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We derive a synaptic weight update rule for learning temporally precise
spike train–to–spike train transformations in multilayer feedforward net-
works of spiking neurons. The framework, aimed at seamlessly general-
izing error backpropagation to the deterministic spiking neuron setting,
is based strictly on spike timing and avoids invoking concepts pertain-
ing to spike rates or probabilistic models of spiking. The derivation is
founded on two innovations. First, an error functional is proposed that
compares the spike train emitted by the output neuron of the network to
the desired spike train by way of their putative impact on a virtual postsy-
naptic neuron. This formulation sidesteps the need for spike alignment
and leads to closed-form solutions for all quantities of interest. Second,
virtual assignment of weights to spikes rather than synapses enables a
perturbation analysis of individual spike times and synaptic weights of
the output, as well as all intermediate neurons in the network, which
yields the gradients of the error functional with respect to the said enti-
ties. Learning proceeds via a gradient descent mechanism that leverages
these quantities. Simulation experiments demonstrate the efficacy of the
proposed learning framework. The experiments also highlight asymme-
tries between synapses on excitatory and inhibitory neurons.

1 Introduction

In many animal sensory pathways, information about external stimuli is
encoded in precise patterns of neuronal spikes (Meister, Lagnado, & Baylor,
1995; deCharms & Merzenich, 1996; Neuenschwander & Singer, 1996; Wehr
& Laurent, 1996; Johansson & Birznieks, 2004; Nemenman, Lewen, Bialek,
& de Ruyter van Steveninck, 2008). If the integrity of this form of infor-
mation is to be preserved by downstream neurons, they have to respond
to these precise patterns of input spikes with appropriate, precise patterns
of output spikes. How networks of neurons can learn such spike train–
to–spike train transformations has therefore been a question of significant
interest. When the transformation is posited to map mean spike rates to
mean spike rates, error backpropagation (Bryson & Ho, 1969; Werbos, 1974;
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Rumelhart, Hinton, & Williams, 1986) in multilayer feedforward networks
of rate coding model of neurons has long served as the cardinal solution to
this learning problem. Our overarching objective in this letter is to develop
a counterpart for transformations that map precise patterns of input spikes
to precise patterns of output spikes in multilayer feedforward networks of
deterministic spiking neurons, in an online setting. In particular, we aim to
devise a learning rule that is strictly spike timing based, that is, one that
does not invoke concepts pertaining to spike rates or probabilistic models
of spiking and that seamlessly generalizes to multiple layers.

In an online setting, the spike train–to–spike train transformation learn-
ing problem can be described as follows. At one’s disposal is a spiking
neuron network with adjustable synaptic weights. The external stimulus is
assumed to have been mapped—via a fixed mapping—to an input spike
train. This input spike train is to be transformed into a desired output spike
train using the spiking neuron network. The goal is to derive a synaptic
weight update rule that when applied to the neurons in the network, in-
crementally brings the output spike train of the network into alignment
with the desired spike train. With biological plausibility in mind, we also
stipulate that the rule not appeal to computations that would be difficult to
implement in neuronal hardware. We do not address the issue of what the
desired output spike train in response to an input spike train is and how it
is generated. We assume that such a spike train exists and that the network
learning the transformation has access to it. Finally, we do not address the
question of whether the network has the intrinsic capacity to implement
the input-output mapping; we undertake to learn the mapping without re-
gard to whether the network, for some settings of its synaptic weights, can
instantiate the input-output transformation.1 There is, at the current time,
little understanding of what transformations feedforward networks of a
given depth or size and of a given spiking neuron model can implement,
although some initial progress has been made in Ramaswamy and Banerjee
(2014).

2 Background

The spike train–to–spike train transformation learning problem, as de-
scribed above, has been a question of active interest for some time. Vari-
ants of the problem have been analyzed, and significant progress has been
achieved over the years.

One of the early results was that of the SpikeProp supervised learning
rule (Bohte, Kok, & La Poutre, 2002). Here a feedforward network of spiking
neurons was trained to generate a desired pattern of spikes in the output

1Our goal is to achieve convergence for those mappings that can be learned. For
transformations that, in principle, lie beyond the capacity of the network to represent, the
synaptic updates are, by construction, designed not to converge.



828 A. Banerjee

neurons in response to an input spike pattern of bounded length. The caveat
was that each output neuron was constrained to spike exactly once in the
prescribed time window during which the network received the input.
The network was trained using gradient descent on an error function that
measured the difference between the actual and the desired firing time of
each output neuron. Although the rule was subsequently generalized in
Booij and Nguyen (2005) to accommodate multiple spikes emitted by the
output neurons, the error function remained a measure of the difference
between the desired and the first emitted spike of each output neuron.

A subsequent advancement was achieved in the tempotron (Gütig &
Sompolinsky, 2006). Here, the problem was posed in a supervised learning
framework where a spiking neuron was tasked to discriminate between two
sets of bounded length input spike trains by generating an output spike in
the first case and remaining quiescent in the second. The tempotron learning
rule implemented a gradient descent on an error function that measured
the amount by which the maximum postsynaptic potential generated in the
neuron, during the time the neuron received the input spike train, deviated
from its firing threshold. Operating along similar lines and generalizing to
multiple desired spike times, the FP learning algorithm (Memmesheimer,
Rubin, Olveczky, & Sompolinsky, 2014) set the error function to reflect the
earliest absence (presence) of an emitted spike within (outside) a finite
tolerance window of each desired spike.

Elsewhere, several authors have applied the Widrow-Hoff learning rule
by first converting spike trains into continuous quantities, although the
rule’s implicit assumption of linearity of the neuron’s response makes its
application to the spiking neuron highly problematic, as explored at length
in Memmesheimer et al. (2014). For example, the ReSuMe learning rule
for a single neuron was proposed in Ponulak and Kasinski (2010) based
on a linear-Poisson probabilistic model of the spiking neuron, with the
instantaneous output firing rate set as a linear combination of the synapti-
cally weighted instantaneous input firing rates. The output spike train was
modeled as a sample draw from a nonhomogeneous Poisson process with
intensity equal to the variable output rate. The authors then replaced the
rates with spike trains. Although the rule was subsequently generalized
to multilayer networks in Sporea and Grüning (2013), the linearity of the
neuron model is once again at odds with the proposed generalization.2 Like-
wise, the SPAN learning rule proposed in Mohemmed, Schliebs, Matsuda,
and Kasabov (2012) convolved the spike trains with kernels (essentially,
turning them into pseudo-rates) before applying the Widrow-Hoff update
rule.

2When the constituent units are linear, any multilayer network can be reduced to a
single-layer network. This also emerges in the model in Sporea and Grüning (2013), where
the synaptic weights of the intermediate-layer neurons act merely as multiplicative factors
on the synaptic weights of the output neuron.
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A bird’s-eye view brings into focus the common thread that runs through
these approaches. In all cases there are three quantities at play: the prevailing
error E(·), the output O of the neuron, and the weight W assigned to a
synapse. In each case, the authors have found a scalar quantity Õ that
stands in for the real output spike train O: the timing of the only or first
spike in Bohte et al. (2002) and Booij and Nguyen (2005); the maximum
postsynaptic potential/timing of the first erroneous spike in the prescribed
window in Gütig and Sompolinsky (2006) and Memmesheimer et al. (2014);
and the current instantaneous firing rate or pseudo-rate in Ponulak and
Kasinski (2010), Sporea and Grüning (2013), and Mohemmed et al. (2012).
This has facilitated the computation of ∂E/∂Õ and ∂Õ/∂W , quantities that
are essential to implementing a gradient descent on E with respect to W.

Viewed from this perspective, the immediate question becomes, Why
not address O directly instead of its surrogate, Õ? After all, O is merely
a vector of output spike times. Two major hurdles emerge on reflection.
First, O, although a vector, can be potentially unbounded in length. Second,
letting O be a vector requires that E(·) compare the vector O to the desired
vector of spike times and return a measure of disparity. This can potentially
involve aligning the output to the desired spike train, which not only makes
differentiating E(·) difficult but also strains biological plausibility (Florian,
2012).

We overcome these issues in stages. We first turn to the neuron model
and resolve the first problem. We then propose a closed-form differentiable
error functional E(·) that circumvents the need to align spikes. Finally,
virtual assignment of weights to spikes rather than synapses allows us
to conduct a perturbation analysis of individual spike times and synaptic
weights of the output as well as all intermediate neurons in the network. We
derive the gradients of the error functional with respect to all output and
intermediate-layer neuron spike times and synaptic weights, and learning
proceeds via a gradient descent mechanism that leverages these quantities.
The perturbation analysis is of independent interest, in that it can be paired
with other suitable differentiable error functionals to devise new learning
rules. The overall focus on individual spike times, in both the error func-
tional as well as the perturbation analysis, has the added benefit that it
sidesteps any assumptions of linearity in the neuron model or rate in the
spike trains, thereby affording us a learning rule for multilayer networks
that is theoretically concordant with the nonlinear dynamics of the spiking
neuron.

3 Model of the Neuron

Our approach applies to a general setup where the membrane potential of
a neuron can be expressed as a sum of multiple weighted n-ary functions of
spike times, for varying n (modeling the interactive effects of spikes), where
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gradients of the functions can be computed. However, since the solution to
the general setup involves the same conceptual underpinnings, for clarity
we use a model of the neuron whose membrane potential function is addi-
tively separable (i.e., n = 1). The spike response model (SRM), introduced
in Gerstner (2002), is one such model. Although simple, the SRM has been
shown to be fairly versatile and accurate at modeling real biological neu-
rons (Jolivet, Lewis, & Gerstner, 2004). The membrane potential, P, of the
neuron, at the present time is given by

P =
∑
i∈�

wi

∑
j∈Fi

ξi(t
I
i, j − di) +

∑
k∈F

η(tO
k ), (3.1)

where � is the set of synapses, wi is the weight of synapse i, ξi is the
prototypical postsynaptic potential (PSP) elicited by a spike at synapse i,
di is the axonal/synaptic delay, tI

i, j − di is the time elapsed since the arrival
of the jth most recent afferent (incoming) spike at synapse i, and Fi is
the potentially infinite set of past spikes at synapse i. Likewise, η is the
prototypical afterhyperpolarizing potential (AHP) elicited by an efferent
(outgoing) spike of the neuron, tO

k is the time elapsed since the departure
of the kth most recent efferent spike, and F is the potentially infinite set of
past efferent spikes of the neuron. The neuron generated a spike whenever
P crosses the threshold � from below.

We make two additional assumptions: (1) the neuron has an absolute
refractory period that prohibits it from generating consecutive spikes closer
than a given bound r, and (2) all input and output spikes that have aged
past a given bound ϒ have no impact on the present membrane potential
of the neuron.

The biological underpinnings of assumption 1 are well known. Assump-
tion 2 is motivated by the following observations. It is generally accepted
that after an initial rise or fall, all PSPs and AHPs decay exponentially fast
to the resting potential. This, in conjunction with the existence of an abso-
lute refractory period, implies that for any given ε, however small, there
exists an ϒ such that the sum total effect of all spikes that have aged past ϒ

can be bounded above by ε (see Banerjee, 2001). Finally, observing that the
biological neuron is a finite precision device, we arrive at assumption 2. The
import of the assumptions is that the size of Fi and F can now be bounded
above by �ϒ/r�. In essence, one has to merely look at a bounded past to
compute the present membrane potential of the neuron; moreover, there
are only finitely many efferent and afferent spikes in this bounded past.
It helps to conceptualize the state of a network of neurons as depicted in
Figure 1a. The future spike trains generated by the neurons in the network
depend only on the future input spikes and the spikes of all neurons in the
bounded window [0, ϒ].
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Figure 1: (a) A feedforward network with two input neurons (shown in black),
two intermediate-layer neurons (shown in gray), and one output neuron (shown
in white). The spike configuration in the bounded time window, t = 0 (Present)
to t = ϒ (in the past), is shown. Also shown is the desired output spike train.
Note that the desired and the output spike trains differ in both their spike times
as well as the number of spikes in the noted time window. (b) The parameterized
function f

β,τ
(t) for various values of β and τ . (c) Assigning weights to spikes

(denoted by the height of the bars) instead of the corresponding synapse enables
a perturbation analysis that derives the effect of a change in the timing or the
weight of a spike on the timing of future spikes generated in the network. The
weight perturbations are then suitably accumulated at the synapse. The effect of
perturbations (marked in magenta) is computed for all input spike weights and
intermediate spike times and weights. They are not computed for input spike
times since input spike times are given and cannot be perturbed. The effects of
the perturbations on other spike times in the configuration space are marked in
blue. Note that the blue edges form a directed acyclic graph owing to causality.
(d) Simulation data demonstrating that gradient updates can have significant
values only immediately after the generation of a spike or the stipulation of
a desired spike at the output neuron. Scatter plot of the absolute value of ∂E

∂tO
k

in log-scale plotted against tO
k . The values are drawn from 10,000 randomly

generated pairs of vectors tO and tD.

We make two other changes. First, we shift the function ξi to the right so as
to include the fixed axonal or synaptic delay. By so doing, we are relieved of
making repeated reference to the delay in the analysis. More precisely, what
was previously ξi(t

I
i, j − di) is now ξi(t

I
i, j), with the new shifted ξi satisfying

ξi(t) = 0 for t < di. The AHP η remains as before, satisfying η(t) = 0 for
t < 0. Second, and this has major consequences, since our objective is to
update the synaptic weights in an online fashion, successive spikes on the
same synapse can have potentially different weights (assigned to the spike
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at its arrival at the synapse). We account for this by assigning weights to
spikes rather than synapses; we replace wi by wi, j. With these changes in
place, we have

P =
∑
i∈�

∑
j∈Fi

wi, j ξi(t
I
i, j) +

∑
k∈F

η(tO
k ). (3.2)

4 The Error Functional

Having truncated the output spike train to a finite-length vector of spike
times, we turn to the error functional. The problem, stated formally, is, given
two vectors of spike times, the output spike train 〈tO

1 , tO
2 , . . . , tO

N〉 and the
desired spike train 〈tD

1 , tD
2 , . . . , tD

M〉 of potentially differing lengths, assign
the pair a measure of disparity.

Several such measures have been proposed in the literature (for details,
see Victor & Purpura, 1996; van Rossum, 2001; Schreiber, Fellous, Whitmer,
Tiesinga, & Sejnowski, 2003). However, for reasons that we delineate here,
these measures do not fit our particular needs well. First and foremost is the
issue of temporal asymmetry. As described earlier, the effect of a spike on
the potential of a neuron diminishes with age in the long run, until it ceases
altogether at ϒ . We prefer a measure of disparity that focuses its attention
more on the recent than the distant past. If the output and desired spike
trains align well in the recent past, this is indicative of the synaptic weights
being in the vicinity of their respective desired values. A measure that
does not suppress disparity in the distant past will lead weight updates to
overshoot. Second is the issue of the complex relationship between a spike
train and its impact on the potential of a neuron, the quantity of real interest.
We prefer a measure that makes this relationship explicit. Finally comes the
issue of the ease with which the measure can be manipulated. We prefer
a measure that one can take the gradient of, in closed form. We present a
measure that possesses these qualities.

We begin with a parameterized class of nonnegative valued functions
with shape resembling PSPs:

fβ,τ (t) = 1
τ

e
−β

t e
−t
τ for β, τ ≥ 0 and t > ε > 0. (4.1)

The functions are simplified versions of those in MacGregor and Lewis
(1977). Figure 1b displays these functions for various values of β and τ .

We set the putative impact of the vector of output spike times tO =
〈tO

1 , tO
2 , . . . , tO

N〉 on a virtual postsynaptic neuron to be
∑N

i=1 fβ,τ (t
O
i ), and

likewise for the vector of desired spike times tD = 〈tD
1 , tD

2 , . . . , tD
M〉. Our goal

is to assess the quantity
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(
M∑

i=1

fβ,τ (t
D
i ) −

N∑
i=1

fβ,τ (t
O
i )

)2

. (4.2)

There are two paths we can pursue to eliminate the dependence on
the parameters β, τ . The first is to set them to particular values. However,
reasoning that it is unlikely for a presynaptic neuron to be aware of the shape
of the PSPs of its postsynaptic neurons, of which there may be several with
differing values of β, τ , we follow the second path; we integrate over β and
τ . Although β can be integrated over the range [0,∞), integrating τ over
the same range results in spikes at ϒ having a fixed and finite impact on
the membrane potential of the neuron. To regain control over the impact of
a spike at ϒ , we integrate τ over the range [0, T ] for a reasonably large T .
By setting ϒ to be substantially larger than T , we can make the impact of a
spike at ϒ be arbitrarily small. We therefore have

E(tD, tO) =
∫ T

0

∫ ∞

0

(
M∑

i=1

fβ,τ (t
D
i ) −

N∑
i=1

fβ,τ (t
O
i )

)2

dβdτ. (4.3)

Following a series of algebraic manipulations and noting that

∫ T

0

∫ ∞

0

1
τ

e
−β

t1 e
−t1
τ × 1

τ
e

−β

t2 e
−t2
τ dβdτ = t1 × t2

(t1 + t2)
2 e− t1+t2

T , (4.4)

we get

E(tD, tO)=
M,M∑
i, j=1

tD
i × tD

j

(tD
i + tD

j )2
e−

tD
i +tD

j
T +

N,N∑
i, j=1

tO
i × tO

j

(tO
i + tO

j )2
e−

tO
i +tO

j
T

− 2
M,N∑
i, j=1

tD
i × tO

j

(tD
i + tO

j )2
e−

tD
i +tO

j
T . (4.5)

E(·) is bounded from below and achieves its minimum value, 0, at tO =
tD. Computing the gradient of E(·) in equation 4.5, we get

∂E
∂tO

i
= 2

⎛
⎝ N∑

j=1

tO
j ((tO

j − tO
i ) − tO

i
T (tO

j + tO
i ))

(tO
j + tO

i )3
e−

tO
j +tO

i
T

−
M∑
j=1

tD
j ((tD

j − tO
i ) − tO

i
T (tD

j + tO
i ))

(tD
j + tO

i )3
e−

tD
j +tO

i
T

⎞
⎠ . (4.6)
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5 Perturbation Analysis

We now turn to how perturbations in the weights and times of the input
spikes of a neuron translate to perturbations in the times of its output
spikes.3 The following analysis applies to any neuron in the network, be it
an output- or an intermediate-layer neuron. However, we continue to refer
to the input and output spike times as tI

i, j and tO
k to keep the nomenclature

simple.
Consider the state of the neuron at the time of the generation of output

spike tO
l . Based on the present spike configuration, we can write

�̃ =
∑
i∈�

∑
j∈Fi

wi, j ξi(t
I
i, j − tO

l ) +
∑
k∈F

η(tO
k − tO

l ). (5.1)

Note that following definitions, ξi returns the value 0 for all tI
i, j < tO

l + di.
Likewise, η returns the value 0 for all tO

k < tO
l . In other words, we do not

have to explicitly exclude input or output spikes that were generated after
tO
l . Note also that we have replaced the threshold � with �̃. This reflects

the fact that we are missing the effects of all spikes that at the time of the
generation of tO

l had values less than ϒ but are currently aged beyond that
bound. Since these are not quantities that we propose to perturb, their effect
on the potential can be considered a constant.

Had the various quantities in equation 5.1 been perturbed in the past,
we would have

�̃ =
∑
i∈�

∑
j∈Fi

(wi, j + �wi, j) ξi(t
I
i, j + �tI

i, j − tO
l − �tO

l )

+
∑
k∈F

η(tO
k + �tO

k − tO
l − �tO

l ). (5.2)

Combining equations 5.1 and 5.2 and using a first-order Taylor approxi-
mation, we get

�tO
l =

∑
i∈�

∑
j∈Fi

�wi, jξi(t
I
i, j − tO

l ) +∑
i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

�tI
i, j

+∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

�tO
k∑

i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

+ ∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

.

(5.3)

3Weights are assigned to spikes and not just to synapses to account for the online
nature of synaptic weight updates.
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We can now derive the final set of quantities of interest from equation 5.3:

∂tO
l

∂wi, j
=

ξi(t
I
i, j − tO

l ) + ∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

∂tO
k

∂wi, j∑
i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

+ ∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

(5.4)

and

∂tO
l

∂tI
i, j

=
wi, j

∂ξi
∂t

∣∣
(tI

i, j−tO
l )

+ ∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

∂tO
k

∂tI
i, j∑

i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

+ ∑
k∈F

∂η

∂t

∣∣
(tO

k −tO
l )

. (5.5)

The first term in the numerator of equations 5.4 and 5.5 corresponds
to the direct effect of a perturbation. The second term corresponds to the
indirect effect through perturbations in earlier output spikes. The equations
are a natural fit for an online framework since the effects on earlier output
spikes have previously been computed.

6 Learning via Gradient Descent

We now have all the ingredients necessary to propose a gradient descent–
based learning mechanism. Stated informally, neurons in all layers update
their weights proportional to the negative of the gradient of the error func-
tional. In what follows, we specify the update for an output-layer neuron
and an intermediate-layer neuron that lies one level below the output layer.
The generalization to deeper intermediate-layer neurons follows along sim-
ilar lines.

6.1 Synaptic Weight Update for an Output-Layer Neuron. In this case,
we would like to institute the gradient descent update wi, j ←− wi, j − μ ∂E

∂wi, j
,

where μ is the learning rate. However, since the wi, j’s belong to input spikes
in the past, this would require us to reach back into the past to make the
necessary change. Instead, we institute a delayed update where the present
weight at synapse i is updated to reflect the combined contributions from
the finitely many past input spikes in Fi. Formally,

wi ←− wi −
∑
j∈Fi

μ
∂E

∂wi, j
. (6.1)

The updated weight is assigned to the subsequent spike at the time of its
arrival at the synapse. ∂E

∂wi, j
is computed using the chain rule (see Figure 1c),

with the constituent parts drawn from equations 4.6 and 5.4 summed over
the finitely many output spikes in F :
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∂E
∂wi, j

=
∑
k∈F

∂E
∂tO

k

∂tO
k

∂wi, j
. (6.2)

6.2 Synaptic Weight Update for an Intermediate-Layer Neuron. The
update to a synaptic weight on an intermediate-layer neuron follows along
identical lines to equations 6.1 and 6.2, with indices 〈i, j〉 replaced by 〈g, h〉.
The computation of

∂tO
k

∂wg,h
, the partial derivative of the kth output spike

time of the output-layer neuron with respect to the weight on the hth in-
put spike on synapse g of the intermediate-layer neuron, is as follows. To
keep the nomenclature simple, we assume that the jth output spike of the
intermediate-layer neuron, tH

j = tI
i, j the jth input spike at the ith synapse of

the output-layer neuron. Then, applying the chain rule (see Figure 1c), we
have

∂tO
k

∂wg,h
=

∑
j∈Fi

∂tO
k

∂tI
i, j

∂tH
j

∂wg,h
, (6.3)

with the constituent parts drawn from equation 5.5 applied to the output-
layer neuron and equation 5.4 applied to the intermediate-layer neuron,
summed over the finitely many output spikes of the intermediate-layer
neuron that are identically the input spikes in Fi of the output-layer neuron.

6.3 A Caveat Concerning Finite Step Size. The earlier perturbation
analysis is based on the assumption that infinitesimal changes in the synap-
tic weights or the timing of the afferent spikes of a neuron lead to infinitesi-
mal changes in the timing of its efferent spikes. However, since the gradient
descent mechanism described above takes finite, albeit small, steps, caution
is warranted for situations where the step taken is inconsistent with the un-
derlying assumption of the infinitesimality of the perturbations. There are
two potential scenarios of concern. The first is when a spike is generated
somewhere in the network due to the membrane potential just reaching
threshold and then retreating. A finite perturbation in the synaptic weight
or the timing of an afferent spike can lead to the disappearance of that ef-
ferent spike altogether. The perturbation analysis does account for this by
causing the denominators in equations 5.4 and 5.5 to tend to zero (hence,
causing the gradients to tend to infinity). To avoid large updates, we set an
additional parameter that capped the length of the gradient update vector.
The second scenario is one where a finite perturbation leads to the appear-
ance of an efferent spike. Since there exists, in principle, an infinitesimal
perturbation that does not lead to such an appearance, the perturbation
analysis is unaware of this possibility. Overall, these scenarios can cause
E(·) to rise slightly at that time step. However, since these scenarios are en-
countered only infrequently, the net scheme decreases E(·) in the long run.
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7 Experimental Validation

The efficacy of the learning rule derived in section 6 hinges on two factors:
the ability of the spike timing–based error to steer synaptic weights in the
“correct” direction and the qualitative nature of the nonlinear landscape of
spike times as a function of synaptic weights, intrinsic to any multilayer
network. We evaluate these in order.

We begin with a brief description of the PSP and AHP functions that
were used in the simulation experiments. We chose the PSP ξ and the AHP
η to have the following forms (see MacGregor & Lewis, 1977, for details):

ξ (t)= 1

α
√

t
e

−βα2
t e

−t
τ1 × H(t) and (7.1)

η(t)=−A e
−t
τ2 × H(t). (7.2)

For the PSP function, α models the distance of the synapse from the soma,
β determines the rate of rise of the PSP, and τ1 determines how quickly it
decays. α and β are in dimensionless units. For the AHP function, A models
the maximum drop in potential after a spike, and τ2 controls the rate at
which the AHP decays. H(t) denotes the Heaviside step function: H(t) = 1
for t > 0 and 0 otherwise. All model parameters other than the synaptic
weights were held fixed through the experiments. In the vast majority
of our experiments, we set α = 1.5 for an excitatory synapse and 1.2 for
an inhibitory synapse, β = 1, τ1 = 20 msec for an excitatory synapse and
10 msec for an inhibitory synapse. In all experiments, we set A = 1000 and
τ2 = 1.2 msec. A synaptic delay d was randomly assigned to each synapse
in the range [0.4, 0.9] msec. The absolute refractory period r was set to 1
msec and T was set to 150 msec. ϒ was set to 500 msec, which made the
impact of a spike at ϒ on the energy functional negligible.

7.1 Framework for Testing and Evaluation. Validating the learning
rule would ideally involve presentations of pairs of input and desired out-
put spike trains with the objective being that of learning the transformation
in an unspecified feedforward network of spiking neurons. Unfortunately,
as observed earlier, the state of our current knowledge regarding what
spike train–to–spike train transformations feedforward networks of partic-
ular architectures and neuron models can implement is decidedly limited.
To eliminate this confounding factor, we chose a witness-based evalua-
tion framework. Specifically, we first generated a network, with synaptic
weights chosen randomly and then fixed, from the class of architecture that
we wished to investigate (henceforth called the witness network). We drove
the witness network with spike trains generated from a Poisson process
and recorded both the precise input spike train and the network’s output
spike train. We then asked whether a network of the same architecture,
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initialized with random synaptic weights, could learn this input-output
spike train transformation using the proposed synaptic weight update rule.

We chose a conservative criterion to evaluate the performance of the
learning process; we compared the evolving synaptic weights of the neu-
rons of the learning network to the synaptic weights of the corresponding
neurons of the witness network. Specifically, the disparity between the
synaptic weights of a neuron in the learning network and its correspond-
ing neuron in the witness network was quantified using the mean absolute
percentage error (MAPE): the absolute value of the difference between a
synaptic weight and the correct weight specified by the witness network,
normalized by the correct weight, averaged over all synapses on that neu-
ron. A MAPE of 1.0 in the plots corresponds to 100%. Note that 100% is the
maximum achievable MAPE when the synaptic weights are lower than the
correct weights.

There are several reasons that this criterion is conservative. First, due to
the finiteness of the length of the recorded input-output spike train of the
witness network, it is conceivable that there exist other witness networks
that map the input to the corresponding output. If the learning network
were to tend toward one of these competing witness networks, one would
erroneously deduce failure in the learning process. Second, turning the
problem of learning a spike train–to–spike train transformation into one of
learning the synaptic weights of a network adds a degree of complexity; the
quality of the learning process now depends additionally on the character-
istics of the input. It is conceivable that learning is slow or fails altogether
for one input spike train while it succeeds for another. Notably, the two
extreme classes of spike train inputs, weak enough to leave the output neu-
ron quiescent or strong enough to cause the output neuron to spike at its
maximal rate, are both noninformative. In spite of these concerns, we found
this the most objective and persuasive criterion.

7.2 Time of Update. The synaptic weight update rule presented in the
previous section does not specify a time of update. In fact, the synaptic
weights of the neurons in the network can be updated at any arbitrary
sequence of time points. However, as demonstrated here, the specific nature
of one of the constituent parts of the rule makes the update insignificantly
small outside a particular window of time.

Note that ∂E
∂tO

k
, the partial derivative of the error with respect to the tim-

ing of the kth efferent spike of the output neuron, appears in the update
formulas of all synapses, be they on the output neuron or the interme-
diate neurons. We generated 10,000 random samples of pairs of vectors
tO = 〈tO

1 , tO
2 , . . . , tO

N〉 and tD = 〈tD
1 , tD

2 , . . . , tD
M〉, with N and M chosen inde-

pendently and randomly from the range [1, 10] and the individual spike
times chosen randomly from the range [0, ϒ]. As noted earlier, ϒ and T
were set to 500 and 150 msec, respectively. We computed ∂E

∂tO
k

for the in-

dividual spikes in each tO according to equation 4.6. Figure 1d presents a
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scatter plot in log scale of the absolute value of ∂E
∂tO

k
plotted against tO

k for the

entire data set. As is clear from the plot, | ∂E
∂tO

k
| drops sharply with tO

k . Hence,

the only time period during which the gradient update formulas can have
significant values is when at least one tO

k is small, that is, immediately after
the generation of a spike by the output neuron. The symmetric nature of
equation 4.6 would indicate that this is also true for the timing of the desired
spikes. We therefore chose to make synaptic updates to the entire network
soon after the generation of a spike by the output neuron or the stipulation
of a desired spike at the output neuron.

7.3 Efficacy of the Error Functional: Single-Layer Networks. It is clear
from equation 3.2 that the spike train output of a neuron, given spike train
inputs at its various synapses, depends nonlinearly on its synaptic weights.
The efficacy of the proposed error functional hinges on how reliably it can
steer the synaptic weights of the learning network toward the synaptic
weights of the witness network, operating solely on spike time dispari-
ties. This is best evaluated in a single-layer network (i.e., a single neuron
with multiple synapses) since that eliminates the additional confounding
nonlinearities introduced by multiple layers.

Consider an update to the synapses of a learning neuron at any point in
time. Observe that since the update is based on the pattern of spikes in the
finite window [0, ϒ], there are therefore uncountably many witness neu-
rons that could have generated that pattern. This class of witness neurons
is even larger if there are fewer desired spike times in [0, ϒ]. A gradient
descent update that steers the synaptic weights of the learning neuron in
the direction of any one of these potential witness neurons would consti-
tute a correct update. It follows that when given a single witness neuron,
correctness can be evaluated only over the span of multiple updates to the
learning neuron.

To obtain a global assessment of the efficacy landscape in its entirety,
we randomly generated 10,000 witness-learning neuron pairs with 10 exci-
tatory synapses each (the synaptic weights were chosen randomly from a
range that made the neurons spike between 5 and 50 Hz when driven by
a 10 Hz input) and presented each pair with a randomly generated 10 Hz
Poisson input spike train. Each learning neuron was then subjected to 50,000
gradient descent updates with the learning rate and cap set at small values.
The initial versus change in (that is, initial − final) MAPE disparity be-
tween each learning and its corresponding witness neuron is displayed as a
scatter plot in Figure 2a. Across the 10,000 pairs, 9283 (approximately 93%)
showed improvement in their MAPE disparity. Furthermore, we found a
steady improvement of this percentage with an increasing number of up-
dates (not shown here). Note that since the input rate was set to be the same
across all synapses, a rate-based learning model would be expected to show
improvement in approximately 50% of the cases.
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Figure 2: Single neuron with 10 synapses. (a,b) Scatter plot of initial MAPE ver-
sus change in MAPE for 10, 000 witness-learning neuron pairs for a bounded
number of updates. The neurons in panel a were driven by homogeneous Pois-
son spike trains and those in panel b by inhomogeneous Poisson spike trains.
Points on the yellow lines correspond to learning neurons that converged to
their corresponding witness neurons within the bounded number of updates.
Note that by definition, points cannot lie above the yellow lines. (c,d) Fifty
randomly generated witness-learning neuron pairs with learning updates until
convergence. Synapses on neurons in panel c are all excitatory, and those on neu-
rons in panel d are 80% excitatory and 20% inhibitory. Each curve corresponds
to a single neuron. See text for more details regarding each panel.

A closer inspection of those learning neurons that did not show improve-
ment indicated the lack of diversity in the input spike patterns to be the
cause. We therefore ran a second set of experiments. Once again, as before,
we randomly generated 10,000 witness-learning neuron pairs. This time,
input spike trains were drawn from an inhomogeneous Poisson process
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with the rate set to modulate sinusoidally between 0 and 10 Hz at a fre-
quency of 2 Hz. The modulating rate was phase-shifted uniformly for the
10 synapses. Surprisingly, after just 10,000 gradient descent updates, 9921
(approximately 99%) neurons showed improvement, as displayed in Fig-
ure 2b, indicating that with sufficiently diverse input, the error functional
is globally convergent.

To verify the implications of the above finding with regard to the effi-
cacy landscape, we chose 50 random witness-learning neuron pairs spread
uniformly over the range of initial MAPE disparities and ran the gradi-
ent descent updates until convergence (or divergence). Input spike trains
were drawn from the above described inhomogeneous Poisson process.
All learning neurons converged to their corresponding witness neurons as
displayed in Figure 2c.

The experiments indicate that the error functional is globally convergent
to the correct weights when the synapses on the learning neuron are driven
by heterogeneous input. This finding can be related back to the nature of
E(·). As observed earlier, equation 4.5 makes E(·) nonnegative with the
global minima at tO = tD. For synapses on the learning and witness neuron
pair to achieve this for all tO and tD, they have to be identical. Furthermore,
it follows from equation 4.6 that a local minima, if one exists, must satisfy
N independent constraints for all tO of length N. This is highly unlikely
for all tO and tD pairs generated by distinct learning and witness neurons,
particularly if the input spike train that drives these neurons is highly
varied. Although this does not exclude the possibility of the sequence of
updates resulting in a recurrent trajectory in the synaptic weight space, the
experiments indicate otherwise.

Finally, we conducted additional experiments with neurons that had a
mix of excitatory and inhibitory synapses with widely differing PSPs. In
each of the 50 learning-witness neuron pairs, 8 of the 10 synapses were
set to be excitatory and the rest inhibitory. Furthermore, half of the exci-
tatory synapses were set to τ1 = 80 msec, β = 5, and half of the inhibitory
synapses were set to τ1 = 100 msec, β = 50 (modeling slower NMDA and
GABAB synapses, respectively). The results were consistent with the find-
ings of the previous experiments; all learning neurons converged to their
corresponding witness neurons as displayed in Figure 2d.

7.4 Nonlinear Landscape of Spike Times as a Function of Synap-
tic Weights: Multilayer Networks. Having confirmed the efficacy of the
learning rule for single-layer networks, we proceed to the case of multi-
layer networks. The question before us is whether the spike time disparity-
based error at the output-layer neuron, appropriately propagated back to
intermediate-layer neurons using the chain rule, has the capacity to steer the
synaptic weights of the intermediate-layer neurons in the correct direction.
Since the synaptic weights of any intermediate-layer neuron are updated
based not on the spike time disparity error computed at its output but on
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the error at the output of the output-layer neuron, the overall efficacy of
the learning rule depends on the nonlinear relationship between synaptic
weights of a neuron and output spike times at a downstream neuron.

We ran a large suite of experiments to assess this relationship. All ex-
periments were conducted on a two-layer network architecture with five
inputs that drove each of five intermediate neurons, which in turn drove
an output neuron. There were, accordingly, 30 synapses to train—25 on the
intermediate neurons and 5 on the output neuron.

In the first set of experiments, as in earlier cases, we generated 50 ran-
dom witness networks with all synapses set to excitatory. For each such
witness network, we randomly initialized a learning network at various
MAPE disparities and trained it using the update rule. Input spike trains
were drawn from an inhomogeneous Poisson process with the rate set to
modulate sinusoidally between 0 and 10 Hz at a frequency of 2 Hz, with
the modulating rate phase shifted uniformly for the five inputs. The most
significant insight yielded by the experiments was that the domain of con-
vergence for the weights of the synapses, although fairly large, was not
global as in the case of single-layer networks. This is not surprising and is
akin to what is observed in multilayer networks of sigmoidal neurons. Of
the 50 witness-learning network pairs, 32 learning networks converged to
the correct synaptic weights, while 18 did not. Figure 3a shows the aver-
age MAPE disparity (averaged over the five intermediate and one output
neuron) of the 32 networks that converged to the correct synaptic weights.
Figure 3b shows the MAPE of the six constituent neurons of one of these 32
networks; each curve in Figure 3a corresponds to six such curves.

Figure 3c shows the average MAPE disparity (averaged over the five
intermediate and one output neuron) of the 18 networks that diverged. A
closer inspection of the 18 networks that failed to converge to the correct
synaptic weights indicated a myriad reasons, not all implying a defini-
tive failure of the learning process. In many cases, all except a few of the 30
synapses converged. Figure 3d shows one such example where all synapses
on intermediate neurons, as well as three synapses on the output neuron,
converged to their correct synaptic weights. For synapses on networks that
did not converge to the correct weights, the reason was found to be ex-
cessively high or low pre post synaptic spike rates, which, as was noted
earlier, are noninformative for learning purposes (incidentally, high rates
accounted for the majority of the failures in the experiments). To elabo-
rate, at high spike rates, the tuple of synaptic weights that can generate a
given spike train is not unique. Gradient descent therefore cannot identify
a specific tuple of synaptic weights to converge to, and consequently the
update rule can cause the synaptic weights to drift in an apparently aim-
less manner, shifting from one target tuple of synaptic weights to another
at each update. Not only do the synapses not converge, the error E(·) re-
mains erratic and high through the process. At low spike rates, gradients
of E(·) with respect to the synaptic weights drop to negligible values since
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Figure 3: Two-layer networks with 30 synapses (5 on each of 5 intermediate
neurons and 5 on the output neuron). (a,c) Fifty randomly generated witness-
learning network pairs with learning updates until convergence or divergence.
(a) Thirty-two of the networks converged, and (c) the remaining 18 networks
diverged. Each curve corresponds to the average value of the MAPE of the six
neurons in the network. (b,d) Examples chosen from panels a and c, respectively,
showing the MAPE of all 6 neurons. See text for more details regarding each
panel.

the synapses in question are not instrumental in the generation of most
spikes at the output neuron. Learning at these synapses can then become
exceedingly slow.

To corroborate these observations, we ran a second set of experiments on
the 18 witness-learning network pairs that did not converge. We reduced
the maximum modulating input spike rate from 10 to 2 Hz; input spike
trains were now drawn from an inhomogeneous Poisson process with the
rate set to modulate sinusoidally between 0 and 2 Hz at a frequency of 2 Hz.
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Figure 4: (a) Witness-learning network pairs identical to those in Figure 3c
driven by new, lower-rate, input spike trains. The maximum rate in the inho-
mogeneous Poisson process was reduced from 10 to 2 Hz. The color codes for the
specific learning networks are left unchanged to aid visual comparison. (b) The
example network in Figure 3d driven by the new input spike train. Color codes
are once again the same.

Figure 4a shows the average MAPE disparity of the 18 networks with the
color codes for the specific networks left identical to those in Figure 3c. Only
8 of the networks diverged this time. Figure 4b shows the same network as
in Figure 3d. This time all synapses converged with the exception of one at
an intermediate neuron, which displayed very slow convergence due to a
low spike rate. We chose not to further redress the cases that diverged in
this set of experiments with new, tailored, input spike trains to present a
fair view of the learning landscape.

In our final set of experiments, we explored a network with a mix of
excitatory and inhibitory synapses. Specifically, two of the five inputs were
set to inhibitory and two of the five intermediate neurons were set to in-
hibitory. The results of the experiments exhibited a recurring feature: the
synapses on the inhibitory intermediate neurons, be they excitatory or in-
hibitory, converged substantially more slowly than the other synapses in
the network. Figure 5a displays an example of a network that converged
to the correct weights. Note, in particular, that the two inhibitory interme-
diate neurons were initialized at a lower MAPE disparity as compared to
the other intermediate neurons and that their convergence was slow. The
slow convergence is clearer in the close-up in Figure 5b. The formal reason
behind this asymmetric behavior has to do with the range of values

∂tO
k

∂tH
j

takes for an inhibitory intermediate neuron as opposed to an excitatory
intermediate neuron, and its consequent impact on equation 6.3. Observe
that

∂tO
k

∂tH
j

, following the appropriately modified equation 5.5, depends on the
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Figure 5: (a) Two layer with 30 synapses (5 on each of 5 intermediate neurons
and 5 on the output neuron) with two of the inputs and two of the intermediate
neurons set to inhibitory. Each curve corresponds to a single neuron. (b) Zoomed
view of panel a showing slow convergence. See text for more details regarding
each panel.

gradient of the PSP elicited by spike tH
j at the instant of the generation of

spike tO
k at the output neuron. The larger the gradient, the greater is the

value of
∂tO

k
∂tH

j
. Typical excitatory (inhibitory) PSPs have a short and steep

rising (falling) phase followed by a prolonged and gradual falling (rising)
phase. Since spikes are generated on the rising phase of inhibitory PSPs, the
magnitude of

∂tO
k

∂tH
j

for an inhibitory intermediate neuron is smaller than that
of an excitatory intermediate neuron. A remedy to speed up convergence
would be to compensate by scaling inhibitory PSPs to be large and excita-
tory PSPs to be small, which, incidentally, is consistent with what is found
in nature.

8 Discussion

A synaptic weight update mechanism that learns precise spike train–to–
spike train transformations is not only of importance to testing forward
models in theoretical neurobiology; it can also one day play a crucial role
in the construction of brain-machine interfaces. In this letter, we have pre-
sented such a mechanism formulated with a singular focus on the timing
of spikes. The rule is composed of two constituent parts: (1) a differentiable
error functional that computes the spike time disparity between the out-
put spike train of a network and the desired spike train and (2) a suite of
perturbation rules that directs the network to make incremental changes
to the synaptic weights aimed at reducing this disparity. We have already
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explored the first part, that is, ∂E
∂tO

k
as defined in equation 4.6, and presented

its characteristic nature in Figure 1d. For the second part, when the learning
network is driven by an input spike train that causes all neurons, inter-

mediate as well as output, to spike at moderate rates,
∂tO

l
∂wi, j

, as defined in
equation 5.4, and

∂tO
l

∂tI
i, j

, as defined in equation 5.5, can be simplified. Ob-
serve that when a neuron spikes at a moderate rate, the past output spike
times have a negligible AHP-induced impact on the timing of the current
spike. Formally stated, ∂η

∂t in equations 5.4 and 5.5 is negligibly small for
any output spike train with well-spaced spikes. Therefore,

∂tO
l

∂wi, j
≈

ξi(t
I
i, j − tO

l )∑
i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

(8.1)

and

∂tO
l

∂tI
i, j

≈
wi, j

∂ξi
∂t

∣∣
(tI

i, j−tO
l )∑

i∈�

∑
j∈Fi

wi, j
∂ξi
∂t

∣∣
(tI

i, j−tO
l )

. (8.2)

The denominators in the equations above, as in equations 5.4 and 5.5, are
normalizing constants that are strictly positive since they correspond to the
rate of rise of the membrane potential at the threshold crossing correspond-
ing to spike tO

l . The numerators relate an interesting story. Although both
are causal, the numerator in equation 8.2 changes sign across the extrema of
the PSP. Accumulated in a chain rule, these make the relationship between
the pattern of input and output spikes and the resultant synaptic weight
update rather complex.

Our experimental results have demonstrated that feedforward neu-
ronal networks can learn precise spike train–to–spike train transformations
guided by the weakest of supervisory signals: the desired spike train at
merely the output neuron. Supervisory signals can, of course, be stronger,
with the desired spike trains of a larger subset of neurons in the network be-
ing provided. The learning rule seamlessly generalizes to this scenario with
the revised error functional E(·) set as the sum of the errors with respect to
each of the supervising spike trains. What is far more intriguing is that the
learning rule generalizes to recurrent networks as well. This follows from
the observation that whereas neurons in a recurrent network cannot be par-
tially ordered, the spikes of the recurrent network in the bounded window
[0, ϒ] can be partially ordered according to their causal structure (see Fig-
ure 1c), which then permits the application of the chain rule. Learning in
this scenario, however, seems to be at odds with the sensitive dependence
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on initial conditions of the dynamics of a large class of recurrent networks
(Banerjee, 2006), and therefore, the issue calls for careful analysis.
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