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Abstract

We analyze the dynamics of 2-worker m-stations bucket brigade assembly lines where the
velocities of the workers on the stations are arbitrary, albeit �xed constants over each
station. We provide a complete characterization of the dynamics under blocking and
instantaneous walk-back.
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1. Introduction

The standard model of the bucket brigade assembly line [3] for the n workers m
stations case (n � m) considers an assembly line that is partitioned into m stations,
each station corresponding to a subtask of the total work content. A job has to be
processed at all m stations, in sequence, to be completed. The workers are ordered 1
to n, upstream to downstream, and this order is maintained across stations at all times.
Each worker picks a job and processes it on a station with a velocity commensurate
with his skill at that station. The worker then takes the job to the next station to
continue processing it. In the blocking model, two workers are not allowed to occupy the
same station simultaneously. The downstream worker has precedence over the upstream
worker in the sense that the upstream worker has to wait until the downstream worker
has released the station. When a worker arrives at a station that is busy, he is considered
blocked on that station and he does not seek any work until his successor leaves that
station. When the last worker completes processing his job, all workers simultaneously

hand o� their jobs in their current states to their respective successors, picking up the
job of their respective predecessors; the �rst worker starts processing a new job. In the
instantaneous walk-back model, the entire set of hand-o�s happens instantaneously.

In this note we consider the 2-worker m-stations bucket brigade assembly line with
blocking and instantaneous walk back. We provide a complete characterization of the
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dynamics under the model where the workers can have di�erent velocities on di�erent
stations, albeit constant velocities over each station. The assembly line is represented by
the interval I = [0, 1]. The processing of a job begins at 0 and ends at 1. The station
Si is represented by the interval [P (i), P (i + 1)), with P (1) = 0, P (m + 1) = 1. The
upstream worker is denoted by W1 and the downstream worker by W2.

2. Prior Work and Contributions Made

Bartholdi et al. [3] analyzed the n workers m stations case with blocking and in-
stantaneous walk-back, for the special case where the workers are sequenced slowest to
fastest. They showed that if the workers can be sequenced such that each is faster than
her predecessor at all stations, then there is a unique stable �xed point to which the
system converges independent of the starting positions of the workers. They then stud-
ied the 2 and 3 workers case [2] under the assumption that each worker has a constant

velocity over the entire assembly line with the work content distributed uniformly over
the entire assembly line (hence, the concept of stations does not exist). In this frame-
work, if workers can be sequenced from slowest to fastest, they can never be blocked.
Furthermore, the production rate under such conditions is the sum of the velocities of
the workers and is the maximum achievable across all sequencing of the workers [3].

Armbruster et al. [1] studied the dynamics of the 2 workers case where W1 is faster
than W2 in the interval [0, X) and slower in the interval [X, 1]. They considered both
the cases where W1 is allowed to pass over W2 and where W1 can be blocked by W2.
Although not as restrictive as the assumption that one worker's speed dominate the other
uniformly, this framework can not model the general case where W1 is faster/slower than
W2 on an arbitrary, not necessarily contiguous set of stations.

In this note we generalize the results reported in [1]. We fully characterize the map-
ping f that speci�es the successive hand-o� locations between W1 and W2 in Section
3. After demonstrating that f has a unique �xed point and can have no periodic cycles
of period > 2, we show how to algorithmically compute the �xed point and the critical
point (de�ned in Section 3), in Section 4. In Section 5, we determine the necessary and
su�cient conditions for the global stability of the �xed point, and show how to algorith-
mically ascertain this in Section 6. In Section 7 we analyze throughput, and in Section
8, we present concluding remarks.

3. Characterization of the mapping function

We begin by characterizing the mapping f that speci�es the successive hand-o� lo-
cations between W1 and W2. Speci�cally, if W1 begins at the start of the assembly line
(i.e., at 0) and W2 begins at x ∈ [0, 1], then f(x) denotes the position of W1 at the time
when W2 reaches the end of the assembly line (i.e., 1). Naturally, after hand-o�, W1

begins at 0 and W2 at f(x). We characterize f through the following set of theorems.

Theorem 3.1. f is continuous and piece-wise linear.

Proof. Let V1max and V2min be, respectively, the maximum and minimum velocities of
W1 and W2 over the entire assembly line. Let x0 ∈ [0, 1] be given. Consider x ∈ [0, 1]
such that | x0 − x |< δ for small δ. When W2 starts at x instead of x0, the amount of
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time gained or lost by W1 when W2 reaches 1 is ∆t < δ
V2min

. Therefore | f(x0)− f(x) |≤
∆t ∗ V1max. For a given ε > 0 one can choose a δ such that ∆t ∗ V1max < δ∗V1max

V2min
< ε.

Hence if | x0 − x |< δ then | f(x0) − f(x) |< ε which proves the continuity of f at
x0. To prove that f is piece-wise linear, let x0 and f(x0) lie in the interior of their
respective stations, i.e., not at their station's boundaries. Let V1 and V2 be, respectively,
the velocities of W1 at f(x0) and W2 at x0. Let x = x0±∆x. Then f(x) = f(x0)∓∆x∗V1

V2
,

i.e., f is linear in the neighborhood of x0.

De�nition W1 is said to be blocked on x, if for W2 beginning at x (and W1 at 0) there
exists a station Si such that W1 is blocked at Si, i.e., W1 reaches Si before W2 leaves Si.

Theorem 3.2. f is non-increasing. It is constant up to a point x̃ beyond which it is

strictly decreasing.

Proof. If W1 is not blocked on x, then ∀y > x, W1 is not blocked on y. If W1 is blocked
on x at a station Si, then ∀y < x, W1 will be blocked at Si and hence f(y) = f(x)
in this range. Therefore if W1 is blocked ∀x < x̃ and not blocked on x̃, we see that
∀x < x̃, f(x) = f(x̃). Finally, let tx be the total time for which W1 processes a job when
W2 begins at x. Then for x̃ < x < y, tx̃ > tx > ty, and therefore, f(x̃) > f(x) > f(y).
In other words, f is strictly decreasing after x̃.

We label x̃ the critical point. Figure 1 presents an example of f .
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Figure 1: Map of f. Horizontal and vertical lines denote station boundaries. x̃ is the point where
the graph changes from constant to strictly decreasing. x0 is the point where the graph intersects the
diagonal.

Theorem 3.3. f has a unique �xed point and has no periodic cycles of period > 2.

Proof. It follows from the Brouwer's �xed point theorem that f has a �xed point. Since
f is non-increasing this �xed point is unique. Moreover, it is well known from dynamical
systems theory that a monotonically non-increasing function (in our case, the mapping
f) cannot have periodic cycles of period > 2. We provide a proof here for completeness.

Let x1, x2, . . . , xn form a cycle of period n > 2 with f(xi) = xi+1, f(xn) = x1.
Without loss of generality let x1 < xi,∀i 6= 1. Since x2 > x1, it follows from Theorem
3.2 that f(x2) = x3 < f(x1) = x2, i.e., x1 < x3 < x2, and hence x1 < x3 < x4 < x2, and
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hence x1 < x3 < x5 < x4 < x2. It follows that the xi's are ordered as x1 < x3 < x5 <
. . . < x6 < x4 < x2. Importantly x1 < xn < x2. Therefore f(xn) = x1 > f(x2) = x3,
leading to a contradiction.

4. Algorithmic computation of the critical point and the �xed point

4.1. Critical point (x̃)
Let x = x̃−∆x, where ∆x is an arbitrarily small positive number. Let Sp be the last

station at which W1 is blocked when W2 begins at x. Hence when W2 begins at x̃, W1

will enter Sp and W2 will leave Sp simultaneously. This property can be used to compute
the value of x̃.

Let the �nal station be Sm = [P (m), P (m + 1) = 1). Allow W2 to begin at positions
P (m), P (m− 1), . . ., till the �rst position P (k) is found on which W1 is blocked (i.e., W1

beginning at P (1) = 0 is blocked when W2 begins at P (k)). Hence P (k) ≤ x̃ < P (k +1).
Let Sp be the corresponding last station at which W1 is blocked. Then x̃ is that position
for which the time taken by W2 to reach P (p + 1) beginning at x̃ equals the time taken
by W1 to reach P (p) beginning at 0. Let Vi(j) denote the velocity of worker i at station

j. Then, x̃ = P (k + 1)− V2(k) ∗
[∑p−1

j=1
P (j+1)−P (j)

V1(j)
−

∑p
j=k+1

P (j+1)−P (j)
V2(j)

]
4.2. Fixed point (x0)

Since x0 is a �xed point, f(x0) = x0. We consider all three possibilities: x0 < x̃,
x0 = x̃, and, x0 > x̃, and show how x0 can be computed in each case. Let Sk denote the
station in which x̃ occurs, i.e., P (k) ≤ x̃ < P (k + 1).

4.2.1. case 1: x0 = x̃

As de�ned above let Vi(j) denote the velocity of worker i at station j. Then if∑k−1
j=1

P (j+1)−P (j)
V1(j)

+ x̃−P (k)
V1(k) = P (k+1)−x̃

V2(k) +
∑m

j=k+1
P (j+1)−P (j)

V2(j)
then x0 = x̃.

4.2.2. case 2: x0 < x̃

Lemma 4.1. If x0 < x̃ and x0 occurs in station Si, then Si is the only station at which

W1 is blocked when W2 begins at x0.

Proof. Since x0 < x̃, W1 is blocked on x0. Furthermore, since W2 begins at x0, Si is the
�rst station at which W1 can be blocked. Since x0 is a �xed point and lies in Si, W1

does not reach Si+1 when W2 begins at x0. The claim then follows.

Based on the de�nition of x̃, we see that Si = Sk and P (k) ≤ x0 < x̃ < P (k + 1),
i.e., x0 and x̃ occur in the same station and x0 = P (k) if and only if k = m. If k 6= m,
it follows from Lemma 4.1 that the time taken by W1 to reach x0 beginning at P (k)
equals the time taken by W2 to reach the end of the assembly line beginning at P (k +1).
Therefore, x0 = P (k) + V1(k) ∗

[∑m
j=k+1

P (j+1)−P (j)
V2(j)

]
4.2.3. case 3: x0 > x̃

Let x0 occur in station Si. Since x0 > x̃, W1 is not blocked. Therefore, the time
taken by W1 to reach x0 beginning at P (1) = 0 equals the time taken by W2 to reach
P (m + 1) = 1 beginning at x0, which can be computed as,

x0 =
[

V1(i)∗V2(i)
V1(i)+V2(i)

]
∗

[∑m
j=i+1

P (j+1)−P (j)
V2(j)

−
∑i−1

j=1
P (j+1)−P (j)

V1(j)
+ P (i)

V1(i)
+ P (i+1)

V2(i)

]
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5. Necessary and su�cient conditions for a globally stable �xed point

Theorem 5.1. If x0 ≤ x̃ then x0 is globally stable.

Proof. From Theorem 3.2, ∀x ≤ x̃, f(x) = f(x̃) = f(x0) = x0. Moreover, ∀x > x̃, f(x) <
f(x̃) = x0 and hence f2(x) = x0. Thus x0 is a globally stable �xed point.

Hereafter we consider the more interesting case: x0 > x̃. We �rst provide the neces-
sary conditions for the stability of the �xed point and the necessary conditions to avoid

stable period 2 cycles. From these we derive the necessary and su�cient conditions for
the global stability of the �xed point.

Theorem 5.2. x0 is a stable �xed point if and only if

1. If f is di�erentiable at x0 then |f ′
(x0)| < 1.

2. If f is not di�erentiable at x0 then for ∆x → 0+, x1 = x0 + ∆x, x2 = x0 −∆x
f

′
(x1) ∗ f

′
(x2) < 1

Proof. Case (i) is a well known condition from dynamical systems theory. For case (ii)
let x1 = x0 + ∆x, x2 = x0 − ∆x. It follows from Theorem 3.2 that f2(x1) > x0. Let
∆z = f2(x1) − x0 and let t = ∆z

∆x = ∆z
∆y ∗

∆y
∆x , where ∆y = f(x1) − x0. As ∆x →

0+, t = f
′
(x1) ∗ f

′
(f(x1)). Since f is piece-wise linear, f

′
(f(x1)) = f

′
(x2). Therefore

t = f
′
(x1)∗f

′
(x2). Since f

′
(x1), f

′
(x2) < 0, f

′
(x1)∗f

′
(x2) > 0. If f

′
(x1)∗f

′
(x2) < 1 then

∆z < ∆x. The proof for a perturbation in the other direction follows along similar lines.
Conversely, if x0 is stable then ∆z < ∆x and hence ∆z

∆x = t = f
′
(x1) ∗ f

′
(x2) < 1.

Theorem 5.3. If f2(x̃) < x̃ then f has a stable period 2 cycle.

Proof. Let f(x̃) = ỹ, f(ỹ) = w̃, and w̃ < x̃. From Theorem 3.2 f(w̃) = ỹ, and therefore
f has a period 2 cycle: 〈w̃, ỹ〉. Also, the intervals [0, x̃] 3 w̃ and [f−1(x̃), 1] 3 ỹ converge
to the cycle in a single period. Hence, the cycle is stable.

We also notice that if f2(x̃) = x̃ then ∀x ≤ x̃, f2(x) = x̃, and therefore the interval
[0, x̃] converges to the period 2 cycle. Moreover, in this case it is possible that for
x > x̃, f2n may not converge to x̃, i.e., f might be structurally unstable. Hence the
necessary conditions for the global stability of the �xed point is f2(x̃) > x̃.

We now provide necessary and su�cient conditions for the global stability of the �xed
point.

Theorem 5.4. x0 is globally stable if and only if x̃ → x0 under the iterates of f .

Proof. If x0 is globally stable, then by de�nition fn(x̃) → x0. To prove the converse,
let x̃ → x0 and de�ne ỹ = f(x̃). It follows from Theorem 3.2 that ∀x ≤ x̃, f(x) = ỹ
and hence ∀x ≤ x̃, x → x0. Moreover, since x̃ → x0 it follows from Theorem 5.3 that
f(ỹ) > x̃. Let z̃ > ỹ be such that f(z̃) = x̃. We see that ∀z ≥ z̃, f2(z) = ỹ and hence
∀z ≥ z̃, z → x0. What remains to be shown is the convergence of the points in the
interval I = (x̃, z̃) to x0. De�ne I0 = (x0, z̃), and In =

(
fn−1(x̃), x0

)
for n ≥ 1, where

f0(x̃) = x̃. We note that I = I0 ∪ I1 ∪ {x0} and f(In) = In+1,∀n ≥ 0. Since the
endpoint fn−1(x̃) of In converges to x0, it follows that all points in I converge to x0.
Hence ∀x ∈ [0, 1], x → x0, making x0 a globally stable �xed point.
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As noted earlier some period 2 cycles can assume a dual role both as an attractor
and a repeller, i.e., their domain of attraction is one-sided with the other side being a
repeller, for example, when f is structurally unstable. If these period 2 cycles are counted
twice for their dual role, then we have the following.

Theorem 5.5. If x0 is a stable �xed point, then the number of period 2 cycles is even.

Proof. Since x0 is sandwiched between the points of any period 2 cycle, it su�ces to
consider the region (x0, 1]. Consider the map f2 and the diagonal line L de�ned by
f2(x) = x. Label any intersection of f2 with L proper, if f2 completely intersects L and
does not merely touch L. Since x0 is stable, for x = x0 + ∆x , in�nitesimal ∆x > 0,
we have f2(x) < x. Moreover, since W1 never enters the last station, ∀x, f(x) < 1 and
hence f2(1) < 1. Therefore the number of proper intersections of f2 with L in the range
(x0, 1] is even. If f2 merely touches L at y, then it is easy to see that the period 2 cycle
involving y is structurally unstable and hence is counted twice for its dual role. Hence
the number of period 2 cycles is even.

Corollary 5.6. If x0 is stable and a period 2 cycle exists, then x0 is not globally stable.

Proof. If the period 2 cycle is a repeller, then from Theorem 5.5 it follows that an
attracting period 2 cycle exists and hence there exists an interval converging to this
period 2 cycle. Even in a case where this period 2 cycle exhibits dual behavior, there
exists an interval converging to it. Hence the �xed point x0 is not globally stable.

6. Algorithmic determination of the global stability of the �xed point

We saw in the previous section that whether or not the �xed point x0 is globally
stable can be determined by considering the following exhaustive list of scenarios: (i) if
x0 ≤ x̃ then x0 is globally stable, (ii) if x0 > x̃ and f2(x̃) ≤ x̃ then x0 is not globally
stable (period 2 cycle exists), and (iii) if x0 > x̃ and f(x̃) < f−1(x̃) then x0 is globally
stable i� x̃ → x0 under the iterates of f .

Scenarios (i) and (ii) can be easily veri�ed. Scenario (iii) concerns the dynamics of
the points in the interval I = (x̃, z̃) where z̃ = f−1(x̃), since in this case f(I) ⊂ I and
furthermore f2([0, 1]) ⊂ I. Based on the observation that worker W1 is not blocked
∀x ∈ I, we can determine the location f(x) for any x ∈ I using the following procedure.

Case 1: x > x0. Let t be the time taken by W2 to reach x beginning at x0. W1

would then have traveled for an additional time t before hand-o�, had W2 begun at x0.
Therefore, if W1 travels for time t from f(x) he would reach f(x0) = x0, or equivalently,
if W1 begins at x0 and travels backward for time t he would reach f(x).

Case 2: x < x0. Let t be the time taken by W2 to reach x0 beginning at x, or equiva-
lently, the time taken by W2 to reach x traveling backward beginning at x0. In this case,
W1 travels for an additional time t before hand-o� in comparison to when W2 begins at
x0. Hence f(x) is the position that W1 reaches traveling for time t beginning at x0.

f on the interval I can therefore be computed as follows. W1 and W2 begin at x0

and travel in opposite directions. If W2 takes time t to reach x, then f(x) is the position
reached by W1 at time t.
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We demonstrated in the previous section that necessary and su�cient conditions for
the global stability of the �xed point x0 is the absence of period 2 cycles. This corresponds
to the criterion ∀x > x0 f2(x) < x. Since ∀x > z̃ f2(x) = f2(z̃), it su�ces to check
if ∀x ∈ (x0, z̃) f2(x) < x. We give a computation procedure to determine this. For all
x ∈ I such that x > x0 compute the time taken by W1 and W2 to reach x beginning at
x0. Label these functions f1f and f2f , respectively. Clearly, f1f and f2f are piece-wise
linear and monotonically increasing with derivatives given by the inverse of the velocities
of the workers on the corresponding stations. The derivatives may not exist only at
station boundaries. Likewise, for all x ∈ I such that x < x0, compute the functions
f1b and f2b as the time taken by W1 and W2, respectively, to reach x beginning at x0,
traveling backward. Clearly, these functions too are piece-wise linear and monotonically
increasing. De�ne function g = f−1

1f ◦ f2b ◦ f−1
1b ◦ f2f . From the description of f2 given

above it is easy to check that f2 = g. Whether g(x) < x,∀x ∈ (x0, z̃) can be veri�ed by
plotting g. We should comment that computing f−1

1f and f−1
1b are straightforward since

they de�ne the distance traveled by the workers for a given time t.

7. Throughput

We have ascertained that in the case of 2-worker m-stations assembly lines, the system
will either settle to the unique �xed point or to a period 2 cycle. Computing throughput
(production rate) in either of these scenarios is straightforward.
Fixed Point: Let the �xed point x0 occur at the station Sk = [P (k), P (k + 1)). The
time taken to produce one item (TfixedPoint) is the time taken by W2 to reach the end

of the assembly line starting from x0, which is P (k+1)−x0
V2(k) +

∑m
j=k+1

P (j+1)−P (j)
V2(j)

. The

production rate is PRfixedPoint = 1/TfixedPoint.
Period 2 cycle: Let 〈x, y〉 denote a period 2 cycle such that f(x) = y and f(y) = x.
Without loss of generality, let y < x0 < x. The time taken to produce 2 items is then
the sum of times taken by W2 to reach the end of the assembly line starting from x and
from y. Let x and y occur at stations l and p respectively (p < l). Then the time taken
to produce 2 items is:

Tperiod2cycle = P (l+1)−x
V2(l)

+
∑m

j=l+1
P (j+1)−P (j)

V2(j)
+ P (p+1)−y

V2(p) +
∑m

j=p+1
P (j+1)−P (j)

V2(j)
. The

production rate is PRperiod2cycle = 2/Tperiod2cycle

7.1. Comparison between production rates

Comparing the production rates between a �xed point and a period 2 cycle is also
straightforward. Since y < x0 < x and hence p < k < l, the di�erence in time to produce
2 items between these scenarios is Tdiff = Tperiod2cycle − 2 ∗ TfixedPoint which can be
shown to be the di�erence in the times taken by W2 to reach x0 starting from y and
to reach x starting from x0. From the description of the dynamics given in Section 6,
it follows that the time taken by W2 to reach x starting from x0 equals the time taken

by W1 to reach x0 starting from y. Hence, Tdiff = (P (p + 1)− y) ∗
(

1
V2(p) −

1
V1(p)

)
+∑k−1

j=p+1 (P (j + 1)− P (j))∗
(

1
V2(j)

− 1
V1(j)

)
+(x0 − P (k))∗

(
1

V2(k) −
1

V1(k)

)
. If Tdiff > 0,

the �xed point has a higher production rate than the period 2 cycle, and vice versa.
For the case considered by Armbruster et al. [1], the �xed point was shown to have
a higher production rate than the period 2 cycle. For our more general case one can
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easily construct examples where the stable period 2 cycle has a higher production rate.
Consider an assembly line with 8 stations, de�ned by the intervals [0, 0.2), [0.2, 0.25),
[0.25, 3), [0.3, 0.45), [0.45, 0.5), [0.5, 0.7), [0.7, 0.9) and [0.9, 1) with the velocity of W1

being 1 on all stations and the velocity of W2 being {1, 0.9, 1.4, 1.1, 0.9, 1.1, 0.5, 3} on the
respective stations. Simulation shows that this assembly line has a stable �xed point at
0.5603, an unstable period 2 cycle 〈0.3987, 0.7173〉, followed by a stable period 2 cycle
〈0.3667, 0.7333〉. The production rate for the stable �xed point and the stable period 2
cycle are 1.7848 and 1.7966, respectively (Tdiff is −0.0074) indicating that the stable
period 2 cycle has a higher production rate than the stable �xed point.

7.2. Dependence of throughput on the velocities of the workers

At �rst sight one would expect the throughput to increase with an increase in the
velocity of either of the workers. This however is not true as the following simple example
demonstrates.

Consider a two station assembly line where W1 is faster than W2 in station 1. Assume,
in addition, that the �xed point x0 lies in station 1. Clearly, W1 remains blocked until W2

reaches station 2. When the velocity of W2 is increased in station 2, the �xed point shifts
to the left. Let the new �xed point be denoted by x′0. Then, x′0 < x0. The di�erence in
time to produce one item between the former and the latter scenario can be shown to be
equal to the di�erence in the times taken by W1 and W2 to reach x0 from x′0. Since W1

is faster than W2 in station 1, this quantity is negative implying that the former scenario
has a higher throughput than the latter. In essence, the production rate drops when the
velocity of W2 is increased.

8. Conclusion

This note generalizes the results in [1]. When applied to the 2 worker case, [3] holds
that x0 is globally stable when W2 dominates W1 over the entire assembly line. We show
that in this case the imposed condition on g de�ned in Section 6 is satis�ed.

Let x = x0+∆x,∆x > 0. Let g(x) = f2(x) = x0+∆z,∆z > 0. We demonstrate that
if W2 dominates W1 then ∆z < ∆x, and hence x0 is globally stable. Let ti, i ∈ 1, 2 be
the time taken by Wi to reach x beginning at x0. Since W2 dominates W1, t2 < t1. Let
W1 reach position y traveling backward from x0 for time t2. Then, f(x) = y. Since W2

dominates W1, the time taken by W2 to reach y, say t3, is less than t2. Hence t3 < t2 < t1.
Since ∆z (respectively, ∆x) is the distance covered by W1 traveling forward from x0 for
time t3 (respectively, t1), ∆z < ∆x, implying that x0 is globally stable. However, it is a
simple exercise to construct examples that show that the criterion is a su�cient and not
necessary condition for the global stability of the �xed point.
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