it g
2 -60 2 -100 2 -100 2 -100
0 10 2 30 40 50 0 10 2 3 40 5 0 10 20 30 40 50 0 10 2 30 40 5
Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)
Phase Space-Noisy Phase Space-NPB-NR Phase Space-Low-Pass-Filter Phase Space-OLS
> > > >
Xt Xt Xt X1
PSD-Noisy PSD-NPB-NR PSD-Low-Pass-Filter PSD-OLS
220 g 0 3 0 g 0
g g e g
[} [} Qo [}
ER 3 0 3 50 3 -SOMM*MWMW
c < c <
o) o o o
g g i g
2 -60 2 -100 2 -100 2 -100
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)
Phase Space-Noisy Phase Space-NPB-NR Phase Space-Low-Pass-Filter Phase Space-OLS

N \v N & N \v N @
Y X Y X Y X Y X
Fig.7. The Power Spectrum and The Phase Space Plot of Van-der-poll and Sinusoid Attractor

5 Conclusion

In this article, we have formulated a Bayesian Non-Parametric Model for noise reduc-
tion in time series. The model captures the local non-linear dynamics in the time delay
embedded phase space to fit the most appropriate dynamics consistent with the data.
We have derived the mean field Variational Inference for the Dirichlet Process Mixture
of Linear Regression by maximizing the evidence lower bound to obtain the variational
parameters. Finally, we have evaluated the NPB-NR technique on various time series
generated from several dynamical systems, stock market data, LASER data, Sea Level
Pressure data, etc. The technique yields much better noise reduction percentage, power
spectrum analysis, accurate dimension and prediction accuracy. In the experiments, we
varied the scale factor from 1 to 5 in increments of .25. This scale factor modulates
the number of clusters in the phase space. Developing theoretical insights into how
the number of clusters affects the adjustment of the dynamics would be an interesting
topic for future research. We also plan to explore which kind of physical systems can
be analyzed using Non-parametric Bayesian based noise reduction methods. Finally,
considerable effort should be given to analyzing time series generated from higher di-
mensional systems.



MSE  NPB-NR GARCH Wavelet AR ARMA ARIMA PCA KERNEL-PCA GPR

IBM 1.43 1.65 1.37 1.87 1.70 1.68 1.98 1.90 1.84
JPM 1.38 1.52 149 146 142 1.39  1.67 1.59 1.73
MMM 1.69 1.87 1.96 2.06 1.93 1.83 1.14 2.11 223
HD 1.74 1.58 146 1.73 1.69 .62 1.79 1.72 1.86
WMT 1.24 1.47 1.58 139 1.35 129 149 1.57 1.38
LASER 97 1.36 1.29 1.31 .86 .15 142 1.35 1.34
CER 82 .99 93 94 88 84 118 1.11 1.05
CGS 1.79 2.11 1.88 2.03 1.96 1.86 238 2.28 2.17
ASTRO  1.82 2.19 2.14 208 191 1.92 226 233 2.46
DSLP 1.33 1.68 1.53 149 141 1.14 1.68 1.60 1.55
OxIso 1.19 1.38 1.87 132 1.26 1.53 148 1.41 1.45
USIPI 1.30 1.57 1.36 148 143 1.62  1.57 1.57 1.63
stan.dev. NPB-NR GARCH Wavelet AR ARMA ARIMA PCA KERNEL-PCA GPR
IBM 1.34 1.89 1.86 1.67 1.78 1.39 326 2.37 1.42
JPM 1.63 1.98 197 1.78 194 201 235 1.69 221
MMM 1.82 1.48 1.29 142 1.36 1.82 173 1.66 1.59
HD 1.86 1.85 185 192 177 1.88 1.93 1.90 1.86
WMT 1.79 1.66 1.82 1.62 1.73 231 1.67 1.61 1.98
LASER  2.12 228 239 219 236 172 242 2.27 2.39
CER 1.69 1.78 1.93 1.84 1.74 1.71  1.80 1.91 1.72
CGS 2.34 1.92 1.88 197 205 187 1.95 2.17 2.11
ASTRO 1.13 1.82 141 137 1.69 1.79 155 1.29 1.62
DSLP 1.58 1.49 119 127 135 1.45 126 1.42 1.25
OxIso 2.47 2.15 1.99 224 189 225 192 2.61 2.45

USIPI 2.23 2.33 249 242 189 229 237 2.72 225

Table 2. MSE and Standard Deviation of all the datasets for all the competitor algorithms in
50-50 random Training-Testing Split for 10 Runs.

Lorenz GOPY Van-Der-Poll Rossler Rayleigh
Noise Level-15db SNR

NPB-NR 40 45 54 29 34
Low Pass Filter 19 27 40 19 31
Wavelet_soft 15 13 29 21 25
Wavelet_hard 17 7 21 18 22
Noise Level-35db SNR
NPB-NR 51 59 61 40 56
Low Pass Filter 26 31 40 28 39
Wavelet_soft 22 22 36 33 32
Wavelet_hard 23 14 29 24 28
Noise Level-60db SNR
NPB-NR 63 71 75 79 82
Low Pass Filter 31 35 40 37 41
Wavelet_soft 32 29 41 40 42
Wavelet_hard 29 21 33 32 33
Noise Level-80db SNR
NPB-NR 72 76 79 81 84
Low Pass Filter 34 39 43 43 44
Wavelet_soft 35 35 46 44 47
Wavelet_hard 34 27 39 36 38
Noise Level-100db SNR
NPB-NR 80 79 85 85 89
Low Pass Filter 38 43 46 47 46
Wavelet_soft 41 39 50 50 60
Wavelet_hard 36 30 45 40 51

Table 3. Noise Reduction Percentage of the Attractors for the NPB-NR, the Low Pass Filtering
Method and the Hard and Soft Threshold Wavelet method.
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