
LETTER Communicated by Peter Rowat

On the Phase-Space Dynamics of Systems of Spiking
Neurons. I: Model and Experiments

Arunava Banerjee
Department of Computer Science, Rutgers, The State University of New Jersey, Piscat-
away, NJ 08854, U.S.A.

We investigate the phase-space dynamics of a general model of local sys-
tems of biological neurons in order to deduce the salient dynamical char-
acteristics of such systems. In this article, we present a detailed exposition
of an abstract dynamical system that models systems of biological neu-
rons. The abstract system is based on a limited set of realistic assumptions
and thus accommodates a wide range of neuronal models. Simulation re-
sults are presented for several instantiations of the abstract system, each
modeling a typical neocortical column to a different degree of accuracy.
The results demonstrate that the dynamics of the systems are generally
consistent with that observed in neurophysiological experiments. They
reveal that the qualitative behavior of the class of systems can be clas-
si�ed into three distinct categories: quiescence, intense periodic activity
resembling a state of seizure, and sustained chaos over the range of in-
trinsic activity typically associated with normal operational conditions in
the neocortex. We discuss basic rami�cations of this result with regard to
the computational nature of neocortical neuronal systems.

1 Introduction

Our understanding of the computational nature of systems of intercon-
nected neuron-like elements has grown steadily over the past decades (Hop-
�eld, 1982; Amit, Gutfreund, & Sompolinsky, 1987; Hornik, Stinchcombe,
& White, 1989; Siegelmann & Sontag, 1992; Omlin & Giles, 1996, to men-
tion but a few). The extent to which some of these results apply to systems
of neurons in the brain, however, remains uncertain, primarily because the
models of the neurons, as well as those of the networks used in such studies,
do not suf�ciently resemble their biological counterparts.

The past decade has also been witness to several theories advanced to
explain the observed behavioral properties of large �elds of neurons in the
brain (Nunez, 1989; Wright, 1990; Freeman, 1991). In general, these models
do not adopt the neuron as their basic functional unit; for example, Free-
man’s model utilizes the KI, KII, and KIII con�gurations of neurons as its
basic units, and Wright’s model lumps small cortical areas into single func-
tional units. Moreover, some of these models are founded on presupposed
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functional properties of the macroscopic phenomenon under investigation;
for example, Wright’s and Nunez’s models assume that the global wavelike
processes revealed in EEG recordings satisfy linear dynamics. These reasons
account, in part, for the controversies that surround these theories.

The search for coherent structures in the dynamics of neuronal systems
has also seen a surge of activity (Basar, 1990; Krüger, 1991a; Aertsen &
Braitenberg, 1992; Bower & Beeman, 1995). Armed with faster and more
powerful computers, scientists are replicating salient patterns of activity
observed in neuronal systems in phenomena as diverse as motor behavior
in animals and oscillatory activity in the cortex. The models of the neurons
as well as those of the networks are considerably more realistic in these
cases. There is an emphasis on simulation, and it is hoped that analytic
insight will be forthcoming from such experimentation.

Our research shares the broad objectives of these diverse endeavors: to
unravel the dynamical and computational properties of systems of neurons
in the brain. Our goal, in particular, is to answer two crucial questions: (1)
Are there coherent spatiotemporal structures in the dynamics of neuronal
systems that can denote symbols1 and (2) If such structures exist, what
restrictions do the dynamics of the system at the physical level impose on
the dynamics of the system at the corresponding abstracted symbolic level?

Our approach is characterized by our positionon two signi�cant method-
ological issues. First, we take a conservative bottom-up approach to the
problem, that is, we adopt the biological neuron as our basic functional
unit,2 and second, given the generalized nature of the questions posed, we
believe that answers can be obtained primarily through the analysis of the
phase-space dynamics of an abstract dynamical system whose behavior
suf�ciently matches that of the biological system.

The �rst part of this article is devoted to the construction of such a dy-
namical system. In section 2, we identify a general set of characteristics of
a biological neuron and formulate a model of a neuron based on them. In
section 3, we construct the phase-space for a system of such neurons. The ge-
ometric structure immanent in the phase-space is also described in detail. Fi-
nally in section 4, we specify the velocity �eld that overlays the phase-space,
thereby completing the construction of the abstract dynamical system.

Section 5 is devoted to a numerical investigation of the dynamics of the
system. A typical neocortical column is modeled based on anatomical and

1 Our usage of the term symbol conforms with the limited notion of a symbol as used
in computer science—discrete states that mark a computational process regardless of
representational content, if any, and not the notion of a symbol in the greater sense of the
word—(the physical embodiment of a semantic unit) as used in the cognitive sciences. This
work therefore does not take a position on the contentious issue of representationalism.

2 We believe that by not assuming a lumped unit with presupposed functional char-
acteristics, we not only detract from controversy but also add to the well-foundedness of
the theory.
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physiological data. Several instantiations, of varying degrees of accuracy,
are examined. The results of the simulations demonstrate that the dynamics
of the systems are generally consistent with that observed in neurophysio-
logical experiments. They also highlight certain dynamical properties that
are robust across the instantiations.

The results reveal that the qualitative behavior of the class of systems can
be classi�ed into three distinct categories: (1) when initiated at a low level of
intrinsic activity, the system becomes quiescent; (2) when initiated at a high
level of intrinsic activity, the system settles into a periodic orbit of intense
regular activity resembling a state of seizure; and (3) when initiated over
a range of intermediate levels of intrinsic activity (corresponding to nor-
mal operational conditions in the neocortex), the system displays sustained
chaotic behavior.

In section 6 we discuss basic rami�cations of this result with regard to
the computational nature of neocortical neuronal systems. The questions
posed earlier in this section are partially answered, and a research agenda,
pursued in the companion article in this issue, is proposed for a de�nite
resolution of the matter.

2 Model of the Neuron

We have chosen a deterministic (as opposed to a stochastic) model for the
biological neuron for the following reasons. First, there is mounting evi-
dence that information about stimulus is contained in the higher-resolution
interspike intervals (ISIs) of spike trains and not in the lower-resolution
spike frequencies (Strehler & Lestienne, 1986; Krüger, 1991b; Bair, Koch,
Newsome, & Britten, 1994; Bair & Koch, 1996). Since the temporal sequence
of ISIs is abstracted away in a stochastic model, there is little hope that
such a model would shed light on all aspects of information processing
in neuronal systems. Second, while random miniature postsynaptic po-
tentials do exist, their mean amplitude is at least an order of magnitude
smaller than the mean amplitude of the postsynaptic potential elicited by
the arrival of a spike at a synapse. The impact of such noise on the dy-
namics of the system is best identi�ed by contrasting the dynamics of
a noise-free model to that of a model augmented with the appropriate
noise. It is therefore logical to begin with the analysis of a deterministic
model.

Our model of the biological neuron is based on the following four obser-
vations:

1. The biological neuron is a �nite precision machine in the sense that
the depolarization at the soma that elicits an action potential is of a
�nite range (T § 2 ) and not a precise value (T ).

2. The effect of a synaptic impulse (resulting from the arrival of an
afferent (incoming) spike) at the soma has the characteristic form
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Figure 1: A schematic diagram of a neuron that depicts the soma, axon, and
two synapses on as many dendrites. The axes by the synapses and the axon
denote time (with respective origins set at present and the direction of the arrows
indicating past). Spikes on the axon are depicted as solid lines. Those on the
dendrites are depicted as broken lines, for, having been converted into graded
potentials, their existence is only abstract (point objects indicating the time of
arrival of the spike).

of an abrupt increase or decrease in potential followed by a longer
exponential-like decay toward the resting level.

3. The postspike elevation of the threshold that may be modeled as the
inhibitory effect of an efferent (outgoing) spike also decays after a
while at an exponential rate.

4. The ISIs of any given neuron are bounded from below by its absolute
refractory period, r, that is, no two spikes originate closer than r in
time.

Based on these, we construct our model of the neuron as follows. (Figure 1
is provided as a visual aid to complement the formal presentation below.
The various aspects of the diagram are explained in the caption.)

i. Spikes. Spikes are the sole bearers of information. They are identical
except for their spatiotemporal location. (Spikes are de�ned as point
objects. Although action potentials are not instantaneous, they can
always be assigned occurrence times, which may, for example, be
the time at which the membrane potential at the soma reached the
threshold T .)

ii. Membrane potential. For any given neuron we assume an implicit,
C1, everywhere bounded function P¤(Ex1, Ex2, . . . , ExmI Ex0) that yields
the current membrane potential at the soma. (Subscripts i D 1, . . . , m

represent the afferent synapses, and Exi D hx1
i , x2

i , . . . , x j
i , . . .i is a de-

numerable sequence of variables that represent, for spikes arriving
at synapse i since in�nite past, the time lapsed since their arrivals.

In other words, each x j
i for i D 1, . . . , m reports the time interval be-

tween the present and the time of arrival of a distinct spike at synapse
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i. Finally, Ex0 is a denumerable sequence of variables that represent, in
like manner, the time lapsed since the departure of individual spikes
generated at the soma of the neuron.)

P¤: R1 ! R accounts for the entire spatiotemporal aspect of the
neuron’s response to spikes. All information regarding the strength
of afferent synapses, their location on the dendrites, and their mod-
ulation of one another ’s effects at the soma is implicitly contained
within P¤(¢). So is the exact nature of the postspike hyperpolariza-
tion that gives rise to both the absolute and the relative refractory
periods. Consistency requires that either the domain of P¤(¢) be re-
stricted to 0 · x1

i · x2
i · ¢ ¢ ¢ for all i, or P¤(¢) be constrained to be

symmetric with respect to x1
i , x2

i , . . . for all i.

iii. Effectiveness of a Spike. After the effect of a spike at the soma of a
biological neuron has decayed below 2

C(mC1) , where 2 is the range of
error of the threshold, C > 1 an appropriate constant (de�ned below),
and m the number of afferent synapses on the cell, its effectiveness on
the neuron expires. This inference is based on the observations that
the biological neuron is a �nite precision machine, the total effect of
a set of spikes on the soma is almost linear in their individual effects
when such effects are small (¼ 2

C(mC1) ), and owing to the exponen-
tial nature of the decay of the effects of afferent as well as efferent
spikes and the existence of a refractory period, a quantity m < 1 can
be computed such that the residual effect of the afferent spikes that
have arrived at a synapse, whose effects on the soma have decayed
below 2

C(mC1) (and that of the efferent spikes of the neuron satisfy-
ing the same constraint) is bounded from above by the in�nite series

2
C(mC1) (1 C m C m 2 C ¢ ¢ ¢ C m k C ¢ ¢ ¢). Setting C > 1

1¡m then guarantees
that each such residual is less than 2

(mC1) . This argument, in essence,
demonstrates that the period of effectiveness of a spike since its im-
pact at a given afferent synapse or departure after being generated at
the soma is bounded from above.3 We model this feature by imposing
the following restrictions on P¤:

1. 8i D 0, . . . , m and 8j, 9ti such that 8t ¸ ti
@P¤

@xj
i

|
xj

i DtD 0 irre-

spective of the values assigned to the other variables.

2. 8i D 0, . . . , m and 8 j, 8t · 0 @P¤

@xj
i

|xj
i DtD 0 irrespective of the

values assigned to the other variables.
3. 8i D 0, . . . , m and 8 j, P¤(¢) |

xj
i D0D P¤(¢) |

xj
i Dti

all other variables
held constant at any values.

3 This does not necessarily imply that the neuron has a bounded memory of events.
Information can be transferred from input spikes to output spikes during the input spikes’
period of effectiveness.
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4. P¤(0|t1, 0|t1, . . . , 0|t2, 0|t2, . . . , . . . , 0|tm, 0|tm, . . . I 0|t0, 0|t0,

. . .) D 0. In other words, P¤(¢) D 0 if 8i, j x j
i D 0 or ti.

The �rst criterion enforces that the sensitivity of P¤(¢) to spike x j
i

expires after time ti. Hence, if for every i there exists an ni such that
j > ni ) aj

i ¸ ti; then P¤(Ea1, Ea2, . . . , EamI Ea0) D P¤(Ea0
1, Ea0

2, . . . , Ea0
mI Ea0

0)
where each Ea0

i is derived from the corresponding Eai by setting all
values after index ni to ti. The second criterion results from P¤(¢)
being C1 and @P¤

@xj
i

|xj
i <0D 0 (a spike that has not yet arrived at an

afferent synapse can have no effect on the membrane potential, and
a spike that has not yet been generated at the soma cannot elicit
a postspike hyperpolarization). The third criterion enforces that all
else being equal, the membrane potential at the soma is the same
whether an afferent spike has just arrived or its effectiveness has just
expired, and in the case of an efferent spike whether it has just been
generated or its inhibitory effect on the soma has just expired. The
fourth criterion enforces that the resting state of the soma is set at 0.

iv. Finite dimensionality. The function characterizing the membrane
potential can, as a result, be de�ned over a �nite dimensional space.
This is based on the observation that at any afferent synapse i D
1, . . . , m, spikes arrive at intervals bounded from below by ri (the
absolute refractory period of the neuron presynaptic to i), and for
i D 0 spikes are generated at the soma of the neuron at intervals
bounded from below by r0 (the absolute refractory period of the neu-
ron in question). Consequently, at most ni D dti /rie variables can
have values less than ti. Based on iii above, we can de�ne,

P(x1
1, . . . , xn1

1 , x1
2, . . . , xn2

2 , . . . , x1
m, . . . , xnm

m I x1
0, . . . , xn0

0 )

D P¤(x1
1, . . . , xn1

1 , t1, t1, . . . , x1
2, . . . , xn2

2 , t2, t2, . . . , . . . ,

x1
m, . . . , xnm

m , tm, tm, . . . I x1
0, . . . , xn0

0 , t0, t0, . . .) (2.1)

and use P(¢) instead of P¤(¢) to represent the current membrane
potential.4

v. Threshold and refractoriness. A simple model is assumed for the
generation of a spike at a soma, that is, a spike is generated when

4 A few technicalities should be mentioned here. The de�nition of P¤ assumes that
spikes have been arriving at each synapse and have been leaving the soma since time
t D ¡1. If the number of spikes on any synapse or the number of efferent spikes is �nite
over the time (¡1, 0), a denumerable set of dummy variables can be introduced to extend
the function’s domain to R1 . For any such dummy variable x, @P¤

@x =0 is consistent with
the constraints imposed on P¤ .
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P(¢) D T and dP(¢)
dt ¸ 0.5 T is assumed to be a constant. However, it

must be noted that a more general criterion of the form P(¢) D T (¢)
can be transformed into the form P(¢) D T if the parameters of T are
a subset of those of P.

The above modelof the neuron does not insist on a speci�c membrane po-
tential function, only that the particular function possess certain qualitative
properties. By retaining this level of generality, we can pose questions that
are more basic, such as, To what extent would the dynamics of a neuronal
system be affected if the potential function P(¢) were to be replaced by any
arbitrary function that is unimodal with respect to all variables, and at the
same time satis�es all the constraints (items ii, iii, and v above)? Besides,
making a model more speci�c by resorting to explicit functions is much
easier than making it more general.

We must mention here that in spite of the generality of the membrane
potential function, this model remains some distance from an accurate de-
piction of the biological neuron. Changes in the strength of synapses, which
would translate into evolving potential functions, are not modeled. The
biophysical processes that are involved in synaptic modulation are not yet
completely understood and the phenomenon continues to inspire intense
research. Furthermore, persistent currents such as those that give rise to
plateau potentials cannot be modeled in this framework. We can only hope
that not much is lost in terms of the salient behavior of the system at our
leaving out such details.

3 The Phase-Space

We begin by revising certain de�nitions for the purpose of instituting the
measure of uniformity necessary for the construction of a phase-space for
a system of neurons. Previously, x j

i ’s for i D 1, . . . , m represented the time
since the arrival of spikes at synapses, and for i D 0 the time since the
inception of spikes at the soma. We eliminate the asymmetry in the choice of
origins of the two sets of variables by rede�ning x j

i 8i, j to represent the time
since the inception of the spike at the corresponding soma. The subscript
i in xj

i is now set to refer to a neuron rather than a synapse. In addition to
changes in P(¢), this prompts a shift in focus from the postsynaptic to the
presynaptic neuron.

Given a system of neurons, an upper bound on the number of effec-
tive, efferent spikes that a neuron can possess at any time is �rst computed

5 P(¢) being C1 , the postspike hyperpolarization cannot be instantaneous. P(¢) D T is
crossed twice—once when the spike is generated and once when the inhibitory effect of

the spike kicks in. The constraint dP(¢)
dt D i, j

@P(¢)
@x

j
i

dx
j
i

dt ¸ 0 ensures that the neuron does

not spike during the membrane potential’s downward journey.
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as follows. Let i D 1, . . . , S denote the set of all neurons in the system,
ki D 1, . . . , mi the set of efferent synapses on neuron i (synapses to which
neuron i is presynaptic), li

ki
the time it takes for a spike generated at the soma

of neuron i to reach synapse ki, t i
ki

, as before, the time interval over which a
spike impingingon synapse ki is effective onthe correspondingpostsynaptic
neuron, and ri the absolute refractory period of neuron i. Since its inception,
the maximum time until which any spike can be effective on any corre-
sponding postsynaptic neuron is then given by Â D maxS ,mi

iD1,ki D1fli
ki

C t i
ki
g.

Let & denote the maximum time period over which any spike is effective
on the neuron that generates it, and let U D maxfÂ, &g. Then ni D dU / rie
provides an upper bound on the number of effective spikes that neuron i
can possess at any time.

The requisite changes in P(¢) are threefold. First, the number of vari-
ables associated with some synapses is increased so that all synapses ac-
tuated by neuron i are consistently assigned ni variables. This is achieved
by setting appropriately fewer variables in P¤(¢) to t i

ki
in criterion iv of the

previous section. Next, P(¢) is translated along all but one set of axes such
that the former origin is now at hli1

ki1
, l

i1
ki1

, . . . , . . . , l
im
kim

, l
im
kim

, . . . , 0, 0, . . .i,
where i1, . . . , im are the neurons presynaptic to the neuron in question (i0) at
synapses ki1 , . . . , kim . @P

@xj
ki

|xj
ki

DtD 0 for 0 · t · li
ki

holds owing to the manner

in which P(¢) was previously de�ned. Finally, references to synapses in the
variables are switched to references to appropriate neurons, and multiple
variables referencing the same spike (occurs when a neuron makes multiple
synapses on a postsynaptic neuron) are consolidated.

We note immediately that the state of a system of neurons can be speci-
�ed completely by enumerating, for all neurons i D 1, . . . , S , the positions
of the ni (or fewer) most recent spikes generated by neuron i within U time
from the present. On the one hand, such a record speci�es the exact location
of all spikes that are still situated on the axons of respective neurons, and
on the other, combined with the potential functions, it speci�es the current
state of the soma of all neurons. While it is assumed here that neurons do
not receive external input, incorporating such is merely a matter of intro-
ducing additional neurons whose state descriptions are identical to that of
the external input.

This gives us the following initial representation of the state informa-
tion contributed by each neuron toward the speci�cation of the state of the
system: at any given moment neuron i reports the ni-tuple hx1

i , x2
i , . . . , xni

i i,
where each xj

i denotes the time since the inception of a distinct member of
the ni most recent spikes generated at the soma of neuron i within U time
from the present. Since ni is merely an upper bound on the number of such
spikes, it is conceivable that fewer than ni spikes satisfy the criterion, in
which case the remaining components in the ni-tuple are set at U . From a
dynamical perspective, this amounts to the value of a component growing
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until U is reached, at which point the growth ceases. The phase-space for
neuron i is then the closed ni-cube [0, U ]ni ½ Rni .

This initial formulation of the phase-space is, however, fraught with re-
dundancy. First, the �nite description of the state of a neuron requires that a
variable be reused to represent a new spike when the effectiveness of the old
spike it represented terminates. Since a variable set at U (ineffective spike)
is �rst set to 0 when assigned to a new spike, one of the two positions is
redundant. The abstract equivalence of the positions then dictates that U

be identi�ed with 0. Second, if hx1
i , x2

i , . . . , xni
i i and hy1

i , y2
i , . . . , yni

i i are two
ni-tuples that are a nontrivial permutation of one another (9s, a permuta-
tion, such that 8j D 1, . . . , ni xj

i D ys (j)
i ), then while Exi and Eyi are two distinct

points in [0, U ]ni , they represent the same state of the neuron (which vari-
able represents a spike is immaterial). This stipulates that all permutations
of an ni-tuple be identi�ed with the same state.

In what follows we construct a differentiable manifold that satis�es both
of these criteria. The construction is divided into two stages. The �rst stage
transforms the interval [0, U ] into the unit circle S1 (spikes now being rep-
resented as complex numbers of unit modulus), and the second computes
a complex polynomial whose roots identically match this set of complex
numbers. By retaining only the coef�cients of this polynomial, all order
information is eliminated.

Stage 1. We impose on the manifold R the equivalence relation: x » y if
(x ¡ y) D aU , where x, y 2 R, and a 2 Z, and regard R/ » with its standard
quotient topology. The equivalence class mapping p : R ! R/ » can be
identi�ed with p (t) D e

2p it
U . p maps R/ » onto S1 D fz 2 C | |z| D 1g.

We therefore apply the transformation hx1, x2, . . . , xni!he 2p ix1
U , e

2p ix2
U , . . . ,

e
2p ixn

U i to the initial formulation of the phase-space of a neuron. The new
phase-space is Tn the n-torus.

We assume hereafter that all variables x j
i are normalized, that is, scaled

from [0, U ] to [0, 2p ]. P(¢) is also assumed to be modi�ed to re�ect the scaling
of its domain.

Stage 2. That the set G=fs | s is a permutation of n elementsg forms a Group
motivates the approach that the orbit space Tn/G of the action of G on Tn

be considered. G, however, does not act freely6 on Tn, and therefore the
quotient topology of Tn/G does not inherit the locally Euclidean structure
of Tn. Hence, we explicitly construct the space as a subset of the Euclidean
space and endow it with the standard topology. While such a subset neces-
sarily contains boundaries, the construction does shed light on the intrinsic
structure of the space.

6 A Group G acts freely on a set X if 8x (gx D x implies g D e).
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As noted earlier, we apply the transformation hz1, z2, . . . , zni ! han, an¡1,
. . . , a0i where an, an¡1, . . . , a0 2 C are the coef�cients of f (z) D anzn C
an¡1zn¡1 C ¢ ¢ ¢ C a0 whose roots lie at z1, z2, . . . , zn 2 C. The immediate ques-
tion, then, is what are necessary and suf�cient constraints on
han, an¡1, . . . , a0i 2 CnC1 for all roots zi of f (z) to satisfy |zi | D 1. We an-
swer this in two steps. First, we consider the case of distinct roots, and
subsequently that of multiple roots.

Theorem 1. Let f (z) D anzn C an¡1zn¡1 C ¢ ¢ ¢Ca1zC a0 be a complex polynomial
of degree n:

� Let f ¤(z) be de�ned as f ¤(z) D zn Nf (1/z) D Na0zn C Na1zn¡1 C ¢ ¢ ¢ C Nan, where
Nai represents the complex conjugate of ai.

� Construct the sequence h f0(z), f1(z), . . . , fn¡1(z)i as follows:

i. f0(z) D f 0 (z) where f 0 (z) is the derivative of f (z), and

ii. fjC1(z) D Nb(j)
0 fj (z) ¡ b

(j)
n¡1¡j f ¤

j (z) for j D 0, 1, . . . , n ¡ 2, where

fj(z) is represented as the polynomial n¡1¡j
kD0 b

(j)
k zk.

In each polynomial fj(z), the constant term b
(j)
0 is a real number, which we denote

by dj:djC1 D b
(jC1)
0 D |b

(j)
0 |2 ¡ |b

(j)
n¡1¡j |

2 for j D 0, 1, . . . , n ¡ 2.
Then, necessary and suf�cient conditions for all roots of f (z) to be distinct and to

lie on the unit circle, |z| D 1, assuming without loss of generalization that an D 1,
are:

|a0 | D 1, and ai D Nan¡ia0 for i D 1, 2, . . . , n ¡ 1, and (3.1)

d1 < 0 and dj > 0 for j D 2, 3, . . . , n ¡ 1. (3.2)

Proof. See appendix A.
Stated informally, equations 3.1 ensure that the degree of freedom re-

�ected in the dimensionality of the initial space does not change after the
transformation. Of the coef�cients han¡1, an¡2, . . . , a0i (an D 1 w.l.o.g), (i) a0
has one degree of freedom (|a0 | D 1) and (ii) if n is odd, hadn/2e¡1, . . . , a1i can
be derived from han¡1, . . . , adn/2eI a0i or (iii) if n is even, adn/2e has only one
degree of freedom (adn/2e D Nadn/2ea0 implies that adn/2e D (1/2) a0) and
hadn/2e¡1, . . . , a1i can be derived from han¡1, . . . , adn/2eC1I a0i. Hence, if n is
odd, han¡1, . . . , adn/2eI a0i 2 Cbn/2c £S1 completely speci�es the polynomial,
and if n is even, han¡1, . . . , adn/2eC1I adn/2e, a0i 2 Cbn/2c¡1 £M2 does the same.
M2 denotes the two-dimensional Möbius band and we shall demonstrate
that when n is even, hadn/2e, a0i 2 M2.

(1/2) a0 has two solutions, h and (h C p ), where h 2 [0, p ). hadn/2e, a0i is
represented as h§ |adn/2e |, a0i, where adn/2e’s choice between h and (h C p )
is transferred to the sign of |adn/2e | (positive |adn/2e | implies h and negative
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|adn/2e | implies (h C p )). Topological constraints then require that all points
h§|adn/2e | , a0i ´ ha, 0i be identi�ed with h§|adn/2e | , a0i ´ h¡a, 2p i.

Expressions 3.2 enforce (n ¡ 1) additional constraints expressed as strict
inequalities on C1 functions over the transformed space (Cbn/2c £ S1 or
Cbn/2c¡1 £ M2). That the functions are C1 is evident from their being com-
posed entirely of operators C , ¡, £, and N . We note immediately, based on
continuity and strict inequality, that the resulting space is open in Cbn/2c £S1

(n is odd) or Cbn/2c¡1 £M2 (n is even). Moreover, since the space is the image
of a connected set under a continuous mapping, it is connected as well. We
denote the resultant space by Ln.

We now consider the case wherein both distinct and multiple roots are
allowed.

Theorem 2. The transformed space corresponding to f (z) constrained to have
all roots on |z| D 1 without the requirement that they be distinct, is the closure of
Ln (Ln) in Cbn/2c £ S1 for odd n, or in Cbn/2c¡1 £ M2 for even n. Furthermore,
the set (LnnLn) lies on the boundary of Ln.

Proof. See appendix A.

The multidimensional boundary set (LnnLn) can be partitioned, based
on the multiplicity of corresponding roots, into connected sets of �xed di-
mensionality. Each such set is diffeomorphic to an appropriate manifold
Ln¡1, Ln¡2, . . . , or L0 by way of the mapping that disregards all but one
member of each multiple root. Finally, Ln is bounded because 8i |ai | · n

i .

Corollary 1. The transformed space is a compact manifold with boundaries; a
subset of the same dimension of Cbn/2c £ S1 if n is odd or of Cbn/2c¡1 £ M2 if n is
even.

The nature of the spaces corresponding to dimensions n D 1, 2, 3 is best
demonstrated in �gures. For n D 1, the phase-space is the unit circle S1, for
n D 2, the Möbius band, and for n D 3, a solid torus whose cross-section
is a concave triangle that revolves uniformly around its centroid as one
travels around the torus. Figure 2a presents the phase-spaces for n D 1, 2
and 3.

Finally, the phase-space for the entire neuronal system is the Cartesian
product of the phase-spaces of the individual neurons. We shall henceforth
denote the phase-space of neuron i by iLni . Pi(x1

1, . . . , xn1
1 , x1

2, . . . , xn2
2 , . . . , x1

m,
. . . , xnm

m I x1
i , . . . , xni

i ) for all neurons i was assumed to be C1 in the previous
section. In appendix B we de�ne a corresponding function on the trans-
formed space, Pi: 1Ln1 £ 2Ln2 £ ¢ ¢ ¢ £ mLnm £ iLni ! R, which is C1.
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Figure 2: (a) Phase-spaces for n D 1, 2 and 3. Note that the one-dimensional
boundary of the Möbius band is a circle, and the two- and one-dimensional
boundaries of the torus are a Möbius band and a circle, respectively. (b) Sub-
spaces s ¸ 2 and s ¸ 1 in the phase-space for n D 3. The torus is cut in half,
and the circle and the Möbius band within each half are exposed separately.

3.1 Geometric Structure of the Phase-Space: A Finer Topology. In the
previous section we constructed the phase-space for an individual neuron
as a �xed dimensional manifold, the �xed dimensionality derived from the
existence of an upper bound on the number of effective, efferent spikes that
the neuron can possess at any time. We also noted that at certain times,
the neuron might possess fewer effective spikes. It follows that under such

circumstances, the remaining variables are set at eixj
i D 1. In this section we

examine the structure induced in the phase-space as a result of this feature.
Formally, we denote by p 2 h1Ln1 £2Ln2 £¢ ¢ ¢£SLnS i a point in the phase-

space and by hp1, p2, . . . , pS i its projection on the corresponding individual
spaces, that is, pi 2 iLni . For each neuron i,we denote the number of variables

set at eixj
i D 1 by si . Such spikes we label as dead since their effectiveness on

all neurons has expired. All other spikes we label as live.
To begin, we note that for any iLni , Space|si ¸k ½ Space|si ¸(k¡1). In the

previous section we established that the phase-space of a neuron with a
sum total of k spikes is a k-dimensional compact manifold. We now relate
a phase-space A corresponding to k spikes to the subset satisfying s ¸ 1 of
a phase-space B corresponding to (k C 1) spikes. Equating the appropriate
polynomials, (z ¡ 1)[zk C ak¡1zk¡1 C ¢ ¢ ¢ C a0] D zkC1 C bkzk C ¢ ¢ ¢ C b0, we
arrive at

bi D ai¡1 ¡ ai for i D 0, . . . , k (assuming a¡1 D 0, ak D 1), hence,

ai¡1 D
k

jDi

bj C 1 for i D 1, . . . , k. (3.3)
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That the mappingFk: A !B, Fk(ak¡1, . . . , adk/2eI a0) D (bk, . . . , bd(kC1)/2eI
b0), is injective follows directly from equations 3.3. That it is an immersion

(rank Fk D dim A D k at all points) follows from the description of (DFk),
which when simpli�ed results in the (k C 1 £ k) matrix,

I 0
0 C for k = even, and

I
D for k = odd, (3.4)

where C D hcos( a0
2 ), sin( a0

2 )iT, D D h|adk/2e |, 0, 0, . . . , 2 sin( a0
2 ), ¡2 cos

( a0
2 )i, and I and 0 are identity and zero matrices of appropriate dimensions.

A being compact, Fk: A ! B is also an imbedding. Consequently, A is
a homeomorphism onto its image; the topology induced by A on Fk(A)
is compatible with the subspace topology induced by B on Fk(A). Finally,
repeated applicationof the argument establishes that 8kSpace|s¸k is a regular
submanifold of Space|s¸(k¡1).

Alternatively, the mapping from a space A corresponding to k spikes, to
the subset satisfying s ¸ (l ¡ k) of a space B corresponding to l spikes, can
be constructed directly by composing multiple F ’s. Not only does F l

k D
Fl¡1 ± Fl¡2 ± ¢ ¢ ¢ ±Fk map A into B, but it also maps relevant subspaces7 of A
into corresponding subspaces of B. Since (DF l

k) D (DFl¡1) ¤ (DFl¡2) ¤ ¢ ¢ ¢ ¤
(DFk), it follows from the arguments in the previous paragraph that F l

k is
an imbedding.

Figure 2b displays the subspaces satisfying s ¸ 2 (imbedding of a circle)
and s ¸ 1 (imbedding of a Möbius band) located within the phase-space

for n D 3. We shall henceforth denote by iL j
ni

the subspace satisfying si ¸ j

for neuron i. Consequently, iLni D iL0
ni

¾ iL1
ni

¾ ¢ ¢ ¢ ¾ iLni

ni
.

It must be noted that F l
k: A ! B not only maps phase-spaces but also

maps �ows identically, a fact manifest in the following informal descrip-
tion of the dynamics of the system: If the state of the system at a given
instant is such that neither any live spike is on the verge of death nor is
any neuron on the verge of spiking, then all live spikes continue to age
uniformly. If a spike is on the verge of death, it expires (i.e., stops aging).

This occurs when a spike reaches eixj
i D 1. If a neuron is on the verge of

spiking, exactly one dead spike corresponding to that neuron is turned
live.

Since all dead spikes remain stationary at eixj
i D 1, they register as a

constant factor in the dynamics of a neuron. This has the important rami�-
cation that the total number of spikes assigned to a neuron has little impact
on its phase-space dynamics. F l

k: A ! B, in essence, constitutes a bridge
between all �ows that correspond to a given number of live spikes pos-

7 Subspaces corresponding to at most (k ¡ 1), (k ¡ 2), . . . , 0 live spikes.
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sessed by a neuron over a given interval of time. While the total number of
spikes assigned to a neuron dictates the dimensionality of its entire phase-
space, �ows corresponding to a given number of live spikes lie on a �xed
dimensional submanifold and are C1-conjugate8 to each other.

We note that 8j ¸ 1 iL j
ni

is a C1 hypersurface of dimension (ni ¡ j) in
iLni .

9 Moreover, since 8j ¸ 2 iLj
ni

features a multiple root at ei0, it lies on the
boundary of iLni .

The submanifolds iL j
ni

(j D 1, . . . , ni) are not revealed in the topology
of iLni regarded (as the case may be) as a subspace of Cbni /2c £ S1 or of
Cbni /2c¡1£M2 (topologizedby respectivestandard differentiable structures).
We therefore assign iLni the topologygenerated by the family of all relatively

open subsets of iL j
ni

, 8 j ¸ 0. This new, strictly �ner topology better matches
our intuitions about the set of states that should comprise the neighborhood
of any given state of the system.

In the previous section we de�ned a C1 function Pi(¢) that represented
the potential at the soma of neuron i. We denote by PS

i the subset of the
space wherein Pi (¢) D T , and by PI

i the subset wherein dPi(¢)/dt ¸ 0 is
additionally true. Trivially then, PI

i µPS
i . Based on the implicit function

theorem and the fact that at all points satisfying Pi(¢) D T there exists a
direction x such that @Pi(¢)/@x 6D 0,10 it follows that PS

i is a C1 regular
submanifold of codimension 1. Moreover, PI

i is a closed subset of PS
i since

Pi(¢) being C1, dPi(¢)/dt along any direction d/dt is C1 on PS
i .

4 The Velocity Field

In this section we stipulate the velocity �eld, V : S
iD1

iLni ! S
iD1 T

(iLni ), that arises from the natural dynamics of the system. T(¢) denotes
the tangent bundle (appropriated from the ambient space Cbni/2c £ S1 or
Cbni /2c¡1 £ M2).

We de�ne two vector �elds, V1 and V2. For the case in which no spike is
on the verge of death and no neuron is on the verge of spiking, the velocity

is speci�ed by V1. Formally, V1 applies to all points p 2 S
iD1(iLsi

ni
niLsi C1

ni
)

for all values of si · ni that satisfy 8i D 1, . . . , S p /2 PI
i . For the case in

which a neuron is on the verge of spiking, the velocity is speci�ed by V2.
Formally, V2 applies to all points p that satisfy 9i such that p 2 PI

i . Since V1

8 Since F l
k: A ! B is C1 .

9 S ½ M is a k-dimensional Cp hypersurface in the m-dimensional manifold M if for
every point s 2 S and coordinate neighborhood hU, w i of M such that s 2 U, w (U \ S) is
the image of an open set in Rk under an injective Cp mapping of rank k, Q: Rk ! Rm .

10 This is not the case when Pi (¢) D T is a point. In all other cases there exist effective
spikes that satisfy the criterion.
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is, by de�nition, a function of si’s for all i D 1, . . . , S , it accounts for the case
in which a spike is on the verge of death.

It follows from the natural dynamics of the system that given any point
p D hp1, . . . , pS i in the phase-space, V1(p) D hV1

1 (p), . . . , V1
S

(p)i can be de�ned as hV1
1 (p1), . . . , V1

S (pS )i. That is, each component V1
i

of V1 is solely a function of pi 2 iLsi

ni
. This is also true for V2. Once it is de-

termined which PI
i ’s p lies on, each component V2

i can be computed based
solely on pi.

We noted earlier that the differentiable structures of iL0
(ni ¡si ) and iLsi

ni
are

compatible by virtue of F ni
(ni ¡si ) being an imbedding. We also noted that

�ows corresponding to V1 for k live spikes lie on a k-dimensional submani-
fold and are C1-conjugate to each other, F l

k constituting the bridge between

such �ows. We therefore de�ne V1
i on (iL0

(ni¡si)n
iL1

(ni ¡si )). The corresponding

velocity �eld on (iLsi

ni
niLsi C1

ni
) is then de�ned as F ni

(ni ¡si)?
(V1

i ).11

Let pi correspond to zni ¡si C ani ¡si ¡1zni¡si¡1 C ¢ ¢ ¢ C a0 D ni ¡si
jD1 (z ¡ zj ).

Since all roots rotate at constant speed, that is, zj D ei(hj C 2p t
U

), dzj/dt D 2p i
U

zj.
Simple algebra then demonstrates:

Theorem 3. V1
i for the C1-conjugate �ows on (iL0

(ni ¡si )n
iL1

(ni¡si)) is given by

dani ¡si ¡k

dt
D

2p

U
k Oh for k D 1, . . . ,

ni ¡ si

2
and k D ni ¡ si (4.1)

d|a ni¡si
2

|

dt
D 0 when (ni ¡ si ) is even. (4.2)

Oh denotes the basis vector @/@h on C 3 ani ¡si ¡k for any k D 1, . . . , b ni ¡si
2 c,

represented as fhr, h i | reih D ani ¡si ¡kg, on S1 3 a0 represented as fh | h D
a0g, and on M2 3 ha ni¡si

2
, a0i for even (ni ¡ si), represented as fhr, h i | r D

§ |a ni¡si
2

|, h D a0g.
Stated informally, each parameter revolves around its origin at uniform

speed, the speed of successive parameters increasing in steps of (2p /U ).
Turning our attention to V2

i , we note that V2
i (pi) can be obtained from V1

i (pi )

by setting si to (si ¡ 1); V2
i (pi) for pi 2 (iLsi

ni
niLsi C1

ni
) is equivalent to V1

i (pi )

on iLsi ¡1
ni

ignoring the fact that pi lies additionally on iLsi

ni
½ iLsi¡1

ni
.

We have de�ned V : S
iD1

iLni ! S
iD1 T(iLni

) based on our consummate
knowledge of �ows in the phase-space. The utility of this construction is
to be found in the assistance it renders in the analysis of local properties of

11 We use the notation, F?(Xp) f D Xp ( f ± F) where F is a C1 map of manifolds, Xp is a
tangent vector at p, and f is an arbitrary function that belongs to C1 (F(p)).
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Figure 3: Schematic depiction of the velocity �eld V .

�ows (a topic pursued in the companion article in this issue). V is however
discontinuous. It must therefore be con�rmed that V does not generate
inconsistencies in the model. We consider this problem next.

Both V1
i and V2

i are smooth on (iLsi

ni
niLsi C1

ni
) for any si. The only points

where the projection of a trajectory Y(x, t) on iLsi

ni
is not differentiable

(where, incidentally, it is not even continuous) is therefore when it meets
iLsi C1

ni
or it meets PI

i . This gives rise to the potential problem that dPi(¢)/dt
might not be computable on PI

i , for whereas Pi (¢) is C1, one component
of dY(x, t)/dt in iLsi

ni
—the velocity of the dead spike that just turned live—

is unde�ned. However, one needs only to recall from appendix B that for
any spike x stationed at ei0, @Pi(¢)/@x D 0 over an in�nitesimal interval
(eid > eix > ei(2p ¡d)). The problem is therefore resolved trivially.

Figure 3 presents a schematic depiction of the velocity �eld V described

above. Figure 3a displays V corresponding to a patch of iL1
2 within a patch

of iL0
2, and Figure 3b displays V corresponding to a PI

i lying on a patch of
iL1

3 within iL0
3.

We are now in a position to de�ne an abstract dynamical system without
reference to neuronal systems. The phase-space of the system is S

iD1
iLni ,

which contains S C1 hypersurfaces PI
i for i D 1, . . . , S . The velocity �eld V

on the phase-space is as de�ned in the previous theorem.
In order for the system to be consistent, each hypersurface PI

i must at the
least satisfy two additional constraints. First, the criterion that any neuron
i possess at most ni live spikes can be enforced by the constraint: 8i D

1, . . . , S , PI
i \ ( i¡1

jD1
jL0

nj
£(iL0

ni
niL1

ni
)£ S

jDiC1
jL0

nj
) D ;. Second, the criterion

that multiple roots (coincident spikes) occur only at ei0 (when the spikes are
dead) can be enforced by requiring that the normal to the hypersurface

PI
i \ S

jD1(jLsj ¡1
nj

njLsj C1
nj

) at PI
i \ S

jD1( jLsj

nj
njLsj C1

nj
) not be orthogonal to V2 for

all values of i and sj · nj .
Finally, since neurons that spike spontaneously are not modeled, one can

additionally enforce the weaker constraint: 8i D 1, . . . , S , PI
i \ S

jD1
jLnj

nj
D ;.
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It then follows that S
iD1

iLni

ni
, denoting the state of quiescence in the neuronal

system, is the sole �xed point of the dynamical system.

5 Model Simulation and Results

A model is worthwhile only to the extent to which it succeeds in emulat-
ing the salient behavior of the physical system it models. In this section
we therefore investigate by means of simulation the dynamical behavior
of the model just described. We have chosen as our target unit a typical
column in the neocortex. These neuronal subsystems are ideally suited for
our purpose because their con�gurations (connectivity pattern, distribu-
tion of synapses, etc.) �t statistical distributions and they exhibit distinctive
patterns of qualitative dynamical behavior.

5.1 General Anatomical and Physiological Characteristics of Neo-
cortical Columns. Extensive information is available about the anatomi-
cal and physiological composition of the neocortex (Braitenberg & Schüz,
1991; Shepherd, 1998). While not sharply de�ned everywhere, neocortical
columns have a diameter of approximately 0.5 mm. Intracolumn connectiv-
ity is markedly denser than intercolumn connectivity. Whereas inhibitory
connections play a prominent role within a column, intercolumn connec-
tions are distinctly excitatory. A column contains approximately 105 neu-
rons. The number of synapses each neuron makes ranges between 103 and
104. The probability of a neuron’s making multiple synapses on the dendrite
of a postsynaptic neuron is fairly low (Braitenberg, 1978). The connectivity
between neurons within a column (intracolumn as opposed to thalamic
afferents), while having evolved to achieve a speci�c function, has been ex-
perimentally ascertained to �t a statistical distribution (Schüz, 1992). The
location of afferent synapses on the collaterals of the neurons has similarly
been shown to �t a statistical distribution (Braitenberg & Schüz, 1991).

Neurons in the neocortex can be divided into two main groups: the
spiny and the smooth neurons. Spiny neurons can, in general, be subdi-
vided into pyramidal and stellate cells, with pyramidal cells constituting
by far the major morphological class. Diversity among smooth neurons is
much higher (Peters & Regidor, 1981). Spiny cells receive only Type II (in-
hibitory) synapses on their cell bodies and both Type I (excitatory) and
Type II synapses on their dendrites. They are presynaptic to only Type I
synapses. Smooth cells receive both Type I and Type II synapses on their
cell bodies and are, in general, presynaptic to Type II synapses (Peters &
Proskauer, 1980). Approximately 80% of all neurons in the neocortex are
spiny, and the rest are smooth. Both kinds contribute on average to the
same number of synapses per neuron.

Axonal rami�cations that make local connections range in length be-
tween 100 and 400 m m. The speed of propagation of a spike can be esti-
mated at approximately 1 m/s based on the fact that axons within a col-
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umn are unmyelinated. Synaptic delays range between 0.3 and 0.5 msec.
Consequently, the time interval between the generation of a spike at an
axon hillock and its subsequent arrival across a synapse can be estimated
to lie between 0.4 and 0.9 msec. Finally, anatomical investigations sug-
gest that dendritic collaterals are seldom longer than two or three space
constants.12

The past few decades have witnessed numerous investigations into the
electrophysiological activity of the cortex. The majority of these studies fall
under two categories. The �rst is the recording of action potentials (spikes),
which re�ect the output of single cortical neurons with a time resolution of
milliseconds, and the second is the recording of the electroencephalogram
(EEG), a slow, continuous wave that re�ects the activity of hundreds of
thousands of neurons.

An aspect shared universally among single cortical neuron recordings
is the apparent stochastic nature of the spike trains (Burns & Webb, 1976).
A good measure of spike variability is given by the coef�cient of varia-
tion (CV)13 of an ISI distribution. Spike trains of cortical neurons have CVs
ranging from 0.5 to 1.1, resembling a Poisson process for which CVD 1.

In the case of EEG recordings, the outputs are signi�cantly more ab-
struse. Classical signal analysis has long considered EEG records as real-
izations of (often stationary) stochastic processes, and spectral analysis has
been the conventional method for extracting the dominant frequencies of
the rhythms (Erdi, 1996). Spectral charts of EEG records generally exhibit
peak densities at frequencies of major cerebral rhythms, superimposed on
a 1/f spectral envelope. Recently, some researchers have come to regard
EEG records as the chaotic output of a nonlinear system (Basar, 1990) and
have attempted to measure the dimensionality of its various components
(Babloyantz, Salazar, & Nicolis,1985;Röschke & Basar, 1989). Unfortunately,
the results remain varied and inconclusive.

5.2 Experimental Setup. We conducted simulation experiments to com-
pare the dynamical characteristics of our model to the salient properties of
the dynamics of neocortical columns. The parameterized function v(x, t) D
faQ/ (x

p
t)ge¡bx2/ te¡c t was used to model the response to a spike at the

soma of a neuron (refer to MacGregor & Lewis, 1977, for a derivation of this
equation). The total response at the soma was computed as the sum of the
responses to individual spikes. The parameters a, b , and c were set so as to
�t response curves from NEURON v2.0 (Hines, 1993). Refractoriness was
modeled by the function ce¡dt.14

12 Distance over which response drops by a factor of e.
13 The ratio of the standard deviation to the mean of the ISI histogram (sDt /Dt).
14 Whereas in the abstract model, P(¢) must necessarily be C1 , such restrictions do not

apply here because the function is, in any case, discretized in time for simulation.
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Four separate sets of experiments were performed. The physiological ac-
curacy of the model was enhanced with each successive set of experiments.
In each case a neuronal system comprising 1000 neurons with each neuron
connected randomly to 100 other neurons was modeled.15

5.2.1 Model I. Eighty percent of all neurons in the system were ran-
domly chosen to be excitatory (spiny) and the rest inhibitory (smooth). The
strength of a synapse (Q) was chosen randomly from a uniform distribu-
tion over the range [5.7, 15.7]. Values for the parameters a, b , and c were
chosen so as to model a synapse with an uncharacteristically fast response
time (t ¼ 10 msec) and were set at �xed values for the entire system. x in
v(x, t) was also set at a �xed value for the entire system. In other words,
not only were all afferent synapses assumed to be located at the same dis-
tance from the soma, but they were also assumed to be generating identical
(to a constant factor) responses. Excitatory and inhibitory neurons were
constructed to be identical in all respects save the strength of inhibitory
synapses, which was enhanced to six times the magnitude (Q £ 6.0). The
lengths of the axonal collaterals and their variability were assumed to be
uncharacteristically large; the time interval between the birth of a spike at a
soma and its subsequent arrival across a synapse was randomly chosen to
lie between 5 and 15 msec (uniformly distributed). The parameters c and d
in the function modeling refractoriness were set at appropriate values and
held constant over the entire system. The threshold was established such
that at least 10 excitatory spikes (and no inhibitory spikes) with coincident
peak impact16 were required to cause a neuron to �re and it was held con-
stant over the entire system. The system was initialized with 5 live spikes
per neuron chosen randomly over their respective lifetimes (approximately
200 spikes per second per neuron).

5.2.2 Model II. The lengths of the axonal collaterals as well as their vari-
ability were modi�ed to re�ect realistic dimensions. The time interval be-
tween the birth of a spike at a soma and its subsequent arrival across a
synapse was randomly chosen to lie between 0.4 and 0.9 msec. All other
aspects of the model were left unchanged.

5.2.3 Model III. The unrealistic assumption that all afferent synapses
be located at the same distance from the soma and generate similar re-
sponses was eliminated. Instead, the locations of the synapses were chosen

15 Simulating larger systems of neurons was found to be computationally intractable.
Instead, we ran experiments on systems with 100 and 500 neurons. The qualitative char-
acteristics of the dynamics described here became more pronounced as the number of
neurons in the system (and their connectivity) was increased.

16 The probability of 10 spikes’ arriving in such a manner that their peak impact on a
soma coincide is very low. It took on average 20 live spikes to cause a neuron to �re.
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based on anatomical data. On the spiny cells, inhibitory synapses were cast
randomly to within a distance of 0.3 space constants from the soma, and
excitatory synapses were cast randomly from a distance of 0.3 to 3.0 space
constants from the soma. On smooth cells, both inhibitory and excitatory
synapses were cast randomly between distances of 0.0 and 3.0 space con-
stants from the soma. Since a synapse closer to the soma induced a more
intense response, we were also able to eliminate the factitious assumption
of inhibitory synapses’ being six times stronger than excitatory synapses.
Next, 50% of all excitatory synapses were randomly chosen to be of type
non-NMDA (AMPA/kainate) and the rest of type NMDA.17 Likewise, 50%
of all inhibitory synapses were randomly chosen to be of type GABAA and
the rest of type GABAB. The characteristic response of each kind of synapse
was modeled after graphs reported in Bernander, Douglas, and Koch (1992)
using the parameterized potential function. Finally, the threshold for �ring
of a neuron was reduced to an uncharacteristically low value, and the sys-
tem was initialized at a very sparsely active state (approximately 20 spikes
per second per neuron).

5.2.4 Model IV. The threshold for �ring of a neuron was returned to
its characteristic value, and the system was initialized at a more realistic
state. (Two separate initializations, one with approximately 100 spikes per
second per neuron and another with approximately 150 spikes per second
per neuron, were considered.)

5.3 Data Recorded. The dynamics of several random instantiations of
the models was investigated. In each case neurons were assigned a maxi-
mum number of effective spikes (n D dU / re) based on upper (U ) and lower
(r) bounds computed from physiological parameters. Each system was ini-
tialized randomly, and the ensuing dynamics was observed in the absence
of external input. Two classes of data was recorded. The temporal evolution
of the total number of live spikes registered by the entire system (a feature
peculiar to the dynamical system under consideration) was recorded as an
approximation to EEG data, and individual spike trains of 10 randomly
chosen neurons from each system were recorded for comparison with real
spike train recordings.

5.4 Results. The most signi�cant outcome of the simulation exper-
iments was the emergence of distinct patterns of qualitative dynamical be-
havior that were found to be robust across all models and their numer-

17 While the voltage dependence of NMDA synapses can be modeled in this frame-
work, for the sake of simplicity, the NMDA receptors were assumed to be relieved of the
Mg2C block at all times. In other words, they were set at peak conductance irrespective of
the postsynaptic polarization.
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Figure 4: Time series (over the same interval) of the total number of live spikes
from a representative system initiated at different levels of activity. Two of the
three classes of behavior, intense periodic activity and sustained chaotic activity,
are shown.

ous instantiations. Three classes of behavior were encountered. Each ran-
domly generated instantiation of the models possessed an intrinsic range
of activity18 over which the system displayed sustained chaotic behavior.
This range was found to conform with what is generally held as normal
operational conditions in the neocortex. If the system was initiated at an
activity level below this range, the total number of live spikes dropped as
the dynamics evolved, until the trivial �xed point of zero activity (the state
of quiescence) was reached. In contrast, if the system was initiated at an ac-
tivity level above this range, the total number of live spikes rose until each
neuron spiked periodically at a rate determined primarily by its absolute
refractory period. In other words, the system settled into a periodic orbit of
intense regular activity resembling a state of seizure. Figure 4 displays the
result of onesuch experiment,a result that is representative of the qualitative
dynamics of all the systems that were investigated.

Figures 5 and 6 report results from simulations of systems that were
initialized at activity levels within the above-mentioned range. Figure 5
displays normalized time series data pertaining to the total number of live
spikes from representative instantiations of each model. Also shown are the
results of a power spectrum analysis corresponding to each of the timeseries.

18 The corresponding region in the state-space is not exactly quanti�able through nu-
merical analysis because of the nature of chaos. Under conditions of relatively uniform
activity, a range with soft bounds was, however, detected with respect to the average spike
frequency.
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Figure 5: Normalized time series of total number of live spikes from instantia-
tions of each model and corresponding power spectrums.

Although there isa great deal more to an EEG recordingthan the dynamics of
1000 model neurons, the presence of peak densities at speci�c frequencies
and a 1/f spectral envelope in each of the spectrums supports the view
that the abstract system does model the salient aspects of the dynamics of
neocortical columns. Furthermore, the absence of any stochastic component
to the model19 demonstrates that the standard features of the EEG spectrum
do not necessarily imply that the underlying process is stochastic.

Of the 10 neurons from each system whose spike trains were recorded
during simulation, we chose one whose behavior we identi�ed as represen-
tative of the mean. Figure 6 displays the time series of ISIs of these neurons
(one per model) and their corresponding frequency distributions. The spike

19 The neurons are deterministic, and the system does not receive external input.
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Figure 6: ISI recordings of representative neurons from each model and corre-
sponding frequency distributions.

trains are not only aperiodic, but their ISI distributions suggest that they
could be generated from a Poisson process. We also computed the values
of the CVs for the various spike trains. The results obtained were encour-
aging: values ranged from 0.063 to 2.921 with the majority falling around
1.21.20 Neurons with higher rates of �ring tended to have lower values of
CV. The agreement between the qualitative aspects of the simulation data
and that of real ISI recordings speaks additionally in favor of the viability
of our model.

We conducted a second set of experiments to ascertain how predisposed
the systems were to the chaotic behavior in the presence of regulating exter-
nal input. Each system was augmented with two pacemaker neurons—an

20 Softky and Koch (1993) report that the CVs for spike trains of fast-�ring monkey
visual cortex neurons lie between 0.5 and 1.1. As the results clearly indicate, our deter-
ministic model can account for this range of data.
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Figure 7: ISI recordings of �ve representative neurons each, from three systems
with 70%, 80%, and 90% of the synapses on neurons driven by two pacemaker
cells, are shown.

excitatory and an inhibitory—that spiked at regular intervals.21 The topol-
ogy of the system was modi�ed such that of the 100 afferent synapses on
each neuron, s received their input from one of the two pacemaker cells
chosen randomly, and the remaining (100 ¡ s) received their input from
other neurons in the system. s was increased with successive experiments
until the system was found to settle into a periodic orbit. Figure 7 depicts
the ISIs of �ve representative neurons each, from systems with s set at 70,
80, and 90. The discovery that the system did not quite settle into a periodic
orbit even when 90% of all synapses were driven by periodic spikes bears
witness to the system’s propensity for chaotic behavior.

21 Thetwo pacemaker cells spiked every seventeenth time step, generating thesimplest
form of periodic input.
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Figure 8: Two trajectories that diverge from very close initial conditions.

Finally, experiments were conducted to determine whether the sys-
tems were sensitive to initial conditions, a feature closely associated with
chaotic behavior. Each system was initialized at two proximal points in
state-space, and the resulting dynamics was recorded. Respective trajecto-
ries were found either to diverge strongly or become coincident. Figure 8
depicts the temporal evolution of the total number of live spikes registered
by two identical systems of 100 neurons that were initialized with approx-
imately �ve live spikes per neuron, chosen randomly over respective life-
times. The initialization of the two systems was identical except for one
spike (chosen randomly) in the second system, which was perturbed by 1
msec. As the �gure demonstrates, the trajectories diverged strongly.

The results presented in this section are substantially more qualitative
than quantitative. The goal of the simulation experiments was not to em-
ulate the dynamics of any speci�c neocortical column. The data necessary
to accomplish such a feat are not available, and we do not claim that the
idealized neuron models all aspects of a neocortical neuron. The principal
objective of the exercise was to demonstrate that the abstract dynamical sys-
tem developed in the previous section was capable of modeling adequately
the qualitative dynamics of a typical neocortical column. To this end, val-
ues for the various parameters were chosen such that the resulting systems
resembled generic neocortical columns, and the dynamics of these systems
were assessed only to the extent to which they conformed with the generic
dynamics of neocortical columns.

6 Conclusions and Future Research

There is general agreement in the scienti�c community regarding the posi-
tion that the physical states of the brain are causally implicated in cognition
and behavior. What constitutes a discrete brain state is, however, a problem
far from resolved.
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It is our belief that a principled resolution to the problem can be arrived
at by analyzing, exclusively, the dynamics of the brain (or any part thereof)
as constrained by its anatomy and physiology. From a dynamical systems
perspective, the coherent spatiotemporal structures, if any, inherent in the
dynamics of a physical system are revealed in any attractors that are present
in its phase-space.

Our objective has therefore been to determine if there exist attractors in
the dynamics of systems of neurons and, if so, what their salient character-
istics are. The �rst step in such a program is the construction of an abstract
dynamical system that models systems of neurons. We have presented in
this article a detailed exposition of one such dynamical system.

In order to determine the viability of the model, we conducted simulation
experiments on several instantiations of the system, each modeling a typical
column in the neocortex. We found an agreeable �t between the qualitative
aspects of the results and that of real data.

A signi�cant outcome of the simulation experiments was the emergence
of three distinct categories of qualitative behavior that were found to be
robust across all the investigated instantiations of the system. In addition to
the trivial behavior of quiescence, the class of systems displayed sustained
chaotic behavior in the region of the phase-space associated with normal
operational conditions in the neocortex and intense periodic behavior in
the region of the phase-space associated with seizure-like conditions in the
neocortex.

Based on this evidence, we can surmise that coherent structures do exist
in the dynamics of neocortical neuronal systems operating under normal
conditions and that they are chaotic attractors. This would then imply that
at a certain level, the computational dynamics of such systems is inherently
unpredictable. Experimental evidence of the nature presented in this article,
however, does not amount to a proof of existence of chaotic attractors in that
class of systems. Furthermore, there is as yet little that is known about the
structure of these attractors.

In the companion article in this issue, we pursue these issues through a
formalanalysis of the phase-space dynamics of the abstract system. Not only
is the existence of chaos in the noted region of the phase-space con�rmed,
but also the root cause behind the existence of the distinct categories of
qualitative behavior is revealed.

The results of the experiments also shed light on why the strictly neuro-
physiological perspective to the study of the brain faces profoundproblems.
Whereas the abstract system presented in this article contains a good deal
of structure, such is not easily revealed in its dynamics. This is more so in
the case of real neurophysiological data, wherein the impression is one of
an appalling lack of structure. The incongruence between data recorded at
the individual or local neuronal level and at the organism’s behavioral level
is enormous. Bridging this gap without access to an intermediary model is
a formidable task. Whereas approaching the problem via a model might be
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deemed weaker because acceptance of the results hinges on the acceptance
of the adequacy of the model, it is our view that given the circumstances,
this is arguably the only viable approach.

Appendix A

The proof of theorem 1 is based on the following two theorems.

Theorem 4. All roots of f (z) are distinct and lie on |z| D 1 , (a) |a0 | D 1,
ai D Nan¡ia0 for i D 1, . . . , n ¡ 1, and (b) f 0 (z) has all roots in |z| < 1.

Proof.
i. Distinct roots on |z| D 1 ) (a) and (b). Assume w.l.o.g that an D 1. zi is

a root of f (z) , z¤
i D (1/ Nzi ) is a root of f ¤(z). |zi | D 1 implies (1/ Nzi) D zi.

Hence the roots of f (z) and f ¤(z) are identical. Consequently, a holds.
That all roots of f 0 (z) lie in |z| < 1 follows from all roots of f (z) being

distinct and Lucas Theorem (any convex polygon that contains all roots of
f (z) also contains all roots of f 0(z)).

ii. (a) and (b) ) distinct roots on |z| D 1. That the roots of f (z) lie on |z| D 1
follows from the following theorem in Cohn (1922).

Lemma 1 (Cohn). If g(z) D bmzm C bm¡1zm¡1 C ¢ ¢ ¢C b0 satis�es bm¡i D u Nbi for
all i D 0, . . . , m then g(z) has in |z| < 1 as many roots as [g0 (z)]¤ D zm¡1 Ng0 (1/z).

f (z) by criterion a satis�es the premise, and therefore, it has in |z| < 1 as many
roots as [ f 0 (z)]¤. By criterion b [ f 0 (z)]¤ has no roots in |z| < 1. Hence, f(z) has no
roots in |z| < 1. Finally, |a0 | D 1 constraints all roots of f (z) to lie on |z| D 1.

Criterion b then enforces that f (z) has no multiple roots.

Theorem 5. d1 < 0, dj > 0 for j D 2, . . . , n ¡ 1. (from theorem 1) , all roots of
f 0 (z) lie in |z| < 1.

Proof.
i.d1 < 0,dj > 0 for j D 2, . . . , n¡1. ) all roots of f 0 (z) lie in |z| < 1. Follows

directly from the following theorem in Marden (1948).

Lemma 2 (Marden). If for f (z) D amzm C am¡1zm¡1C ¢ ¢ ¢ Ca0, h f0(z), f1(z), . . . ,

fm(z)i is constructed as fj(z) D m¡j
kD0 a

(j)
k zk where f0(z) D f (z) and for j D

0, . . . , m ¡ 1, fjC1(z) D Na(j)
0 fj(z) ¡ a

(j)
m¡j f ¤

j (z), and djC1 D a
(jC1)
0 satisfy

d1 < 0, d2, . . . , dm > 0, then f (z) has all roots in |z| < 1.

ii. All roots of f 0 (z) lie in |z| < 1 ) d1 < 0, dj > 0 for j D 2, . . . , n ¡ 1.
(a) d1 < 0. Since f 0 (z) D f0(z) D bmzm C ¢ ¢ ¢ C b1z C b0 (here m D n ¡ 1)
has all roots in |z| < 1, the modulus of the product of all roots is less than 1.
Hence, |b0 | < |bm |, and d1 D |b0|2 ¡ |bm |2 < 0.
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(b) d2, d3, . . . , dn¡1 > 0 follows from the following theorem in Marden
(1948).

Lemma 3 (Marden). If in lemma 2, fj(z) has pj roots in |z| < 1 and none on
|z| D 1 and if djC1 6D 0, then fjC1(z) has pjC1 D 1

2 fm ¡ j ¡ [(m ¡ j) ¡ 2pj]sgndjC1g
roots in |z| < 1 and none on |z| D 1.

f0(z) D f 0 (z) has all n ¡1 roots in |z| < 1 and none in |z| D 1. We have shown
thatd1 < 0. Therefore, sgnd1 D ¡1. Based on the lemma, then, f1(z) has p1 D 0
roots in |z| < 1 andnone in |z| D 1. In other words, all roots of f1(z) lie in |z| > 1.
Using the argument in a, we get, d2 > 0. We now apply the lemma repeatedly
to get p2 D p1 D 0 and so on, implying d3, . . . , dn¡1 > 0.

The proof of theorem 2 is based on the following theorem:

Theorem 6. x 2 Ln and x /2 Ln , x denotes a polynomial with all roots on
|z| D 1 and at least 1 multiple root. x 2 Ln and x /2 Ln ) x is a boundary point
of Ln, that is, every open set containing x contains a y /2 Ln.

Proof.
i. x 2 Ln and x /2 Ln ) All roots on |z| D 1 and at least 1 multiple root. Since

x is a limit point of Ln, 9 denumerable sequence hy1, y2, . . . , yk, ykC1, . . .i,
s.t 8i yi 2 Ln and limi!1 yi D x. We now apply the following theorem in
Coolidge (1908) to the sequence.

Lemma 4 (Coolidge). If two polynomials f1(z) D zm C am¡1zm¡1 C ¢ ¢ ¢ C a0 and
f2(z) D zm C bm¡1zm¡1 C ¢ ¢ ¢ C b0 are so related that 8i ai is a constant, and 8i bi
approaches ai, then the roots of f1(z) and f2(z), where each multiple root of order k is
counted k times as k roots,may be put into such a one-to-one correspondence that the
absolute value of the difference between each two corresponding roots approaches 0.

Since x /2 Ln, either the corresponding polynomial does not have all roots on
|z| D 1, or not all roots are distinct. If the �rst case is true, the distance between at
least one set of roots in the theorem is bounded from below, thus contradicting it.

ii. All roots on |z| D 1 and at least 1 multiple root ) x 2 Ln and x /2 Ln.
Trivially x /2 Ln. Let hz1, z2, . . . , zni be the roots of the polynomial corresponding
to x with multiple roots of order k repeated k times. Choose a d > 0 s.t it satis�es
d < |(1/2) min8i, j zi 6Dzj ( (zi/zj))|. Choose hd1, d2, . . . , dni s.t 8i, j i 6D j ) di 6D dj
and 8i, 0 < |di | < d.

Now consider the sequence of ordered sets hz1ei(d1 /2p ), z2ei(d2/2p ), . . . , znei(dn /2p )i
for p D 0, 1, . . .. Each set comprises distinct roots on |z| D 1. The sequence
converges absolutely to hz1, z2, . . . , zni. Since coef�cients are continuous functions
of roots, the corresponding sequence hy1, y2, . . . , yk, ykC1, . . .i in coef�cient space
satis�es 8i yi 2 Ln and limi!1 yi D x. x is therefore a limit point of Ln.
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iii. x 2 Ln and x /2 Ln ) x is a boundary point. x 2 Cbn/2c £S1 (Cbn/2c¡1£M2)
) corresponding polynomial satis�es 9s, a permutation, s.t zi D (1/ Nzsi ). Let
x 2 Ln and x /2 Ln. Let heih1 , eih2 , . . . , eihn i be the set of roots that correspond
to x and w.l.o.g h ¤ D h1 D h2 D ¢ ¢ ¢ D hk (k ¸ 2). For any d < 1 consider
the sequence of ordered sets h((2p ¡ d)/2p)eih¤

, (2p /(2p ¡ d))eih¤
, eih3 , . . . , eihn i

for p D 0, 1, . . . The sequence converges absolutely to heih1 , eih2 , . . . , eihn i, and
each set satis�es 9s s.t zi D (1/ Nzsi

). Based on arguments identical to ii above,
the corresponding sequence hy1, y2, . . . , yk, ykC1, . . .i in coef�cient space satis�es
8i yi /2 Ln and limi!1 yi D x. x is therefore a boundary point of Ln.

Appendix B

Assumption iii of section 2 makes P(¢) C1 on Tn. Let F¡1: Ln ! U ½ Tn map
the transformed space into the initial space: F¡1han¡1, . . . , adn/2e(|adn/2e |)I

a0i D hx1, . . . , xni for odd (even) n, s.t, 0 · x1 · x2 · ¢ ¢ ¢ · xn < 2p .
Boundaries of U are of no concern because the range of F¡1 could equally
well be d · x1 · x2 · ¢ ¢ ¢ · xn < 2p C d for arbitrary d and P(¢) is C1 on
Tn. Let G(¢) denote the Cartesian product of F¡1(¢) with itself appropriately
many times that maps the transformed space of all relevant neurons into
their initial spaces. De�ne, tentatively, P D P ± G.

Since both P and F are C1, P is C1 wherever the Jacobian of F is nonsin-
gular.

Theorem 7. @xk

@aj
is unde�ned when xk is a multiple root, that is, 9a, b s.t xa D

xb ) Det(DF) D 0.

Proof. 8 j aj is a symmetric function of hx1, . . . , xni. Therefore, 8 j @aj

@xa D @aj

@xb

when xa D xb. In other words, if xa D xb, columns a and b in (DF) are
identical.

Theorem 8. 8i, j (i 6D j ) xi 6D xj ) ) Det(DF) 6D 0.

Proof. We prove the theorem for cases, n is odd and n is even, separately.
i. n is odd. Based onthe functions de�ning coef�cients in terms of rootsand

simple matrix manipulations, (DF) evaluated at hx1, x2, . . . , xniD hh1, h2, . . . ,
hni can be reduced to the matrix [ai, j]1·i, j·n de�ned as: for all j D 1, . . . , n,
(a) if i D 1, ai, j D 1, (b) if i > 1 is even, ai, j D sin( i

2hj ), and (c) if i > 1 is odd,
ai, j D cos( i¡1

2 hj ).
We prove Det(DF) 6D 0 by demonstrating that for any vector Ex, Ex ¤

[ai, j]1·i, j·n D 0 implies Ex ´ h0, . . . , 0i. Let n D 2m C 1, and f (x) D a0 C
m
iD1 a2i¡1 sin ix C a2i cos ix. For arbitrary reals a0, a1, . . . , a2m not all zero,

we demonstrate that the maximum number of roots that f (x) can have in
[0, 2p ) is 2m, thus proving the claim.



190 Arunava Banerjee

Let g(x) D c 0 C m
iD1 c i sin(ix C bi) such that g(x) ´ f (x). Since g(x) is

periodic with period 2p , if g(x) has m roots in [0, 2p ) then g1(x) D g0 (x) has
at least m roots in [0, 2p ), and since g1(x) is also periodic with period 2p ,
g2(x) D g00 (x) has at least m roots in [0, 2p ) and so on.

g4k(x) D m
iD1 i4kc i sin(ix C bi) for k D 1, 2, . . . . As k rises, (a) the coef�-

cients of sin(ix C bi) for i D 1, . . . , (m ¡ 1) become negligible as compared
to the coef�cient of sin(mx C bm), and (b) the magnitude of the gradients of
i4kc i sin(ix C bi) for i D 1, . . . , (m ¡1) also become negligible as compared to
the gradient of m4kc m sin(mx C bm) near its roots. Since m4kc m sin(mx C bm)
has 2m roots in [0, 2p ), we have m · 2m.

ii. n is even. Let n D 2m. For anyh¤, the mappingFhx1, . . . , x2miD han¡1, . . . ,
|adn/2e |I a0i is a C1-diffeomorphism in an open set about hh1, h2, . . . , h2mi if
and only if the mapping F0hx1, . . . , x2mI x2mC1i D han¡1, . . . , |adn/2e |I

a0I x2mC1i is a C1-diffeomorphismin an open set about hh1, h2, . . . , h2m, h¤i.
Consequently, all that needs to be shown is that for n D 2m, the mapping
ha2m¡1, . . . , |am |I a0I x2mC1i ! hA2m, . . . , AmC1I A0i is C1 (Ai’s are the
coef�cients of the polynomial of degree 2m+1 whose roots include the ad-
ditional eih¤

). Note that 8i, j (i 6D j ) hi 6D hj) and 8i D 1, . . . , 2m hi 6D h¤ is
enforced by i above on the mapping hA2m, . . . , AmC1I A0i ! hx1, . . . , x2mI
x2mC1i.

The trivial relations between the Ai’s and the ai’s immediately prove that
the mapping is C1.

The portion of Ln actually explored by the state dynamics of the neuron has
multiple roots only at eixi

D eixj
D 1, that is, when the spikes are dead. We

therefore de�ne P(¢) as follows:

1. If 8 relevant i each hx1
i , x2

i , . . . , xni
i i is composed of distinct elements,

then P(¢) is C1 as demonstrated in the preceding theorem.

2. If 9 relevant i s.t hx1
i , x2

i , . . . , xni
i i is not composed of distinct elements,

and x¤ is one such multiple element (at eix¤
D 1), then we de�ne,

for all m, j1, . . . , jl¡1, k1, . . . , kl (such that l
iD1 ki D m), and iqp’s (not

necessarily distinct, for q D 1, . . . , l, p D 1, . . . , kq)

@mP
@k1x j1 . . . @kl¡1 x jl¡1 @kl x¤ £

@k1x j1

@ai11
. . . @ai1k1

. . .
@kl¡1 xjl¡1

@ail¡1
1

. . . @ail¡1
kl¡1

£
@kl x¤

@ail1
. . . @ailkl

D 0. (B.1)

Although @kl x¤

@a
il
1
...@a

il
kl

is unde�ned in such a case, by imposing the ad-

ditional constraint @P
@x¤ D 0 over an in�nitesimal interval (eid > eix¤

>
ei(2p ¡d)) irrespective of the values assigned to the other variables,
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we can maintain in�nite differentiability of P, since we then have
@mP

@k1 xj1 ...@kl¡1 xjl¡1 @kl x¤ D 0 over the interval.

3. If 9 relevant i s.t hx1
i , x2

i , . . . , xni
i i is not composed of distinct elements,

but member element x¤ is a distinct element, then @x¤

@aj
cannot be directly

computed from (DF)¡1 since det(DF) D 0. However, as is shown next,
tangible value exists for @x¤

@aj
. It is also shown that @x¤

@aj
is C1.

Theorem 9. Let the roots of f (z) D zn C an¡1zn¡1 C ¢ ¢ ¢ C a0, constrained to
lie on |z| D 1, be heix1

, eix2
, . . . , eixn i. Let eixa

D eixb
and all other roots be distinct.

Let the sequence of sets hy1
p , y2

p , . . . , yn
p i for p D 1, 2, . . . be constructed s.t 8p, q yq

p

is distinct, 8q limp!1 yq
p D xq. Then 8p (DF)¡1 |hy1

p ,y2
p ,...,yn

p i is well de�ned and

limiting values exist for @xk

@aj
for all k 6D a or b. Moreover, @xk

@aj
is C1 for all such

values of k.

Proof. That 8p (DF)¡1 | hy1
p ,y2

p , ...,yn
p i is well de�ned follows from the previous

theorem. Just as in the previous theorem, we consider the case for odd n
�rst. We refer to the simpli�ed version of (DF) evaluated at hh1, h2, . . . , hni
given earlier. In the limit, column b can be replaced by ( d

dh column a) ´
h0, cos(ha), ¡ sin(ha), 2 cos(2ha), ¡2 sin(2ha), . . .iT .

We demonstrate that this matrix is invertible. Let g(x) D c 0 C
m
iD1 c i sin(ix C bi). For arbitrary reals c 0, c 1, b1, . . . , c m, bm not all zero, g(x)

cannot have 2m distinct roots and one multiple root in [0, 2p ) because g1(x)
must then have at least 2m C 1 roots in [0, 2p ) and so on.

All rows except a and b in (DF)¡1, computed as (DF)¡1(DF) D I, there-
fore have �nite limiting values, identical to the corresponding values in
the inverse of the matrix described above. Since the elements of the matrix
are C1, and its determinant (a C1 function of its elements) is nonzero, the
elements of its inverse are C1.

The case for even n is treated exactly as in the previous theorem.
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