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We begin with a brief review of the abstract dynamical system that mod-
els systems of biological neurons, introduced in the original article. We
then analyze the dynamics of the system. Formal analysis of local prop-
erties of �ows reveals contraction, expansion, and folding in different
sections of the phase-space. The criterion for the system, set up to model
a typical neocortical column, to be sensitive to initial conditions is iden-
ti�ed. Based on physiological parameters, we then deduce that periodic
orbits in the region of the phase-space corresponding to normal oper-
ational conditions in the neocortex are almost surely (with probability
1) unstable, those in the region corresponding to seizure-like conditions
are almost surely stable, and trajectories in the region corresponding to
normal operational conditions are almost surely sensitive to initial con-
ditions. Next, we present a procedure that isolates all basic sets, com-
plex sets, and attractors incrementally. Based on the two sets of results,
we conclude that chaotic attractors that are potentially anisotropic play
a central role in the dynamics of such systems. Finally, we examine the
impact of this result on the computational nature of neocortical neuronal
systems.

1 Introduction

As mentioned in the original article, also appearing in this issue, the goal
of our research is to determine whether there are coherent spatiotempo-
ral structures in the dynamics of neuronal systems. Our approach to this
problem has been to formulate an abstract dynamical system that models
systems of biological neurons and subsequently conduct a comprehensive
analysis of the dynamics of the system.

In the original article we presented a detailed exposition of an abstract
dynamical system that models systems of biological neurons. We also pre-
sented results from simulations of the system set up to model a typical
column in the neocortex. The agreement between the qualitative aspects of
the simulation results and that of real data attested to the viability of the
model. In this article, we conduct a formal analysis of the dynamics of the
abstract system.
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In section 2, we brie�y review the abstract dynamical system introduced
in the original article. In section 3, we augment the system with an additional
structure, a Riemannian metric, and perform a perturbation analysis on the
dynamics of the augmented system.

In section 4, we conduct a measure analysis on the system. The analy-
sis reveals contraction, expansion, and folding in different sections of the
phase-space. In section 5, we conduct a local cross-section analysis of the
dynamics of the system. The criterion for the system, set up to model a
typical neocortical column, to be sensitive to initial conditions is identi�ed.
The salient qualitative characteristics of the system are then deduced based
on physiological parameters. The results not only explain the simulation
results presented in the original article but also make predictions that are
borne out by further experimentation.

In section 6, we present a procedure that isolates all basic sets, complex
sets, and attractors incrementally. Based on these results we conclude that
the coherent spatiotemporal structures in the dynamics of the system oper-
ating under conditions considered routine in the neocortex are almost surely
chaotic attractors that are potentially anisotropic. Finally, in section 7 we ex-
amine the impact of this result on the computational nature of neocortical
neuronal systems.

2 Abstract Dynamical System

We present a brief review of the abstract dynamical system that models
systems of biological neurons, introduced in the original article. Readers
who desire a comprehensive exposition of the system should consult the
original article.

The dynamical system is constructed in two stages. A deterministic
model of a neuron is �rst formulated based on a set of basic assumptions
about the biological neuron. A designated number of instances of the model
are then linked together appropriately to construct the dynamical system.

2.1 Model of the Neuron. A biological neuron, at the highest level of
abstraction, is a device that transforms multiple series of action potentials
(also known as spikes) arriving at its various afferent (incoming) synapses
into a series of action potentials on its axon. At the heart of this transforma-
tion lies the quantity P, the membrane potential at the soma of the neuron.
Effects of the afferent spikes that have arrived at the various synapses of the
neuron, as well as those of the efferent (outgoing) spikes that have departed
since being generated at its soma, interact nonlinearly to generate this po-
tential. The efferent spikes generated by the neuron coincide with the times
at which this potential reaches the threshold of the neuron.

It was demonstrated in the original article, based on the observations
that (1) the biological neuron is a �nite precision machine, (2) the individual
effects of afferent as well as efferent spikes on the membrane potential at
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the soma of a biological neuron decay after a while at an exponential rate,
and (3) the interval between successive spikes generated by a biological
neuron is bounded from below by its absolute refractory period, that in a
deterministic model it can reasonably be assumed that the individual effects
of afferent as well as efferent spikes on the membrane potential at the soma
decay to 0 within a bounded period of time. It then follows that at any given
moment in time, there are at most a bounded number of most recent spikes
(afferent as well as efferent) that are effective on the membrane potential at
the soma of the neuron.

This is modeled formally as follows. Let i D 1, . . . , m denote the afferent
synapses on a given neuron. Let r0 denote its absolute refractory period,and
ri for i D 1, . . . , m the absolute refractory period of the neuron presynaptic
to it at synapse i. Let ti for i D 0, . . . , m denote the bound on the period
of effectiveness of spikes. To elaborate, any spike that arrived at synapse
i D 1, . . . , m before time ti as well as any spike that was generated at its
soma before time t0 can be disregarded in the computation of the current
membrane potential at the soma of the neuron. It follows that for each
i D 0, . . . , m, there are at most ni D dti/rie most recent spikes that need to
be considered in the computation of the current membrane potential at the
soma of the neuron.

The neuron is assigned a C1 function P(x1
1, . . . , xn1

1 , . . . , . . . , x1
m, . . . , xnm

m I
x1

0, . . . , xn0
0 ) that models the current membrane potential at its soma. Sub-

scripts i D 1, . . . , m represent the afferent synapses on the neuron. Each
x j

i for i D 1, . . . , m represents the time since the arrival of a distinct mem-
ber of the ni most recent spikes that have reached synapse i, and for i D 0
the time since the departure of a distinct member of the n0 most recent
spikes that were generated at the soma of the neuron. The domain of P(¢)
is restricted to 0 · xj

i · ti for all i, j. Since ni is merely an upper bound

on the number of spikes (x
j
i ) that satisfy 0 · x j

i · ti, it is conceivable
that fewer than ni spikes satisfy the criterion, in which case the remain-
ing variables are set at ti. Following are an additional set of constraints
imposed on P(¢) at boundaries 0 and ti to maintain consistency in the
model:

1. 8i D 0, . . . , m and 8j D 1, . . . , ni 9d > 0 such that 8t 2 [ti ¡ d, ti],
@P
@xj

i

|
xj

i DtD 0 irrespective of the values assigned to the other variables.

2. 8i D 0, . . . , m and 8 j D 1, . . . , ni 9d > 0 such that 8t 2 [0, d], @P
@xj

i

|xj
i DtD 0

irrespective of the values assigned to the other variables.

3. 8i D 0, . . . , m and 8 j D 1, . . . , ni P(¢) |
xj

i D0D P(¢) |
xj

i Dti
all other vari-

ables held constant at any values.

4. If 8i D 0, . . . , m and 8 j D 1, . . . , ni x j
i D 0 or ti, then P(¢) D 0.
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Finally, a spike is generated by the neuron whenever P(¢) D T (the
membrane potential at the soma reaches the threshold of the neuron), and
dP/dt ¸ 0 (during its rising phase).

2.2 The Dynamical System. We �rst consider systems of neurons that
do not receive external input. Let i D 1, . . . , S denote the set of all neurons in
any such system. Given any neuron i, an upper bound Ui on the time period
until which any spike, since its inception, can be effective on the membrane
potential at the soma of neuron i can be computed by extending each tj, for
j D 1, . . . , m, by the time it takes a spike to reach synapse j from its inception
at the soma of the corresponding presynaptic neuron, and choosing the
maximum over all j D 0, . . . , m. It then follows that U D maxS

iD1(Ui) yields
an upper bound on the time perioduntil which any spike, since its inception,
can be effective on any neuron in the system.

We now rede�ne x j
i to denote the time since the inception of the spike

at the soma of neuron i and reassign ni to dU / rie, where ri is the absolute
refractory period of neuron i. Pi(¢)’s (the subscript referring to neuron i)
are modi�ed accordingly; each function is translated along certain axes

to account for the change in the origin of the x j
i ’s, the functions are then

appropriately rede�ned on higher-dimensional spaces to re�ect the changes

in the ni’s, their domains are modi�ed to 8i, j 0 · x j
i · U , and references to

synapses in the variables are switched to references to appropriate neurons.
We note that the constraints (1 through 4) set forth in the previous section
hold on these modi�ed functions at the new boundaries 0 and U .

The state of the system of neurons can now be speci�ed completely by
enumerating, for all neurons i D 1, . . . , S , the positions of the ni (or fewer)
most recent spikes generated by neuron i within U time from the present.
Such a record speci�es the exact location of all spikes that are still situated
on the axons of respective neurons and, combined with the potential func-
tions, it speci�es the current state of the soma of all neurons. Note that all
information regarding the topology of the network, the strength and loca-
tion of the afferent synapses on the various neurons, their modulation of
one another ’s effects at respective somas, the anatomical characteristics of
the various axonal arborizations, and so forth is implicitlycontained within
the set of functions Pi(¢) for i D 1, . . . , S .

We can now generalize the system to receive external input by introduc-
ing additional neurons whose state descriptions are identical to that of the
external input.

While the set of ni-tuples hx1
i , x2

i , . . . , xni
i i 2 [0, U ]ni for i D 1, . . . , S does

specify the state of the system as argued above, this representation is fraught
with redundancy. First, ni being merely an upper bound on the number of
spikes generated by neuron i that satisfy 0 · x j

i · U , fewer spikes might
satisfy the criterion, in which case the remaining components of the ni-tuple
are set at U . These components correspond to spikes whose effectiveness on
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all neurons in the system has expired. The �nite description of the state of a
neuron requires that a variable be reused to represent a new spike (set at 0)
when the effectiveness of the old spike it represented terminates (when it is
set at U ). One of the two positions, 0 and U , is therefore redundant. Second,
if hx1

i , x2
i , . . . , xni

i i and hy1
i , y2

i , . . . , yni
i i are two ni-tuples that are a nontrivial

permutation of one another, they represent the same state of the neuron.
Hence, all but one member of each such permutation group is redundant.

The transformation hx1, x2, . . . , xni ! han¡1, an¡2, . . . , a0i where each
zj D e

2p i
U

xj
for j D 1, . . . , n is a root of the complex polynomial f (z) D

zn C an¡1zn¡1 C ¢ ¢ ¢ C a0, eliminates these redundancies. It was shown in
the original article that |a0 | D 1 and ai D Nan¡ia0 for i D 1, . . . , n ¡ 1 con-
stitute a necessary set of constraints for f (z) to have all roots on |z| D 1.
Consequently, for odd n, han¡1, . . . , adn/2eI a0i 2 Cbn/2c £S1 completely spec-
i�es f (z), and for even n, han¡1, . . . , adn/2eC1I adn/2e, a0i 2 Cbn/2c¡1 £M2 does
the same, where C, S1, and M2 represent the complex plane, the unit cir-
cle, and the two-dimensional Möbius band, respectively. A suf�cient set of
constraints was also derived in the original article, and it was shown that
when both sets of constraints are imposed, the resultant space is a com-
pact subset of Cbn/2c £ S1 (for odd n) or Cbn/2c¡1 £ M2 (for even n). We
denote the resultant space by Ln. Ln is the closure of the open set Ln that
corresponds to all points hx1, x2, . . . , xni that are composed of distinct com-
ponents (j1 6D j2 ) e

2p i
U

xj1 6D e
2p i
U

xj2 ). LnnLn is a multidimensional boundary
set that corresponds to all points hx1, x2, . . . , xni that have one or more iden-
tical components (e

2p i
U

xj1 D e
2p i
U

xj2 for some j1 6D j2). Finally, the boundary set
can be partitioned, based on the multiplicity of the components, into sub-
sets that are diffeomorphic to Ln¡1, Ln¡2, . . . , or L0. We assume hereafter

that all variables x j
i are normalized, that is, scaled from [0, U ] to [0, 2p ].

Each Pi (¢) is likewise assumed to be modi�ed to re�ect the scaling of its
domain.

We denote by iLni the resultant space for neuron i. The phase-space for the
system of neurons is then given by S

iD1
iLni . Itwas demonstrated in the orig-

inal article that the transformation described above, Fni : Tni ! iLni (points
in Tni , the ni-torus, represented as heix1

i , eix2
i , . . . , eixni

i i), is a local diffeomor-
phism at all points satisfying eix1

i 6D eix2
i 6D ¢ ¢ ¢ 6D eixni

i , and that corresponding
to each Pi(¢) there exists a C1 function Pi:

S
jD1

jLnj ! R.
We observed earlier that at certain times, neuron i might possess fewer

than ni effective spikes. It follows from the deliberations above that under

such circumstances, the remaining variables are set at eixj
i D 1. For each

neuron i we denote the number of such variables by si. The corresponding
spikes we label as dead since their effectiveness on all neurons in the system
has expired. All other spikes we label as live. We now present an informal
description of the dynamics of the system. If the state of the system at a
given instant is such that neither any live spike is on the verge of death nor
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is any neuron on the verge of spiking, then all live spikes continue to age
uniformly (the corresponding variables x j

i grow at a constant rate). If a spike
is on the verge of death, it expires, that is, stops aging. This occurs when

the corresponding variable reaches eixj
i D 1. If a neuron is on the verge of

spiking, exactly one dead spike corresponding to that neuron is turned live.
This dichotomy between dead and live spikes induces a certain struc-

ture on iLni . We denote by iL j
ni

the subspace of iLni that satis�es si ¸ j.

We note immediately that there exists a natural mapping from iL0
(ni ¡si ), a

space corresponding to (ni ¡ si ) live or dead spikes, to iLsi

ni
, the subspace

corresponding to (ni ¡ si) live or dead spikes in a space corresponding to ni
spikes. It was demonstrated in the original article that the canonical map-

ping Fni
(ni ¡si ):

iL0
(ni ¡si ) ! iLsi

ni
is not only an imbedding for all si · ni, but

also maps �ows identically, a fact manifest in the informal description of
the dynamics of the system. To elaborate, since all dead spikes remain sta-

tionary at eixj
i D 1, they register as a constant factor in the dynamics of the

system. While the total number of spikes assigned to a neuron dictates the
dimensionality of its entire space, �ows corresponding to a given number
of live spikes lie on a �xed dimensional submanifold and are C1-conjugate
to one another.

The submanifolds iL j
ni

(j D 1, . . . , ni) are not revealed in the topology
of iLni regarded (as the case may be) as a subspace of Cbni /2c £ S1 or of
Cbni /2c¡1£M2 (topologizedby respectivestandard differentiable structures).
We therefore assign iLni the topologygenerated by the family of all relatively

open subsets of iLj
ni

, 8 j ¸ 0.
We denote by PS

i the subspace of S
iD1

iLni satisfying Pi(¢) D T , and by PI
i

the subspace wherein dPi(¢)/dt ¸ 0 is additionally true. It was demonstrated
in the original article that PS

i is a C1 regular submanifold of codimension 1
and that PI

i is a closed subset of PS
i .

The velocity �eld V : S
iD1

iLni ! S
iD1 T(iLni ) is stipulated by way of two

�elds: V1 for the case wherein p 2 S
iD1

iLni satis�es 8i D 1, . . . , S p /2 PI
i ,

and V2 for the case wherein 9i p 2 PI
i .

1 We note from the informal description
of the dynamics of the system that the component �elds, V1

i and V2
i , for each

neuron i D 1, . . . , S can be speci�ed based solely on pi 2 iLni . Moreover,

it follows that V1
i can be de�ned on (iL0

(ni ¡si )n
iL1

(ni ¡si )), the corresponding

�eld on (iLsi

ni
niLsi C1

ni
) then de�ned as Fni

(ni ¡si )?
(V1

i ).2

1 T(¢) denotes the tangent bundle (appropriated from Cbni /2c £ S1 or Cbni /2c¡1 £ M2 , as
the case may be).

2 We use the notation, F?(Xp) f D Xp ( f ± F) where F is a C1 map of manifolds, Xp is a
tangent vector at p, and f is an arbitrary function that belongs to C1 (F(p)).
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Since V1
i for pi 2 (iL0

(ni ¡si )n
iL1

(ni ¡si )) corresponds to all (ni ¡si ) roots rotat-

ing at constant speed, it is de�ned as dani¡si¡k

dt D 2p
U

k Oh for k D 1, . . . , b ni ¡si
2 c,

(ni ¡ si), and when (ni ¡ si) is even, d|a(ni¡si ) /2 |
dt D 0. Oh is the basis vector @/@h

on C, M2, and S1 with elements represented respectively as reih , h§r, h i, and

h . Finally, V2
i for pi 2 (iLsi

ni
niLsi C1

ni
) is equivalent to V1

i on iLsi ¡1
ni

ignoring the

fact that pi lies additionally on iLsi

ni
½ iLsi ¡1

ni
.

3 The Augmented System and Its Basic Features

Our �rst objective is to identify the local properties of the dynamics of
the system. We pursue this goal through a measure analysis in section 4
and a cross-section analysis in section 5. These analyses require the phase-
space to be endowed with a Riemannian metric. We begin with its speci�-
cation.

3.1 Riemannian Metric. We choose the metric such that all �ows cor-
responding to V1 on S

iD1(iLsi

ni
niLsi C1

ni
) (for all values of si’s) are not only

measure preserving but also shape preserving.
Since for every si > 1, iLsi

ni
corresponds to states of neuron i that feature

multiple components set at eixj
i D 1, it lies on the boundary of iL0

ni
. It fol-

lows from the description of iLni in the previous section that the boundary

set in the neighborhood of pi 2 (iLsi

ni
niLsi C1

ni
) is locally diffeomorphic to an

open subset of iLsi ¡1
ni

. Finally, the nature of V1
i and V2

i reveals that for all

pi 2 (iLsi

ni
niLsi C1

ni
), Vi 2 T(iLsi¡1

ni
). It is therefore suf�cient as well as appro-

priate that the Riemannian metric be de�ned over T( S
iD1

iLsi ¡1
ni

), that is, as

W: T( S
iD1

iLsi ¡1
ni

) £ T( S
iD1

iLsi ¡1
ni

) ! R.

Let pi 2 (iLsi

ni
niLsi C1

ni
) denote the state of neuron i. We consider (iLsi

ni
niLsi C1

ni
)

as a subspace of iLsi ¡1
ni

. The imbedding Fni
ni ¡(si ¡1) maps iL0

ni ¡(si¡1) onto iLsi ¡1
ni

such that (iL1
ni ¡(si ¡1)niL2

ni ¡(si ¡1)) ½ iL0
ni¡(si ¡1) is mapped onto (iLsi

ni
niLsi C1

ni
) ½

iLsi ¡1
ni

. The mapping Fni ¡(si ¡1): Tni ¡(si ¡1) ! iL0
ni ¡(si ¡1) is a local diffeo-

morphism at all points satisfying eix1
i 6D eix2

i 6D ¢ ¢ ¢ 6D eixni¡(si¡1)
i . Hence,

(F ni
ni ¡(si¡1) ± Fni ¡(si ¡1)) is a local diffeomorphism at all such points. Finally,

whereas the section of iLni that is actually explored by the state dynam-
ics of neuron i, that is, the feasible space, does contain states composed of

identical components, such components are necessarily set at eixj
i D 1. Con-

sequently, if W ½ Tni ¡(si ¡1) denotes the pre-image of the feasible section of

(iLsi ¡1
ni

niLsi C1
ni

), then the constraint eix1
i 6D eix2

i 6D ¢ ¢ ¢ 6D eixni¡(si¡1)
i is satis�ed

throughout W.
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We can now de�ne a C1-compatible basis for T( S
iD1

iLni ) in the feasible

section of S
iD1(iLsi

ni
niLsi C1

ni
) as the set of vectors (iF ni

ni ¡(si¡1)±iFni ¡(si ¡1))?(@/@x j
i )

for i D 1, . . . , S and j D 1, . . . , ni ¡ (si ¡ 1). We shall, for the sake of brevity,
henceforth refer to (iF ni

ni ¡(si ¡1) ± iFni ¡(si ¡1))?(@/@xj
i ) as Ej

i . We set the Rie-
mannian metric as W(Eb

a , Ed
c ) D 1 if a D c and b D d, and W (Eb

a , Ed
c ) D 0

otherwise.
The component labels in W can be chosen in a manner such that E1

i 2
T(iLsi ¡1

ni
) lies in T?(iLsi

ni
niLsi C1

ni
).3 The feasible section of S

iD1(iLsi

ni
niLsi C1

ni
),

for any values of si’s, can now be considered a Riemannian manifold in its

own right. T( S
iD1(iLsi

ni
niLsi C1

ni
)) in the feasible section is spanned by hEj

i | i D
1, . . . , SI j D 2, . . . , ni ¡ (si ¡ 1)i, which forms an orthonormal basis. The

feasible section of (iLsi

ni
niLsi C1

ni
) is therefore also a regular submanifold of

iLsi ¡1
ni

. We now consider S
iD1

iLni as the union of the sets S
iD1(iLsi

ni
niLsi C1

ni
)

for all i D 1, . . . , S , si D 0, . . . , ni, and assign it the topologygenerated by the

family of all open sets in each S
iD1(iLsi

ni
niLsi C1

ni
) induced by the Riemannian

metric. It is clear that in the feasible section of S
iD1

iLni , this topology is
identical to that presented in section 2.

V1 on S
iD1(iLsi

ni
niLsi C1

ni
) is de�ned as S,ni ¡(si ¡1)

iD1, jD2 (2p /U )Ej
i in the new

frame. Since the �eld of coordinate frames Ej
i for i D 1, . . . , S , j D 2, . . . ,

ni ¡ (si ¡ 1) satis�es rEb
a
Ed

c D 0 (r being the Riemannian connection) for
all a, c 2 f1, . . . , Sg and b, d 2 f2, . . . , ni ¡ (si ¡ 1)g, and the coef�cients
(2p /U ) are constants, V1 is a constant vector �eld on S

iD1(iLsi

ni
niLsi C1

ni
).

V1 is therefore not only measure preserving but also shape preserving on
S
iD1(iLsi

ni
niLsi C1

ni
).

This leads to a substantial simpli�cation in the analysis of the dynamics
of the system. Since any trajectory Yx(t) in the phase-space has associated
with it a sequence of times ht1, t2, . . . , tk, tkC1, . . .i such that for all j the

segment fYx(t) | tj < t < tjC1g lies strictly on S
iD1(iLsi

ni
niLsi C1

ni
) for �xed

values of si’s (segments that correspond to periods during which neither
any live spike expires nor does any neuron �re), and since each such seg-
ment is both volume and shape preserving, the analysis of the local prop-
erties of Yx(t) reduces to the analysis of a �nite or countably in�nite set
of discrete events at times ht1, t2, . . . , tk, tkC1, . . .i, each event denoting the
birth and/or death of one or more spikes. Since any event involving the
simultaneous birth and death of multiple spikes can be regarded as a se-
ries of mutually independent births and deaths of individual spikes,4 the

3 The orthogonal complement of T(iL
si
ni niL

si C1
ni

).
4 At the time of its birth or death, a spike has no impact on any membrane potential

function.
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analysis can be further restricted to the birth of a spike and the death of a
spike.

3.2 Perturbation Analysis.

3.2.1 Birth. Let fYx(t) | tj < t < tjC1g lie strictly on S
iD1(iLsi

ni
niLsi C1

ni
)

for arbitrary but �xed values of si’s. Let the event associated with Yx(tjC1)
be, without loss of generalization, the birth of a spike at neuron 1, that is,
Yx(tjC1) 2 PI

1 and no other PI
i . Then fYx(t) | tjC1 < t < tjC2g lies strictly on

(1Ls1¡1
n1

n1Ls1

n1
) £ S

iD2(iLsi

ni
niLsi C1

ni
). Consider p1 D Yx(tjC1 ¡ t¤) on the seg-

ment fYx(t) | tj < t < tjC1g and p2 D Yx(tjC1 C t¤) on the segment fYx(t) |
tjC1 < t < tjC2g such that Yx(t) for tjC1 ¡ t¤ · t · tjC1 C t¤ lies within a sin-

gle coordinate neighborhood5 of S
iD1(iLsi¡1

ni
niLsi C1

ni
). Let p1 be represented

as ha1
1, . . . , an1 ¡(s1¡1)

1 , a1
2, . . . , an2 ¡(s2¡1)

2 , . . . , a1
S , . . . , anS ¡(sS ¡1)

S i where a1
i D 0

for i D 1, . . . , S , and p2 as hb1
1, . . . , bn1 ¡(s1¡1)

1 , b1
2, . . . , bn2¡(s2 ¡1)

2 , . . . , b1
S , . . . ,

bnS ¡(sS ¡1)
S i, in local coordinates. Then b1

1 D (2p /U )t¤, b1
i D 0 for i D

2, . . . , S , and b j
i D a j

i C (2p /U )2t¤ for the remaining i D 1, . . . , S and
j D 2, . . . , ni ¡ (si ¡ 1).

Let Qp1 on S
iD1(iLsi

ni
niLsi C1

ni
) be suf�ciently close to p1 such that YQx(t),

the trajectory through Qp1, has a corresponding segment on (1Ls1 ¡1
n1

n1Ls1

n1
) £

S
iD2(iLsi

ni
niLsi C1

ni
). Let Qp1 be represented in local coordinates as hQa1

1, . . . ,

Qan1¡(s1 ¡1)
1 , Qa1

2, . . . , Qan2¡(s2 ¡1)
2 , . . . , Qa1

S , . . . , QanS ¡(sS ¡1)
S i where Qa1

i D a1
i D 0 for

i D 1, . . . , S , and Qaj
i D a j

i C Dx j
i for i D 1, . . . , S , j D 2, . . . , ni ¡ (si ¡

1). Let Y Qx(t) be parameterized such that Qp1 D Y Qx(tjC1 ¡ t¤). Let Qp2 D
Y Qx(tjC1 C t¤) be represented in local coordinates as h Qb1

1, . . . , Qbn1¡(s1 ¡1)
1 , Qb1

2, . . . ,
Qbn2 ¡(s2¡1)
2 , . . . , Qb1

S , . . . , QbnS ¡(sS ¡1)
S i where Qb1

1 D b1
1 C Dy1

1, Qb1
i D b1

i D 0 for

i D 2, . . . , S , and Qbj
i D bj

i C Dy j
i for i D 1, . . . , S , j D 2, . . . , ni ¡ (si ¡ 1).

Dy j
i D Dxj

i for i D 1, . . . , S and j D 2, . . . , ni ¡ (si ¡ 1) since Qbj
i D Qa j

i C
(2p /U )2t¤ for all such values of i and j. Let Dt be such that Y Qx(tjC1 C Dt) lies
on PI

1. Then Dy1
1 D ¡(2p /U )Dt. Since both Yx(tjC1) and Y Qx(tjC1 C Dt) lie on

PI
1,

P1 a1
1, a2

1 C
2p

U
t¤, . . . , an1¡(s1¡1)

1 C
2p

U
t¤, . . . ,

a1
S , a2

S C
2p

U
t¤, . . . , anS ¡(sS ¡1)

S C
2p

U
t¤ D T , and (3.1)

5 With the distinguished set of coordinate frames described in section 3.1.
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P1 a1
1, a2

1 CDx2
1 C

2p

U
(t¤CDt), . . . , an1 ¡(s1¡1)

1 CDxn1 ¡(s1¡1)
1 C

2p

U
(t¤CDt),

. . . , a1
S , a2

S CDx2
S C

2p

U
(t¤CDt), . . . , anS ¡(sS ¡1)

S CDxnS ¡(sS ¡1)
S

C
2p

U
(t¤CDt) D T . (3.2)

P1(¢), being C1, can be expanded as a Taylor series around Yx(tjC1). Minor
algebraic manipulations, and neglecting all higher-order terms, then yields

Dy1
1 D

S,ni ¡(si ¡1)

iD1, jD2

@P1

@x j
i

£ Dx j
i /

S,ni ¡(si ¡1)

iD1, jD2

@P1

@x j
i

. (3.3)

All @P1

@xj
i

’s in equation 3.3 are evaluated at Yx(tjC1). We denote @Pk

@xj
i
/ i, j

@Pk

@xj
i

by ka
j
i . Then 8k D 1, . . . , S i, j

ka
j
i D 1, and Dy1

1 D i, j
1a

j
i Dx j

i .

3.2.2 Death. We assume that the event associated with Yx(tjC1) is, with-
out loss of generalization, the death of a spike at neuron 1. Then fYx(t) |

tjC1 < t < tjC2g lies strictly on (1Ls1 C1
n1

n1Ls1 C2
n1

) £ S
iD2(iLsi

ni
niLsi C1

ni
). We

now consider points p1 D Yx(tjC1 ¡ t¤) and p2 D Yx(tjC1 C t¤) such that
Yx(t) for tjC1 ¡ t¤ · t · tjC1 C t¤ lies within a single coordinate neigh-

borhood of S
iD1(iLsi

ni
niLsi C2

ni
). Let p1 be represented in local coordinates as

ha1
1, . . . , an1¡s1

1 , a1
2, . . . , an2¡s2

2 , . . . , a1
S , . . . , an S ¡sS

S i, and p2 be represented as

hb1
1, . . . , bn1¡s1

1 , b1
2, . . . , bn2¡s2

2 , . . . , b1
S , . . . , bnS ¡sS

S i. Then b1
1 D 0, and b j

i D
aj

i C (2p /U )2t¤ for all i D 1, . . . , S , j D 1, . . . , (ni ¡ si) except i D j D 1.
Let Qp1 D Y Qx(tjC1¡t¤) and Qp2 D YQx(tjC1 Ct¤) be pointson a YQx(t) suf�ciently

close to Yx(t) so as to have corresponding segments on the noted subman-
ifolds. Let Qp1 be represented in local coordinates as hQa1

1, . . ., Qan1¡s1
1 , Qa1

2, . . .,

Qan2 ¡s2
2 , . . . , Qa1

S , . . . , QanS ¡sS
S i where Qaj

i D a j
i C Dx j

i for all i D 1, . . . , S ,
j D 1, . . ., (ni ¡si), and Qp2 be represented as h Qb1

1, . . ., Qbn1 ¡s1
1 , Qb1

2, . . ., Qbn2 ¡s2
2 , . . .,

Qb1
S , . . . , Qbn S ¡sS

S i where Qbj
i D b j

i C Dyj
i for all i D 1, . . . , S , j D 1, . . . , (ni ¡ si).

Then it follows from Qb1
1 D b1

1 D 0 and Qbj
i D Qaj

i C (2p /U )2t¤ for all other i, j

that Dy1
1 D 0 and Dyj

i D Dx j
i for all i D 1, . . . , S , j D 1, . . . , (ni ¡ si) except

i D j D 1.

4 Measure Analysis

4.1 Expansion. We demonstrate that a trajectory is expansive at the birth
of a spike. We consider the adjacent segments of Yx(t) described in sec-
tion 3.2.1. Let C denote an in�nitesimal S

iD1(ni¡si )-dimensional hypercube
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spanned by vectors 2 Ej
i (2 ! 0) for i D 1, . . . , S , j D 2, . . . , ni ¡(si ¡1) at any

location on the segment of Yx(t) on S
iD1(iLsi

ni
niLsi C1

ni
). When C passes into

(1Ls1¡1
n1

n1Ls1

n1
) £ S

iD2(iLsi

ni
niLsi C1

ni
) it is transformed into the S

iD1(ni ¡ si)-

dimensional parallelepiped C 0 spanned by the vectors 2 (E j
i C 1a

j
i E1

1) for

i D 1, . . . , S , j D 2, . . . , ni ¡ (si ¡ 1), where the 1a
j
i ’s are evaluated at the

point Yx(t) \ PI
1.

Vectors Ej
i for i D 1, . . . , S , j D 1, . . . , ni ¡ (si ¡ 1) are by assumption

orthonormal. Let A and A0 denote the matrices associated with the vectors
spanning C and C 0 represented as row coordinate vectors with respect to
the above basis. A and A0 are then the ( S

iD1 ni ¡ si) £ ( S
iD1 ni ¡ (si ¡ 1))

matrices:

A D

0 2 0 ¢ ¢ ¢ 0
0 0 2 ¢ ¢ ¢ 0
...

...
...

. . .
...

0 0 0 ¢ ¢ ¢ 2

and A0 D

1a2
1 2 2 0 ¢ ¢ ¢ 0

1a3
1 2 0 2 ¢ ¢ ¢ 0
...

...
...

. . .
...

1a
n S ¡(sS ¡1)
S 2 0 0 ¢ ¢ ¢ 2

. (4.1)

In A, columns corresponding to E1
i for i D 1, . . . , S are 0 vectors. All other

columns contain an 2 at an appropriate location. A0 is identical to A except for
the �rst column, which is replaced by the vector h1a2

1 2 , . . . , 1a
n1¡(s1 ¡1)
1 2 , . . . ,

1a2
S 2 , . . . , 1a

nS ¡(sS ¡1)
S 2 iT .

The S
iD1(ni ¡si)-dimensional measure of C and C 0 can then be computed

as the square root of the Gram determinants6 of the respective matrices, A
and A0 . They are

/A/ D 2
S
iD1

ni ¡si

and

/A0 / D 2
S
iD1

ni¡si £ 1 C
S ,ni ¡(si ¡1)

iD1, jD2

(1a
j
i )2.

It follows from i, j
1a

j
i D 1 that the volume of C 0 is strictly greater than that

of C.

4.2 Contraction. We demonstrate that a trajectory is contractile at the
death of a spike. We consider the adjacent segments of Yx(t) described
in section 3.2.2. Let C denote an in�nitesimal S

iD1(ni ¡ si)-dimensional

6 The Gram determinant of matrix B is given by det(B ¤ BT ). The square root of the
Gram determinant is also known as the modulus of B and is represented as /B/.
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hypercube spanned by vectors 2 E j
i (2 ! 0) for i D 1, . . . , S , j D 1, . . . ,

(ni ¡ si ) at any location on the segment of Yx(t) on S
iD1(iLsi

ni
niLsi C1

ni
). When

C passes into (1Ls1 C1
n1

n1Ls1 C2
n1

) £ S
iD2(iLsi

ni
niLsi C1

ni
), it is transformed into the

( S
iD1 ni ¡ si)-1-dimensional hypercube C 0 spanned by the vectors 2 Ej

i for
all i D 1, . . . , S and j D 1, . . . , (ni ¡ si) except i D j D 1. In other words, the

S
iD1(ni ¡ si)—1-dimensional hypercube C collapses along E1

1 to produce a
( S

iD1 ni ¡ si)—1-dimensional hypercube C 0 . Any lower-dimensional par-

allelepiped inside C spanned by the vectors 2 (Ej
i C b

j
i E1

1) for i D 1, . . . , S ,

j D 1, . . . , (ni ¡ si) except i D j D 1 such that b
j
i 6D 0 for some i, j therefore

experiences a contraction in volume as it passes from S
iD1(iLsi

ni
niLsi C1

ni
) into

(1Ls1 C1
n1

n1Ls1 C2
n1

) £ S
iD2(iLsi

ni
niLsi C1

ni
).

4.3 Folding. We demonstrate that folding can occur across a series of
births and deaths of spikes. Let QC denote a S

iD1(ni ¡ si)-dimensional hy-

percuboid of maximal measure in the feasible section of S
iD1(iLsi

ni
niLsi C1

ni
)

that is transformed after time U t
2p into a S

iD1(ni ¡ si)-dimensional hyper-

surface QC 0 in (1Ls1 ¡1
n1

n1Ls1

n1
) £ S

iD2(iLsi

ni
niLsi C1

ni
), past the birth of a spike at

neuron 1. Let QC be represented as S ,ni ¡(si¡1)
iD1, jD2 [aj

i , a j
i C Di], and QC 0 as x1

1 D

h(x2
1, . . . , xn1¡(s1 ¡1)

1 , x2
2, . . . , xn2 ¡(s2¡1)

2 , . . . , x2
S , . . . , xnS ¡(sS ¡1)

S ) in local coor-

dinates, where x j
i 2 [aj

i C t, a j
i C Di C t] for i D 1, . . . , S , j D 2, . . . , ni ¡ (si ¡1).

Then PI
1 \ S,ni ¡(si ¡1)

iD1, jD2 [aj
i C (t ¡ T), aj

i C Di C (t ¡ T)] (the hypersurface QC
after time U

2p
(t ¡ T) intersected with PI

1),7 when translated by a distance

T along all dimensions (@/@x j
i ) for i D 1, . . . , S , j D 2, . . . , ni ¡ (si ¡ 1),

i D j D 1, yields identically the hypersurface h(¢) D T in QC 0 . The shape of
QC 0 and the result of a dimensional collapse along any Ej

i for i D 1, . . . , S ,
j D 2, . . . , ni ¡ (si ¡1) on QC 0 is therefore completely speci�ed by the position

of QC in S
iD1(iLsi

ni
niLsi C1

ni
) and the nature of PI

1 \ S
iD1(iLsi

ni
niLsi C1

ni
).

We now assume that P1(¢) is unimodal with respect to all variables that,
at the given moment, correspond to effective spikes. Any coordinate curve
of an effective variable can then have only point intersections (at most two)

with PI
1 \ S

iD1(iLsi

ni
niLsi C1

ni
). Finally, if a spike, over its �nite lifetime, is

effective in the generation of one or more spikes, then there exists, trivially,
a last spike that it is effective on. We assume, without loss of generalization,
that x2

2 is one such spike, and x1
1 is the �nal spike it is effective on.

7 We use PI
1 and PS

1 to represent both the hypersurfaces in the phase-space and the
corresponding hypersurfaces in local coordinates. The context will determine which hy-
persurface is being referred to.
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In order for QC 0 to be curved in such a manner that at the subsequent death
of x2

2 (irrespective of any number of intermediate births and/or deaths of
spikes) it folds upon itself, there must exist a coordinate curve for x2

2 that
intersects PI

1 \ QC twice for at least one position of QC.8 Since P1(¢) is C1 and
P1(¢) |x2

2D0D P1(¢) |x2
2 D2p when all other variables are held constant, such co-

ordinate curves exist for all points on PS
1 \ S ,ni ¡(si ¡1)

iD1, jD2 (0, 2p ). Furthermore,

if |@P1/@x2
2 | at the intersection of any such coordinate curve with PS

1 , at the

falling phase of P1(¢), is not so large as to make S,ni ¡(si ¡1)
iD1, jD2 @P1/@x j

i < 0,9

then dP1(¢)/dt ¸ 0 is satis�ed by both intersections. Consequently, the coor-
dinate curve intersects twice with the hypersurface PI

1 \ S ,ni ¡(si ¡1)
iD1, jD2 (0, 2p ).

The only question that remains unresolved is whether both intersections

of such a coordinate curve lie on S
iD1(iLsi

ni
niLsi C1

ni
). While this question can

be settled only when the speci�c instantiation of P1(¢) is known, there are
two aspects of the system that have a signi�cant impact on the answer.
First, the closer T is to maxfP1(x) | x 2 S ,ni ¡(si¡1)

iD1, jD2 (0, 2p )g and the tighter
the peak of P1(¢) is, the greater the chances are that a coordinate curve exists

in S
iD1(iLsi

ni
niLsi C1

ni
) that intersects PI

1 twice. Second, the largest Di for which
a S

iD1(ni ¡ si)-dimensional hypercuboid can �t into the feasible section of
S
iD1(iLsi

ni
niLsi C1

ni
) is ( 2p

(ni ¡si)
¡ (ni ¡si ¡1)ri

(ni¡si)U
). Clearly, folding of QC 0 is more likely

when (ni ¡ si) is small, that is, when the system is sparsely active.

5 Local Cross-Section Analysis

Whereas we have just demonstrated that both expansion and contraction
occur locally around any trajectory, the cumulative effect of such events
remains obscure. We address this issue in this section with regard to the
dynamics of the system set up to model a typical neocortical column. The
solution is presented in stages. First, the problem is phrased in terms of a
quanti�able property of a particular matrix. A deterministic process that
constructs the matrix incrementally is described. Next, each step in the pro-
cess is reformulated as a stochastic event. The event is analyzed, and conclu-
sions are drawn regarding its effect on the matrix. Physiological parameters
of a typical neocortical column are then used to identify the qualitative
properties of trajectories in various sections of the phase-space.

8 x2
2 is by assumption not effective on any intermediate births of spikes. The two in-

tersections of the coordinate curve with QC 0 therefore remain on a coordinate curve of
x2

2 after such births. Any intermediate deaths of spikes have no impact on whether the
intersections in question remain on a coordinate curve.

9 This is generally the case for excitatory spikes in the cortex. The impact of such spikes
on the potential function is given by a steep rising phase and a relatively gentle falling
phase.
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5.1 The Deterministic Process. We consider the class of trajectories that
are not drawn into the trivial �xed point S

iD1
iLni

ni
(state of quiescence). We

demonstrated that if hDx2
1, . . ., Dxn1¡(s1 ¡1)

1 , . . ., Dx2
S , . . ., DxnS ¡(sS ¡1)

S iT and
hDx1

1, . . .,
Dxn1 ¡s1

1 , . . ., Dx1
S , . . ., DxnS ¡sS

S iT are, respectively, perturbations on a trajec-
tory before the birth and the death of a spike at neuron 1, and the perturba-
tions after the corresponding events are hDy1

1, . . ., Dyn1¡(s1 ¡1)
1 , . . .,

Dy2
S , . . ., DynS ¡(sS ¡1)

S iT and hDy2
1, . . ., Dyn1 ¡s1

1 , . . ., Dy1
S , . . ., DynS ¡sS

S iT , then

Dy1
1

Dy2
1

...
DynS ¡(sS ¡1)

S

D

1a2
1 . . . 1a

nS ¡(sS ¡1)
S

1 0 0
...

. . .
...

0 0 1

Dx2
1

...
DxnS ¡(sS ¡1)

S

(5.1)

and

Dy2
1

...
DynS ¡sS

S

D

0 1 0 0
...

...
. . .

...
0 0 0 1

Dx1
1

Dx2
1

...
DxnS ¡sS

S

. (5.2)

If we denote by Ak the matrix that corresponds to the event Yx(tk), by the
column vector Dx0 a perturbation just prior to the event Yx(t1), and by
the column vector Dxk the corresponding perturbation just past the event
Yx(tk), then Dxk D Ak ¤ Ak¡1 ¤ ¢ ¢ ¢ ¤ A1 ¤ Dx0. Alternatively, if Ak

0 denotes
the product Ak ¤ Ak¡1 ¤ ¢ ¢ ¢ ¤ A1, then Dxk D Ak

0 ¤ Dx0, where Ak
0 is de�ned

recursively as A0
0 D I (the identity matrix) and 8k ¸ 0, AkC1

0 D AkC1 ¤ Ak
0.

Given the nature of these matrices, we deduce that (1) if Yx(tkC1) corre-
sponds to the birth of a spike at neuron l, then AkC1

0 can be generated from

Ak
0 by identifying rows rj

i in Ak
0 that correspond to spikes that are effective

in the birth of the given spike, and introducing a new row i, j
la

j
i r

j
i at an

appropriate location into Ak
0, and (2) if Yx(tkC1) corresponds to the death

of a spike at neuron l, then AkC1
0 can be generated from Ak

0 by identifying
the row in Ak

0 that corresponds to the given spike, and deleting it from Ak
0.

Finally, since we shall be analyzing periodic orbits and trajectories, both the
initial and the �nal perturbations must lie on local cross-sections of Yx(t).

The velocity �eld being S ,ni¡(si ¡1)
iD1, jD2 (2p /U )Ej

i , the initial perturbation must

satisfy S,ni ¡(si ¡1)
iD1, jD2 Dx j

i D 0, and the �nal perturbation must be adjusted
along the orbit (each component must be adjusted by the same quantity)
to satisfy the same equation. In terms of matrix operations, this translates
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into B ¤ Ak
0 ¤ C, where B and C (assuming Ak

0 is an (m £ n) matrix) are the
(m ¡ 1 £ m) and (n £ n ¡ 1) matrices:

B D

1 ¡ 1
m ¡ 1

m . . . ¡ 1
m ¡ 1

m

¡ 1
m 1 ¡ 1

m . . . ¡ 1
m ¡ 1

m
...

...
. . .

...
...

¡ 1
m ¡ 1

m . . . 1 ¡ 1
m ¡ 1

m

, C D

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

¡1 ¡1 . . . ¡1

. (5.3)

If Yx(t) is aperiodic, Dx0
k D B ¤ Ak

0 ¤ C ¤ Dx0
0 for arbitrary value of k speci�es

the relation between an initial and a �nal perturbation, both of which lie on
transverse sections of the trajectory. The sensitivity of the trajectory to initial
conditions is then determined by kB ¤ Ak

0 ¤ Ck2.10 If limk!1 kB ¤ Ak
0 ¤ Ck is

unbounded (0), then the trajectory is sensitive (insensitive) to initial condi-
tions. If, instead, Yx(t) is periodic with Yx(t1) D Yx(tkC1) (a closed orbit with
period (tkC1 ¡ t1)), then Ak

0 is a square matrix and Dx0
k D B ¤ Ak

0 ¤ C ¤ Dx0
0

is a Poincar Âe map. The stability of the periodic orbit is then determined by
r (B ¤ Ak

0 ¤ C).11 If r (B ¤ Ak
0 ¤ C) > 1 (< 1), that is, limr!1 k(B ¤ Ak

0 ¤ C)rk is
unbounded (0), then the periodic orbit is unstable (stable).

It should be noted that limk!1 kB ¤ Ak
0 ¤ Ck and limr!1 k(B ¤ Ak

0 ¤ C)rk,
by virtue of the nature of their limiting values, yield identical results ir-
respective of the choice of the matrix norm. We use the Frobenius norm
(kAkF D Trace(AT ¤ A)) in the upcoming analysis.

5.1.1 The Revised Process. We present a revised process that constructs
a matrix QAk

0 that substantially simpli�es the computation of the spectral
properties of B ¤ Ak

0 ¤ C. We begin with QA0
0 D I ¡ 1

n (1), where (1) represents
the matrix all of whose elements are 1, and n D S

iD1(ni ¡ si) is the number
of components in the initial perturbation. We then proceed with the rest
of the process (generating QAkC1

0 from QAk
0) unaltered. The following lemma

relates the properties of QAk
0 to those of B ¤ Ak

0 ¤ C.

Lemma 1. If QAk
0 is an (n£n) squarematrix, then if limr!1 k(I¡ 1

n (1))¤( QAk
0)rk D

limr!1 k QA0
0¤ ( QAk

0)rk is unbounded (0), then limr!1 k(B¤Ak
0¤C)rk is unbounded

(0). If instead QAk
0 is an (m £ n) matrix, then if limk!1 k(I ¡ 1

m (1)) ¤ QAk
0k is

unbounded (0), limk!1 kB ¤ Ak
0 ¤ Ck is unbounded (0).

10 kAk2 is the spectral norm of the matrix A (the natural matrix norm induced by the
l2 norm), that is, kAk2 D supx 6D 0

kAxk2
kxk2

.
11 r (A) is the spectral radius of the matrix A, that is, r (A) D max1·i·n |li | where the

li’s are the eigenvalues of the matrix (Axi D lixi).
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Proof. QAk
0 is an (n £ n) square matrix: The sum of the elements of any row

in A0
0 D I is 1. Since 8l i, j

la
j
i D 1, it follows that 8k ¸ 0 the sum of the

elements of any row in Ak
0 remains 1. The sum of the elements of any row in

QA0
0 being 0, the same argument proves that 8k ¸ 0 the sum of the elements of

any row in QAk
0 is 0. Moreover, induction on k proves that 8k QAk

0 D Ak
0 ¡ 1

n (1).
We also note that C¤ B D I ¡ 1

n (1), QAk
0 ¤ 1

n (1) D (0), and 1
n (1)¤ 1

n (1) D 1
n (1),

and conclude via induction on r that (B ¤ Ak
0 ¤ C)r D B ¤ ( QAk

0)r ¤ C. B being
QA0

0 without the last row, B ¤ ( QAk
0)r is QA0

0 ¤ ( QAk
0)r without the last row. If

limr!1 k QA0
0 ¤ ( QAk

0)rk D 0, then limr!1 QA0
0 ¤ ( QAk

0)r D (0). Hence, limr!1 B ¤
( QAk

0)r D (0). If, on the other hand, limr!1 k QA0
0 ¤ ( QAk

0)rk is unbounded, then
so is limr!1 kB ¤ ( QAk

0)rk since QA0
0 ¤ ( QAk

0)r amounts to deleting the row mean
from each row of ( QAk

0)r. Finally, the product with C does not have an impact
on the unboundedness of the matrix because the sum of the elements of any
row in B ¤ ( QAk

0)r is 0.

QAk
0 is not constrained to be a square matrix: B is I ¡ 1

m (1) with the last row
eliminated. Moreover, since 8k ¸ 0 QAk

0 D Ak
0 ¡ 1

n (1), we have B¤ Ak
0 D B¤ QAk

0.
The remainder of the proof follows along the lines of the previous case.

5.2 The Stochastic Process. We present a stochastic counterpart for the
above process. The process is begun with an (n £ n) matrix A, each of
whose n rows are drawn independently from a uniform distribution on
[¡0.5, 0.5]n. Therefore, if v1, v2, . . . , vn denote the n rows of the matrix, then
E(vi) D h0, 0, . . . , 0i, where E(¢) denotes the expected value. Next, the row
mean Nv D (1/n) n

iD1 vi is deducted from each row of A. This yields QA0
0 ¤ A,

which we set to A0
0. It is clear that E(vi) in A0

0 remains h0, 0, . . . , 0i. Let Ak
0

for some k be an (m £ n) matrix where m is a large but �nite integer.
For the birth of a spike, AkC1

0 is generated from Ak
0 as follows:

1. Randomly sample the space of row vectors in Ak
0 and choose p rows,

v1, v2, . . . , vp, where p is a random number chosen from a prede�ned
range [Plow, Phigh]. m being large, it can safely be assumed that the rows
are chosen with replacement even if they are not.

2. Choose p i.i.d. random variables X1, X2, . . . , Xp from a given indepen-
dent distribution. Let x1, x2, . . . , xp be the derived random variables
xi D Xi/ p

iD1 Xi.

3. Construct vnew D p
iD1 xivi, and insert the row at a random location

into Ak
0 to generate AkC1

0 .

For the death of a spike, AkC1
0 is generated from Ak

0 as follows:

1. Randomly choose a row from the space of row vectors in Ak
0.
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2. Delete the row from Ak
0 to generate AkC1

0 .

In the case of a system set up to model a typical neocortical column,
the deterministic process described earlier can reasonably be viewed as the
stochastic process described above. First, the connectivity between neurons
within a column, while having evolved to achieve a speci�c function, has
been experimentally ascertained to �t a uniform distribution (Schüz, 1992).
Therefore, when neurons in the system are spiking at comparable rates, one
can reasonably assume that each spike, during its �nite lifetime, is equally
likely to be effective in the birth of a new spike somewhere in the system.
Second, whereas vi speci�es the sensitivity of the corresponding spike to
the initial set of spikes, xi speci�es the sensitivity of the spike that just orig-
inated to the spike in question. Clearly the two are causally independent.
Third, whereas spikes that are effective in the birth of a new spike are related
spatially in the system, this does not translate into any necessary relation
among the elements of the corresponding rows. Finally, the location of af-
ferent synapses on the collaterals of neurons in a column has been shown
to �t a statistical distribution (Braitenberg & Schüz, 1991). Since X1, . . . , Xp

(corresponding to the various @P/@x j
i ’s) depend on the positions of the cor-

responding spikes and the nature of P, they can reasonably be approximated
by i.i.d. random variables.

If Ak
0 D QAk

0 ¤ A, and AkC1
0 is generated as above, then AkC1

0 D QAkC1
0 ¤ A.

On the one hand, if a row is deleted from Ak
0 to generate AkC1

0 , the act corre-
sponds to the deletion of the corresponding row from QAk

0 to generate QAkC1
0 .

On the other hand, if v1, v2, . . . , vp are the rows chosen from Ak
0 to con-

struct vnew, and u1, u2, . . . , up are the corresponding rows in QAk
0, since vi D

hui .c1, ui.c2, . . . , ui.cni (where c1, . . . , cn are the columns of A),
p
iD1 xivi D

h( xiui).c1, ( xiui).c2, . . . , ( xiui).cni. Therefore, AkC1
0 D QAkC1

0 ¤ A.
The following lemma describes the statistical properties of the rows of

the matrix past the act of addition and/or deletion of a row. V(¢) denotes
the variance of the rows, that is, V(vi) D E((vi ¡ m ).(vi ¡ m )), and C(¢)
denotes the covariance between rows, that is, C(vi, vj) D E((vi ¡ m ).(vj ¡
m ))i 6D j.

Lemma 2. Let Ek(vi) D m , Vk(vi) D s2, and Ck(vi, vj) D j 2 after the kth step
(the result being the (m £ n) matrix Ak

0).

i. If the (k C 1)th step involves the deletion of a row (vdel), then EkC1(vi) D m ,
and VkC1(vi) ¡ CkC1(vi, vj) D (s2 ¡j 2).

ii. If instead, the (k C 1)th step involves the addition of a row (vnew), then
EkC1(vi) D m . Moreover, if pE(x2

i ) D (1 C D) for some D 2 R (D > ¡1
necessarily), then VkC1(vi) ¡ CkC1(vi , vj) D (1 C D(m¡1)¡2

m(mC1) )(s2 ¡ j 2).
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Proof.
i. Since vdel is chosen randomly from the population of rows in the matrix,

we have E(vdel) D Ek(vi ) D m , V(vdel) D Vk(vi) D s2, and C(vdel, vi) D
Ck(vi, vj) D j 2. Consequently, EkC1(vi) D m and VkC1(vi) ¡ CkC1(vi, vj) D
(s2 ¡ j 2).

Before considering ii, we note that for the derived random variables
x1, x2, . . . , xp, (a) 8 i, pE(xi) D 1, and (b) 8 i, j, i 6D j, pE(x2

i ) C p(p¡1)E(xixj ) D
1.
(a) follows from

p
iD1 E(Xi / Xi) D 1, and 8i, j E(Xi/ Xi ) D E(Xj/ Xj)

because of the i.i.d. nature of the Xi’s.
(b) follows from p

iD1 E(X2
i / ( Xi)2) C p,p

iD1, jD1, i 6D j E((XiXj)/( Xi)2) D 1,

and that, the Xi’s being i.i.d., 8i, j E(X2
i /( Xi )2) D E(X2

j / ( Xj)2) and

8i, j, i 6D j E((XiXj)/ ( Xi)2) yields the same result irrespective of the values
of i and j.

ii. E(vnew) D Ek( p
iD1 xivi) D p

iD1 Ek(xivi ). Since the xi’s are chosen in-
dependent of the vi’s, E(vnew) D p

iD1 E(xi)Ek(vi) D p
iD1

1
pEk(vi) D m . More-

over, since E(vi ) D h0, 0, . . . , 0i for the initial population of row vectors, we
can now conclude that 8k, Ek(vi) D h0, 0, . . . , 0i.

Since m D h0, 0, . . ., 0i, V(vnew) D E(vnew.vnew) D Ek(
p
iD1xivi.

p
iD1xivi ) D

Ek(
p
iD1x2

i (vi .vi))CEk( p,p
iD1, jD1,i 6D jxixj(vi.vj)). Since the xi’sare chosen indepen-

dent of the vi’s, V(vnew) D E(x2
i )Ek( p

iD1vi .vi) C E(xixj)Ek(
p,p
iD1, jD1, i 6D jvi.vj) D

1CD
p Ek(

p
iD1vi.vi)C ¡D

p(p¡1) Ek(
p,p
iD1, jD1, i 6D jvi .vj) D (1CD)s2¡D( 1

ms2 C m¡1
m j 2) D

s2 CDm¡1
m (s2¡j 2).

Likewise, C(vnew, vi) D E(vnew.vi ) D p( 1
m ( 1

p s2) C m¡1
m ( 1

pj 2)) D j 2 C 1
m (s2 ¡

j 2). The two results give rise to the recurrence relations: VkC1 D Vk C
D(m¡1)
m(mC1) (Vk ¡ Ck) and CkC1 D Ck C 2

m(mC1) (Vk ¡ Ck). Therefore, VkC1 ¡ CkC1 D
(1 C D(m¡1)¡2

m(mC1) )(Vk ¡ Ck).
Finally, in the base case let E(vi .vi) D s2

0 for A. E(vi.vj)i 6D j D 0 since vi
is chosen independent of vj, and E(vi) D m D h0, 0, . . . , 0i. In the case of
A0

0 D QA0
0 ¤ A, E(vi.vi) D (1 ¡ 1

n )2s2
0 C ( n¡1

n2 )s2
0 D (1 ¡ 1

n )s2
0 . E(vi.vj)i 6D j D

¡2
n (1 ¡ 1

n )s2
0 C ( n¡2

n2 )s2
0 D ¡ 1

n s2
0 . Therefore, V0 ¡ C0 D s2

0 .

Since we have assumed that the trajectory is not drawn into the trivial
�xed point, if Ak

0 is an (mk £ n) matrix, then mk 2 [Mhigh, Mlow] where
Mlow À 0. Moreover, E(kAk

0kF) D
p

mkVk. For the sake of brevity, we shall
henceforth refer to Vk(vi) and Ck(vi, vj) for rows in Ak

0 as V(Ak
0) and C(Ak

0),
respectively.

The following theorem identi�es the local properties of trajectories based
on the above lemma. In all cases, we assume that the trajectory is not drawn
into the trivial�xedpoint S

iD1
iLni

ni
. Itmight be claimed that without external

input sustaining the dynamics of the system, an aperiodic trajectory that is
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not drawn into the �xed point is not realizable. We therefore consider two
cases: one with and one without external input. For the case with external
input, the connectivity of the neurons in the system, whether they are input
neurons or interneurons, is assumed to be uniform. The number of spikes
generated within the system for any given trajectory Yx(t) since time t1
is denoted by I (t), and the number of external spikes introduced into the
system since time t1 is denoted by E(t).

Theorem 1 (Sensitivity). Let Yx(t) be a trajectory that is not drawn into the
trivial �xed point.

i. Given a system receiving no external input, if Yx(t) is aperiodic, then if
D > 2

Mlow
(D < 2

Mhigh
), Yx(t) is, with probability 1, sensitive (insensitive)

to initial conditions.

ii. Given a system sustained by external input, if Yx(t) is aperiodic, and con-
stants º, c satisfy 8t |E(t) ¡ºI(t)| < c, then if D > 2

Mlow
(1 C º C c

Mlow
)2 C

2(º C c
Mlow

)(1 C º C c
Mlow

), Yx(t) is, with probability 1, sensitive to initial
conditions.

iii. Given a system receiving no external input, if Yx(t) is periodic such that
Yx(t1) D Yx(tkC1), then if D > 2

Mlow
(D < 2

Mhigh
), Yx(t) is, with probability

1, unstable (stable).

Proof.
i. Of the k steps in the process if kb involve birth of spikes and kd involve

death of spikes then kb C kd D k, and |kb ¡ kd | is bounded. Therefore, k ! 1
implies kb ! 1 and kd ! 1.

If D > 0, then (1 C DMhigh ¡2
M2

low

)kb s2
0 > V(Ak

0) ¡ C(Ak
0) > (1 C DMlow ¡2

M2
high

)kb s2
0 .

Simple algebra shows that V((I ¡ 1
m (1)) ¤ Ak

0) D (1 ¡ 1
m )(V(Ak

0) ¡ C(Ak
0)). It

therefore follows that if D < 2
Mhigh

, then limk!1 E(k(I ¡ 1
m (1)) ¤ Ak

0kF) D 0,

and since kAkF ¸ 0 for any A, Pr(limk!1 k(I ¡ 1
m (1)) ¤ Ak

0kF > 0) D 0. If, on
the other hand, D > 2

Mlow
, then limk!1 E(k(I ¡ 1

m (1)) ¤ Ak
0kF) is unbounded.

Moreover, Pr(limk!1 k(I ¡ 1
m (1)) ¤ Ak

0kF is bounded) D 0.12

Since (I ¡ 1
m (1)) ¤ Ak

0 D (I ¡ 1
m (1)) ¤ QAk

0 ¤ A, and A is, with probability 1,

a bounded rank n matrix, limk!1 k(I ¡ 1
m (1)) ¤ Ak

0k D 0 (unbounded)
a.s()

limk!1 k(I ¡ 1
m (1)) ¤ QAk

0k D 0 (unbounded). The result then follows from
lemma 1.

ii. Since 8t |E(t) ¡ºI(t)| < c, if there are m live internal spikes at any given
time, the number of live external spikes at the same time lies in the range

12 For it to be bounded, an in�nite subsequence of events, each of which occurs with
probability < 1, must take place.
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[ºm ¡ c, ºm C c]. If p live spikes are randomly chosen from the system and
q of those are internal spikes, then E(q) 2 [ pm

(1Cº)mCc , pm
(1Cº)m¡c ].

We now modify the stochastic process as follows. The process is begun
with A0

0 D A. If the kth step involves the introductionofan external spike into
the system, Ak

0 is set to Ak¡1
0 . If the kth step involves the birth of an internal

spike, Ak
0 is generated from Ak¡1

0 by randomly choosing q rows from Ak¡1
0 ,

choosing random variables x1, x2, . . . , xp as described earlier, constructing
vnew D q

iD1 xivi , and inserting it at a random location into Ak¡1
0 .

Clearly, as in case i, 8k Ek(vi) D h0, 0, . . . , 0i. Simple algebra also demon-
strates that at the birth of a spike Vk D ( m

mC1 C (1CD)q
(mC1)p ¡ Dq(q¡1)

m(mC1)p(p¡1) )Vk¡1 ¡
D(m¡1)q(q¡1)
m(mC1)p(p¡1) Ck¡1, and Ck D 2q

m(mC1)pVk¡1 C ( m¡1
mC1 C 2(m¡1)q

m(mC1)p )Ck¡1. Noting
that m ¸ p ¸ q and assuming that D > 0, we arrive at Vk ¡ Ck ¸ (1 C
D(m¡1)q(q¡1)¡2(mp¡mqCq)(p¡1)

m(mC1)p(p¡1) )(Vk¡1 ¡ Ck¡1).

Therefore, ifD > 2
Mlow

(1CºC c
Mlow

)2 C2(ºC c
Mlow

)(1CºC c
Mlow

) it follows that
Vk ¡ Ck > Vk¡1 ¡ Ck¡1. Finally, arguments identical to those in lemma 1
yield limk!1 k(I ¡ 1

m (1)) ¤ Ak
0 ¤ Akis unbounded

a.sH) limk!1 kB ¤ Ak
0 ¤ Ck

is unbounded.
iii. We modify the stochastic process so as to construct the new matrix

( QAk
0)r ¤ A for arbitrary r. As in case i, the process is begun with A0

0 D QA0
0 ¤ A.

Each step in the process is then carried out in the exact same manner as in
case i. However, after every k steps, the row mean of the matrix is deducted
from each row, that is, the row mean is deducted from each row of Akr

0 , for
r D 1, 2, . . . before the next step is performed.

Deletion of the row mean at the end of the �rst passage around the
periodic orbit amounts to the operation QA0

0 ¤ Ak
0 D QA0

0 ¤ QAk
0 ¤ A. It follows

from a previous discussion that every subsequent addition or deletion of
rows can be considered as being performed on QA0

0. Therefore, just prior to
the deletion of the row mean after the rth passage around the periodic orbit,
we have ( QAk

0)r ¤ A.
SinceV( QA0

0¤ QAkr
0 ¤A) D (1¡ 1

n )(V( QAkr
0 ¤A)¡C( QAkr

0 ¤A)) and C( QA0
0¤ QAkr

0 ¤A) D
¡ 1

n (V( QAkr
0 ¤ A) ¡ C( QAkr

0 ¤ A)), we have V( QA0
0 ¤ QAkr

0 ¤ A) ¡ C( QA0
0 ¤ QAkr

0 ¤ A) D
V( QAkr

0 ¤ A) ¡ C( QAkr
0 ¤ A). The rest of the argument follows along the lines of

case i.

Case iii is based on the assumption that the vi’s remain independent
of the xi’s in spite of the xi’s being identical each time a speci�c event is
encountered on the periodicorbit as it is traversed repeatedly by the process.
We demonstrate that the assumption is reasonable.

Figure 1 depicts a single traversal of a periodic orbit in a three-neuron
system. The four spikes, A, B, C, and D, in region H1 constitute the initial
set of spikes (therefore, n D 4). Nodes in region N, also labeled A, B, C,
and D, represent the deletion of the row mean at the end of each passage
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Figure 1: Graphical depiction of the construction of ( QAk
0)

n.

around the periodic orbit. The periodic orbit is extended to the right (H2)
to mark the repetition of the spikes A, B, C, and D. The dotted arrows relate
which spikes are effective in the birth of any given spike. We now regard
the diagram as a directed graph with the additional constraint that nodes in
N be identi�ed with corresponding spikes in H2, that is, they be regarded
as one and the same. Edges from nodes in N/H2 to corresponding spikes
in H1 are assigned weights (1 ¡ 1

n ), and to other spikes in H1 are assigned
weights ¡ 1

n . Each dotted edge is assigned weight xi.
Let vi correspond to any given spike i in the periodic orbit. The n (D 4)

elements of the row vi (sensitivity to A, B, C, and D) after the rth passage
around the periodicorbit can then be computed by identifying all paths from
A in N/H2 (respectively, B, C, and D for the three remaining elements) to
spike i such that each path crosses N/H2 r times before terminating at spike
i, and setting vi D paths e1e2 ...eq

w(e1)w(e2) . . . w(eq), where e1 . . . eq are the
edges in a path and w(ej)’s their weights.

Given any spike vi in the periodic orbit, a spike vj that it is effective on,
and the correspondingeffectiveness xi, contributions to vi from paths that do
not pass through vj are independent of xi.13 Assuming that there are approx-
imately n live spikes at any time,14 the proportion of such paths is approxi-
mately (1¡ 1

n )r. The remaining paths can be partitioned into sets based on the
number of times l D 1, . . . , r, that each path passes through vj . The assump-
tion of independence is unbiased for each such set because the correspond-
ing terms satisfy E(xi)

p, ...,p
j1 D1, ..., jl D1 E(xj1 . . . xjl ) D p,...,p

j1D1,..., jl D1 E(xixj1 . . . xjl ).

5.3 Qualitative Dynamics of Columns in the Neocortex. The parame-
ters of Pk(¢), for any neuron k, can be partitioned into two sets: the set of

13 For example, in Figure 1 contributions to v1 from paths that do not pass through v2
are independent of x.

14 Given that there are ¼ 105 neurons in a typical column, the spiking rate of a typical
neuron is ¼ 40/sec, and that the effects of a PSP lasts for ¼ 150 msec, n ¼ 6 £ 105.
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afferent spikes into neuron k, and the set of spikes generated by neuron k.
Under normal conditions, the spiking rate of a typical neuron in the neo-
cortex is approximately 40 per second. The interspike intervals being large,
@Pk/@x j

k |Pk (¢)DT is negligible. Consequently, at the birth of a spike at neuron

k, ka
j
k is negligible for all j D 1, . . . , nk.

Approximately80% of all neurons in the neocortex are spiny (physiolog-
ical experiments indicate that they are predominantly excitatory), and the
rest are smooth (predominantly inhibitory) (Peters & Proskauer, 1980;Peters
& Regidor, 1981; Braitenberg & Schüz, 1991; Shepherd, 1998). It therefore
follows that the majority of the spikes in the system at any given time are
excitatory. The impact of such spikes on P(¢) of a typical neuron is given by
a steep rising phase followed by a relatively gentle and prolonged falling
phase (Bernander, Douglas, & Koch, 1992). Consequently, the typical distri-

bution of the ka
j
i ’sat the birth of a spike at any neuron k comprisesa few large

positive elements and numerous small negative elements. We determined
through numerical calculations based on mean spike rate, connectivity, and
potential function data from the models presented in the original article that
E( i, j(

ka
j
i )2) > 1 under such conditions, and that E( i, j(

ka
j
i )2) rises as the

number of small negative elements increase. The resultant values were in
fact quite large and met all relevant conditions (from cases i, ii, and iii) in
theorem 1.

A neuronal system is considered to be operating under seizure-like con-
ditions when most of the neurons in the system spike at intervals approach-
ing the relative refractory period. Under such conditions, the �rst spike
in the second set progressively assumes a signi�cant role in the determi-
nation of the time at which the neuron spikes next. Stated formally, if the
most recent spike at neuron k is x1

k , then at the subsequent birth of a spike

at neuron k, ka1
k D 1 ¡ 2 and the remainder of the ka

j
i ’s (that sum to 2 )

satisfy an appropriately scaled version of the distribution presented in the
previous paragraph. As the system progressively approaches seizure-like
conditions, 2 drops from 1 to 0. Simple algebra shows that when 2 is small,
E( i, j(

ka
j
i )2) ¼ 1 ¡ 22 .

In summary, as one proceeds from the region of the phase-space associ-
ated with low neuronal activity (2 ¼ 1) to the region associated with high
neuronal activity (2 ¼ 0), periodic orbits go from being almost surely unsta-
ble (trajectories almost surely sensitive to initial conditions), to almost surely
neutral, to almost surely stable, and back to being almost surely neutral.

We also found that under conditions of sparse activity, E( i, j(
ka

j
i )2) < 1

if the distribution of the @Pk/@x j
i ’s is inverted, a state that can be realized

by setting the impact of an excitatory (inhibitory) spike to have a gentle
and prolonged rising (falling) phase followed by a steep and short falling
(rising) phase. Piecewise linear functions were used to fashion the potential
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Figure 2: Dynamics of two systems of neurons that differ in terms of the impact
of spikes on Pi(¢).

functions in the models presented in the original article, and simulation
experiments were conducted. The results were consistent with the asser-
tions of theorem 1. Figure 2 presents the result of one such experiment. The
columns represent two systems comprising 1000 neurons each, identical in
all respects save the potential functions of the neurons. The �rst row depicts
the effect of a typical excitatory spike on the potential function of a neuron,
the second normalized time-series data pertaining to the total number of
live spikes in each system, and the third results of a power spectrum anal-
ysis on each time series. While in the �rst case the dynamics is chaotic, in
the second it is at best quasi-periodic.

6 Global Analysis

In this section, we demonstrate how all basic sets, complex sets, attractors,
and their realms of attraction can be isolated, given the exact instantiations
of PI

i for i D 1, . . . , S .
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We begin by introducing an equivalence relation on S
iD1

iLni n S
iD1 PI

i .

We de�ne p » q if p, q 2 S
iD1(iLsi

ni
niLsi C1

ni
)n S

iD1 PI
i for arbitrary but �xed

values of the si’s, and 9Yx(t) such that p D Yx(t1), q D Yx(t2), and 8t 2
[min(t1, t2), max(t1, t2)], Yx(t) 2 S

iD1(iLsi

ni
niLsi C1

ni
). We de�ne the equiva-

lence class [p] D fq | q » pg, and a mapping H: ( S
iD1

iLni n S
iD1 PI

i )/ »
! ( S

iD1
iLni n S

iD1 PI
i )/ » as H([p]) D [q] if there exists a Yx(t) such that

two of its successive segments (as de�ned in section 3) satisfy fYx(t) | tj <
t < tjC1g µ[p] and fYx(t) | tjC1 < t < tjC2g µ[q]. We operate hereafter on
( S

iD1
iLni n S

iD1 PI
i )/ »,15 and forsake Y(x, t) in favor of H.

We note immediately that H is only a piecewise continuous function.
The analysis in the previous section was restricted to Yx(t)’s that are locally
continuous in x for the simple reason that all other Yx(t)’s are, trivially,
sensitive to initial conditions. The following de�nitions are to be regarded
in the light of the fact that H is discontinuous.

[p] is labeled a wandering point if 9U an open neighborhood of [p], and
9nmin ¸ 0 such that 8n > nmin, Hn(U)\U D ;. [p] is labeled a nonwandering
point if 8U open neighborhood of [p], and 8nmin ¸ 0, 9n > nmin such
that Hn(U) \ U 6D ;. L ½ ( S

iD1
iLni n

S
iD1 PI

i )/ » is labeled a basic set if
8[p], [q] 2 L , 8U, V open neighborhoods of [p] and [q] respectively, and
8nmin ¸ 0, 9n1, n2, n3, n4 > nmin such that Hn1 (U) \ U 6D ;, Hn2 (U) \ V 6D ;,
Hn3 (V) \ V 6D ;, and Hn4 (V) \ U 6D ;, and furthermore, L is a maximal set
with regard to this property.

It follows from the de�nition that the set of all nonwandering points,
V, is closed, and that any basic set L is a closed subset of V. Membership
in the same basic set, however, falls short of an equivalence relation. The
relation is re�exive since 8U, V open neighborhoods of [p], U \ V is an open
neighborhood of [p], symmetric by de�nition, but not transitive since H is
not a homeomorphism. Each nonwandering point is therefore a member of
one or more basic sets.

This feature signi�cantly affects the characterization of an attractor. Two
basic sets L and L 0 are considered coupled if either L \ L 0 6D ; or there
exists a �nite or countably in�nite sequence of basic sets L1, . . . , L k, . . .

such that 8i L i and L iC1 are coupled, and in addition, L \ k/1
iD1 L i 6D ; and

L 0 \ k/1
iD1 L i 6D ;. We note immediately that this is an equivalence relation,

and it therefore partitions the set of all basic sets into equivalence classes.
More signi�cant, however, is the fact that the relation partitions V into
disjoint sets. This follows from the observation that if, on the contrary, [p]
belongs to two distinct classes, then there exist basic sets L and L 0 , members

15 We regard iD1
iLnin iD1 PI

i with the topology de�ned in section 2, and assign

(
iD 1

iLni n iD 1 PI
i )/ » the corresponding quotient topology.
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of the respective classes, that are coupled. Each such disjoint subset of V is
labeled a complex set.

We demonstrate that any complex set, J , is a closed subset of V. If [p] is a
limit point of J , every open neighborhood of [p] contains a nonwandering
point. [p] is therefore a nonwandering point. Moreover, 9L 1, . . . , L k, . . . ½ J

such that [p] 2 1
iD1 L i. Consequently, if [p] 2 L , then L ½ J , and therefore

[p] 2 J . J is therefore closed. Finally, a complex set J is labeled an attractor
if 9U such that J ½ int(U) the interior of U, 8J

0 6D J U \ J
0 D ;, and U

is a trapping region, that is, H (U) µU. The discontinuity of H, in essence,
sanctions the existence of anisotropic16 attractors.

A procedure to locate all nonwandering points, basic sets, complex sets,
and attractors in ( S

iD1
iLni n

S
iD1 PI

i )/ » is presented in Figure 3. It begins

with the initial partition of the phase-space f S
iD1(iLsi

ni
niLsi C1

ni
)n S

iD1 PI
i / »

| 0 · si · niI i D 1, . . . , Sg, and generates a succession of re�nements.
The partition operation is well de�ned since any P partitioned satis�es
H (P ) \ P D ;.

We label node N j
a from stage j a descendant of node N k

b from stage k if
j > k and the corresponding sets in the partition of the phase-space satisfy
P j

a ½ P k
b . Let N j

1N j
2 . . . N j

n be a path in the graph at stage j. We de�ne iP

recursively as: 1P D P j
n and iC1P D H¡1(iP) \ P j

n¡i. We label N j
1N j

2 . . . N j
n a

false path of primary length p if 8i D 1, . . . , p iP 6D ; and pC1P D ;. We now
make certain observations about the procedure.

If at stage j there is a trajectory in the phase-space that has consecutive
segments in the sets P j

1, P j
2, . . . , P j

n, then the corresponding graph contains

the path N j
1N j

2 . . . N j
n. In other words, the trajectories in the phase-space are

a subset of the paths in the graph at all stages.
If at stage j the graph does not contain the path N j

1N j
2 . . . N j

n, then at

stage (j C 1) the graph does not contain the path N j C 1
i1

N j C 1
i2

. . . N j C 1
in for

any descendant N j C 1
ik of N j

k , k D 1, . . . , n.

If at stage j, N j
1N j

2 . . . N j
n is a false path of primary length p, then at

stage (j C p ¡ 1) no path N j C p ¡ 1
i1

N j C p ¡ 1
i2

. . . N j C p ¡ 1
in exists for any de-

scendant N j C p ¡ 1
ik of N j

k , k D 1, . . . , n. This follows from the observations:

(i) (base case) If at stage j, N j
1N j

2 . . . N j
n is a false path of primary length

2, then at stage (j C 1) no path N j C 1
i1

N j C 1
i2

. . . N j C 1
in exists for any de-

scendant N j C 1
ik of N j

k , k D 1, . . . , n, and (ii) (inductive case) If at stage j,

N j
1N j

2 . . . N j
n is a false path of primary length p, then at stage (j C 1) if a path

16 A trapped trajectory does not necessarily visit every basic set in the complex set.
Moreover, the sequence of basic sets visited by any such trajectory depends on its point
of entry.
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Figure 3: A procedure to locate all nonwandering points, basic sets, complex
sets, and attractors in the phase-space.

N j C 1
i1

N j C 1
i2

. . . N j C 1
in exists for any descendant N j C 1

ik of N j
k , k D 1, . . . , n,

then the path N j C 1
i1

N j C 1
i2

. . . N j C 1
in¡1

is a false path of primary length (p ¡ 1).

These follow from the fact that at stage ( j C 1), P j
n¡1 is partitioned such that

9 P jC1
i1n¡1

, . . . , P jC1
iqn¡1

that satisfy q
kD1 P jC1

ikn¡1
D H¡1(P j

n) \ P j
n¡1.

Given any stage j, we refer to a set of nodes hN j
k i D fN j

il
k

| l D 1, . . . , mj
kg as

a cluster if
mj

k
lD1 P j

il
k

6D ;. We de�ne a relation Recurrent(¢, ¢) between clusters
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as Recurrent(hN j
a i, hN j

b i) if and only if 9la, l0a 2 f1, . . . , m j
ag and 9lb, l0b 2

f1, . . . , m j
bg such that paths N j

ilaa
N j

e1 . . . N j
ep

N j

i
lb
b

and N j

i
l0
b
b

N j
f1

. . . N j
fq
N j

i
l0a
a

exist in

the graph where N j
h lies on a cycle for some h 2 filaa , e1, . . . , ep, ilbb g and some

h 2 fil
0
b
b , f1, . . . , fq, il

0
a
a g. The following theorem identi�es all nonwandering

points in ( S
iD1

iLni n S
iD1 PI

i )/ » with the exception of the trivial �xed point
at S

iD1
iLni

ni
. We assign the node corresponding to S

iD1
iLni

ni
nonwandering

status at the start of the process.

Theorem 2. Let fhN j
k i | k D 1, . . . , njg be the set of all clusters at stage j such

that 8k D 1, . . . , nj, Recurrent(hN j
k i, hN j

k i). Then the set of all nonwandering

points is given by V D 1
jD0(

nj ,m
j
k

kD1,lD1 P j
il
k

).

Proof. [p] is a nonwandering point ) [p] 2 1
jD0(

nj ,m
j
k

kD1,lD1 P j
il
k

). Let [p] 2
S
iD1(iLsi

ni
niLsi C1

ni
)n S

iD1 PI
i / » for arbitrary but �xed values of the si’s. We

assume, without loss of generalization, that [p] 2 P j
1 at stage j. If [p] lies

in the interior of P j
1, an open neighborhood U of [p] can be chosen such

that U ½ P j
1. There is then a trajectory through P j

1 that returns to it. The

unitary cluster fN j
1g then satis�es the criterion. If, on the other hand, [p]

lies on the boundary of P j
1, there are only �nitely many sets P j

1, . . . , P j
r in

S
iD1(iLsi

ni
niLsi C1

ni
)n S

iD1 PI
i / » such that 8l D 1, . . . , r, [p] 2 P j

l .
17 We choose

U such that U ½ r
lD1 P j

l . Then, since Hn(U) \ U 6D ; for an in�nite se-
quence of n’s, 9l1, l2 2 f1, . . . , rg, not necessarily distinct, such that there

are arbitrarily long trajectories from P j
l1

to P j
l2

. Since the graph has a �nite

number of nodes at any stage, there exists a path from N j
l1

to N j
l2

such that a

node on the path lies on a cycle. The cluster fN j
1 , . . . , N j

r g then satis�es the
criterion.

[p] is a wandering point ) [p] /2 1
jD0(

nj ,m
j
k

kD1, lD1 P j
il
k

). As above, we assume

[p] 2 P j
1 at stage j. Since at each stage the diameter18 of each set in the

partition drops by a factor of two, given any open neighborhood U of [p],

there exists a stage j where (P j
1 ½ U) ^ 8l(P j

1 \ P j
l 6D ; ) P j

l ½ U). Let

17 Given the nature of the topology, [p] /2 P for any P in the partition that does not lie

in iD 1(iL
si
ni niL

si C1
ni

)n iD1 PI
i / ».

18 max8[p], [q] (d([p], [q])) where d(¢, ¢) is the distance between [p] and [q] based on the
Riemannian metric.
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P j
1 \ P j

l 6D ; for l D 1, . . . , r. Then any cluster that contains N j
1 can, at best,

contain N j
l for some l 2 f1, . . . , rg. Given any such cluster, if 9l1, l2 such that

there is a path from N j
l1

to N j
l2

through a cycle, then the path is a false path

since r
lD1 P j

l ½ U. There is then a stage (j C p) wherein all descendants of

N j
l1

and N j
l2

do not lie on the path.

Corollary 1. Let fhN j
k i | k D 1, . . . , njg for stages j D 1, 2, . . . be successive sets

such that (i) each such set comprises of a maximal set of clusters satisfying 8k1, k2 2

f1, . . . , njg, Recurrent(hN j
k1

i, hN j
k2

i), and (ii) 8 j
nj ,m

j
k

kD1, lD1 P j
il
k

µ nj¡1 ,mj¡1
k

kD1, lD1 P j¡1
il
k

.

Then 1
jD0(

nj ,m
j
k

kD1, lD1 P j
il
k

) is a basic set. Conversely, every basic set is representable

as such.

Proof. If [p]1, [p]2 2 1
jD0(

nj ,m
j
k

kD1,lD1 P j
ilk

) for any sequence of sets satisfying

criteria i and ii, then based on arguments similar to those in the previous
theorem, we conclude that there exists a basic set L such that [p]1, [p]2 2

L . Moreover, L being maximal, 1
jD0(

nj ,m
j
k

kD1,lD1 P j
ilk

) µL . Finally, if 9 [p] 2

L such that [p] /2 1
jD0(

nj,m
j
k

kD1,lD1 P j
il
k

), then fhN j0
k i | k D 1, . . . , nj0 g is not

maximal for some stage j0.
Conversely, if L is a basic set, a sequence of sets satisfying criteria i and

ii can be constructed such that 8[p] 2 L , and for every stage j, [p] 2 hN j
k i

for some hN j
k i in the set. This is based on (a) if fhN j

k i | k D 1, . . . , njg for

some stage j satis�es criterion i, then the minimal set fhN j¡1
k0 i | 8N j

il
k

2

hN j
k i 9N j¡1

il
k0

2 hN j¡1
k0 i P j

il
k

½ P j¡1
il
k0

g is Recurrent for all pairs of member

clusters, and can therefore be expanded to satisfy criteria i and ii, (b) if
fhN j0

k i | k D 1, . . . , nj0g at some stage j0 is a set of clusters such that 8[p] 2
L 9hN j0

k i where [p] 2 int(hN j0
k i) and vice versa, then there are only �nitely

many ways it can be expanded to satisfy criterion i, and (c) there is then
a stage (j0 C p) wherein all points in these additional clusters do not lie in

j0 Cp
jD0 (

nj ,m
j
k

kD1, lD1 P j
il
k

). In other words, an in�nite sequence of sets satisfying

criteria i and ii can be constructed such that L µ 1
jD0(

nj ,m
j
k

kD1,lD1 P j
il
k

). Finally,

if 9[p] 2 1
jD0(

nj ,m
j
k

kD1, lD1 P j
ilk

) such that [p] /2 L , then arguments similar to

those in the previous theorem reveal a contradiction.
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Corollary 2. Let fhN j
k i | k D 1, . . . , njg for stages j D 1, 2, . . . be successive sets

such that (i) each such set comprises an equivalence class of clusters generated by

the transitive closure of Recurrent(¢, ¢) on the set fhN j
k i | Recurrent(hN j

k i, hN j
k i)g,

and (ii) 8 j
nj ,m

j
k

kD1, lD1 P j
ilk
µ nj¡1 ,mj¡1

k
kD1, lD1 P j¡1

ilk
. Then 1

jD0(
nj ,m

j
k

kD1, lD1 P j
ilk

) is a complex

set. Conversely, every complex set is representable as such.

Proof. L and L 0 are coupled if and only if a sequence of basic sets L , L 1,
L2, . . . , L 0 exists such that each consecutive pair of basic sets shares one or
more clusters at every stage. This follows from the observation that given
any L and its corresponding sequence fhN j

k i | k D 1, . . . , njg for j D 1, 2, . . .,

if [p] 2 L , then for every stage j there exists a hN j
k0

i that satis�es [p] 2
int(hN j

k0
i), and hN j

k0
i 2 fhN j

k i | k D 1, . . . , njg. The remainder of the proof
follows along the lines of the proof of the previous corollary.

If G j denotes the graph at stage j and H j is a subgraph of G j such that
there are no edges leading from nodes in H j to nodes in (G jnH j), then we
note from previous observations that the union of the sets corresponding to
the nodes in H j constitutes a trapping region.

We now demonstrate that a complex set J is an attractor if and only if
there is a stage j0 where no path exists from any node in the equivalence
class of clusters associated with J (as de�ned in the previous corollary) to a
node in an equivalence class of clusters associated with any other complex
set J 0 . We �rst note that if such a stage exists, the criterion remains true
for all subsequent stages. The criterion guarantees the existence of maximal
subgraphs H j for every j ¸ j0 such that (a) every cluster hN j

k i in the equiv-
alence class associated with J lies in H j, (b) H j does not contain any node
from an equivalence class of clusters associated with any other complex set
J 0 , and (c) there are no edges from H j to (G jnH j). If W j denotes the union
of the sets corresponding to the nodes in H j, the realm of attraction of J is
given by limj!1 W j.

If, on the contrary, at every stage j there exists a path from a node in
the equivalence class associated with J to a node in an equivalence class
associated with some other complex set J

0 , then there is no set U such that
J ½ int(U), 8J

0 6D J U \ J
0 D ;, and H (U) µU. If instead such a U exists,

since 8J 0 6D J U \ J 0 D ;, given any other complex set J 0 , there exists an
open neighborhood V of J 0 such that U\V D ;. Moreover, since H(U) µU,
8n ¸ 0 Hn(int(U)) \ V D ;.

In conclusion, we recall that with regard to the dynamics of cortical
columns, we demonstrated in section 5 that trajectories (periodic orbits)
in the region of the phase-space corresponding to normal operational con-
ditions are, with probability 1, sensitive to initial conditions (unstable). It
therefore follows that attractors in this region of the phase-space are almost
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surely chaotic. When combined with the observation that the inherently
discontinuous nature of H sanctions the existence of anisotropic attractors,
it becomes apparent that the dynamics of cortical columns, under normal
operational conditions, is governed by attractors that are not only almost
surely chaotic but are also potentially anisotropic.

7 Conclusions and Future Research

The results presented in this article yield a principled resolution of the is-
sue of information coding in recurrent neuronal systems (such as columns
in the neocortex): that attractors in the phase-space denote the symbolic
states of such systems. While the spatial arrangement of the attractors in
the phase-space of certain neuronal systems might prompt the surmise of
rate or population coding, such schemes are rendered epiphenomenal from
this perspective.

The chaotic and potentially anisotropic nature of the attractors attains
principal signi�cance in this context. We �rst consider the rami�cations of
the attractors in question being almost surely chaotic. Recall that external
input into the system is modeled by introducing additional neurons whose
state descriptions match the input identically. Stated formally, the expanded
phase-space is given by S

iD1
iLni £ R

iDSC1
iLni , where i D 1, . . . , S denote

the neurons in the system, and i D (S C 1), . . . , R denote the input neurons.
Since the times at which spikes are generated at the input neurons are de-
termined solely by the external input, the expanded phase-space does not
contain hypersurfaces PI

i for i D (S C 1), . . . , R. Each input corresponds to a
unique trajectory Y(t) in R

iDSC1
iLni . The temporal evolution of the system

upon input Y(t) is given by the trajectory Y(t) in the expanded phase-space
whose projection on R

iDS C1
iLni is Y(t).

It is based on this formulation that we demonstrated in section 5 that the
dynamics of a cortical column under normal operational conditions, sus-
tained by external input from the thalamus and/or other cortical columns,
is sensitive to initial conditions. This implies that even under conditions
where the exact input is known, it is impossible to predict, based solely
on nominal knowledge of the attractor that the system currently resides
in, which attractors the system will visit as its dynamics unfolds, and at
what times. In other words, the symbol-level dynamics of a cortical column
cannot be modeled as a deterministic automaton.

We now consider the rami�cations of the fact that the attractors in ques-
tion, in addition to being chaotic, are potentially anisotropic. We recall that
anisotropic attractors are attracting complex sets that are composed of mul-
tiple basic sets. Such attractors are capable of maintaining complexsequence
information. The direction from which the system approaches such an at-
tractor determines not only the subset of the constituent basic sets that the
system visits, but also the order in which they are visited. In other words,
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structure can be discerned in the phase-space of the neuronal system at
two levels. First, there is the relationship between the attractors, each of
which constitutes a macrosymbolic state of the system, and within each at-
tractor the relationship between the basic sets each of which constitutes a
microsymbolic state of the system.

Our research has generated numerous questions that require investiga-
tion. While it is clear that changes in the potential function of the neurons,
brought about by long-term potentiation and depression can dramatically
change the nature of the dynamics of a neuronal system (creating, destroy-
ing, and altering the shape and location of the attractors in the phase-space),
the exact nature of these changes is unknown. The nature of the bounds
on the number of attractors that a system can maintain, as a function of
the number of neurons, their connectivity, and the nature of their poten-
tial functions, is also unknown. We plan to address these questions in our
future work.
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