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Abstract—We present a flexible non-parametric genera-
tive model for multigroup regression that detects latent com-
mon clusters of groups. The model is founded on techniques
that are now considered standard in the statistical parame-
ter estimation literature, namely, Dirichlet process(DP) and
Generalized Linear Model (GLM), and therefore, we name
it “Infinite MultiGroup Generalized Linear Models” (iMG-
GLM). We present two versions of the core model. First, in
iMG-GLM-1, we demonstrate how the use of a DP prior on
the groups while modeling the response-covariate densities via
GLM, allows the model to capture latent clusters of groups by
noting similar densities. The model ensures different densities
for different clusters of groups in the multigroup setting.
Secondly, in iMG-GLM-2, we model the posterior density of
a new group using the latent densities of the clusters inferred
from previous groups as prior. This spares the model from
needing to memorize the entire data of previous groups. The
posterior inference for iMG-GLM-1 is done using Variational
Inference and that for iMG-GLM-2 using a simple Metropolis
Hastings Algorithm. We demonstrate iMG-GLM’s superior
accuracy in comparison to well known competing methods
like Generalized Linear Mixed Model (GLMM), Random
Forest, Linear Regression etc. on two real world problems.

I. Introduction
Multigroup Regression is the method of choice for re-
search design whenever response-covariate data is col-
lected across multiple groups. When a common regres-
sor is learned on the amalgamated data, the resultant
model fails to identify effects for the responses specific
to individual groups because the underlying assumption is
that the response-covariate pairs are drawn from a single
global distribution, when the reality might be that the
groups are not statistically identical, making the joining of
them inappropriate. Modeling separate groups via separate
regressors results in a model that is devoid of common
latent effects across the groups. Such a model does not
exploit the patterns common among the groups ensuring in
turn the transferability of information among groups in the
regression setting. This is of particular importance when
the training set is very small for many of the groups. Joint
learning, by sharing knowledge between the statistically
similar groups, strengthens the model for each group, and
the resulting generalization in the regression setting is
vastly improved.

The complexities that underlie the utilization of the
information transfer between the groups are best moti-
vated through examples. In Clinical Trials, for example,
a group of people are prescribed either a new drug or
a placebo to estimate the efficacy of the drug for the
treatment of a certain disease. At a population level, this

efficacy may be modeled using a single Normal or Poisson
mixed model distribution with mean set as a (linear or
otherwise) function of the covariates of the individuals in
the population. A closer inspection might however disclose
potential factors that explain the efficacy results better. For
example, there might be regularities at the group level—
Caucasians as a whole might react differently to the drug
than, say, Asians, who might, furthermore, comprise many
groups. Identifying this across group information would
therefore improve the accuracy of the regressor. Similarly
in the Stock Market, future values and trends for a group
of stocks are predicted for various sectors such as Energy,
Materials, Consumer discretionary, Financials, Telecomm.,
Technology, etc. Within each sector, various stocks share
trends and therefore predicting them together (modeling
them with the same time series via autoregressive den-
sity) is usually much more accurate than predicting and
capturing individual trends. Modeling the latent common
clustering effects of cross-cutting subgroups is therefore
an important problem to solve. We present a framework
here that accomplishes this.

We begin with a brief description of the weaknesses of
the most popular multilevel regression techniques, namely,
Generalized Linear Models [1] and Mixed model [2].
In regression theory, Generalized Linear Model (GLM),
proposed in [1], brings erstwhile disparate techniques such
as, Linear regression, Logistic regression, and Poisson
regression, under a unified framework. GLM is formally
defined as:

f (y; θ, ψ) = exp

{
yθ − b (θ)

a (ψ)
+ c (y;ψ)

}
(1.1)

Here, ψ is a dispersion parameter. exp denotes the ex-
ponential family density. The mean response is E [Y |X] =
b (θ) = µ = g−1

(
XTβ

)
, where g is the link function,

XTβ is the linear predictor. For multigroup regression,
Generalized Linear Mixed Model (GLMM) [2] and Hier-
archical Generalized Linear Mixed Model [3] have been
developed where similarities between groups is captured
though a Fixed effect and variation across groups is cap-
tured through random effects. Statistically, these models
are very rigid since every group is forced to manifest the
same fixed effect, while the random effect only represents
the intercept parameter of the linear predictors. Cluster
of groups may have significantly different properties from
other clusters of groups, a feature that is not captured in
these traditional GLM based models. Furthermore, various
clusters of groups may have different uncertainties with
respect to the covariates which we denote as heteroscedas-



ticity. In recent progress, [4] has proposed a Bayesian
Hierarchical model, where a prior is used for the mixture of
groups. Nevertheless, individual groups are given weights
as opposed to jointly learning various groups. Also, the
number of mixtures are fixed in advance.

Before, presenting our algorithm, we describe our ba-
sis for identifying group-correlation. First, two groups are
correlated if their responses follow the same distribution.
Second, two groups that have the same response variance
with respect to the covariates are deemed to be correlated.
This is achieved via a Dirichlet Process prior on the
groups and the covariate co-efficients (β). The posterior is
obtained by appropriately combining the prior and the data
likelihood from the given groups. The prior helps cluster
the groups and the likelihood from the individual groups
help in the sharing of trends between groups to create the
single posterior density between the many potential groups,
thereby leading to group-correlation.

We now present an overview of our iMG-GLM frame-
work. Our objective is to achieve (a) shared learning
of various groups in a regression setting, where data
may vary in terms of temporal, geographical or other
modalities and (b) automatic clustering of groups which
display correlation. iMG-GLM-1 solves this task. In iMG-
GLM-2, we model a completely new group after modeling
previous groups through parameters learned in iMG-GLM-
1. In the first part, the regression parameters are given
a Dirichlet Process prior, that is, they are drawn from
a DP with the base distributions set as the density of
the regression parameters. Since a draw from a DP is
an atomic density, to begin, one group will be assigned
one density of the regression parameters which signifies
the response density with respect to its covariates. As the
drawn probability weight from the DP increases, the cluster
starts to consume more and more groups in this mutigroup
setting. We employ a variational Bayes algorithm for the
inference procedure in iMG-GLM-1 for computational
efficiency. iMG-GLM-1 is then extended to iMG-GLM-2
for modeling a completely new group. Here we transfer
the information (covariate coefficients) obtained in the
first part, to learning a new group. In essence, the cluster
parameters (covariate coefficients for the whole group) are
used as a prior distribution for the model parameters of
the new group’s response density. This therefore leads
to a mixture model where the weights are given by the
number of groups that one cluster consumed in the first part
and the mixture components are the regression parameters
obtained for that specific cluster. The likelihood comes
from the data of the new group. We use a simple accept-
reject based Metropolis Hastings algorithm to generate
samples from the posterior for the new group regression
parameter density. For both iMG-GLM-1 and iMG-GLM-
2, we use Monte Carlo integration for evaluating the
predictive density of the new test samples.

We evaluate both iMG-GLM-1 and iMG-GLM-2 Nor-
mal models in two real world problems. The first is the
prediction and finding of trends in the Stock Market. We
show how information transfer between groups help our

model to effectively predict future stock values by varying
the number of training samples in both previous and new
groups. In the second, we show the efficacy of i-MG-GLM-
1 and 2 Poisson model against its competitors in a very
important Clinical Trial Problem Setting.

II. Mathematical Background
A. Models Related to iMG-GLM: After its introduc-
tion, Generalized Linear Model was extended to Hierar-
chical Generalized Linear Model (HGLM) [3]. Then it
included structured dispersion in [5] and models for spatio-
temporal co-relation in [6]. Generalized Linear Mixed
Models (GLMMs) were proposed in [2]. The random
effects in HGLM were specified by both mean and disper-
sion in [7]. Mixture of Linear Regression was proposed
in [8]. Hierarchical Mixture of Regression was done in
[9]. Varying co-efficient models were proposed in [10].
Multi-tasking Model for classification in Non-parametric
Bayesian scenario was introduced in [11]. Sharing Hidden
Nodes in Neural Networks was introduced in [12], [13].
General Multi-Task learning was described first in [14].
Common prior in hierarchical Bayesian model was used
in [15], [16]. Common structure sharing in the predictor
space was presented in [17]. All of these models suffer
the shortcomings of not identifying the latent clustering
effect across groups as well as varying uncertainty with
respect to covariates across groups, which the iMG-GLM
inherently models.

B. Dirichlet Process and its Stick-breaking Representa-
tion: A Dirichlet Process [18], D (α,G0) is defined as a
probability distribution over a sample space of probability
distributions, G ∼ DP (α,G0) and ηj |G ∼ G. Here, α is
the concentration parameter and G0 is the base distribution.

When we integrate over G, the conditional density
of ηj , given previous η1:j−1 is given by the Chinese
Restaurant process [19]. ηj |θ1:j−1, α,G0 ∼ α

α+j−1G0 +
1

α+j−1

∑j−1
k=1 n−j,kδη∗

k
. Here, n−m,k denotes the number

of η’s equal to η∗k (From K distinct values) excluding ηj .
According to the stick-breaking construction [20] of

DP, G, which is a sample from DP, is an atomic distribution
with countably infinite atoms drawn from G0.

vk|α,G0 ∼ Beta(1, α), θk|α,G0 ∼ G0,

πi = vk
∏k−1

p=1 (1− vp) , G =
∑∞

k=1 πk.δθk
(2.2)

In the DP mixture model [21], DP is used as a non-
parametric prior over parameters of an Infinite Mixture
model.

zn| {v1, v2, ...} ∼ Categorical {Π1,Π2,Π3....} ,
Xn|zn, (θk)∞i=1 ∼ F (θzn)

(2.3)

Here, F is a distribution parametrized by θzn .
{π1, π2, π3, ...} is defined by Eq. 2.2.

III. iMG-GLM Model Formulation
We consider M groups indexed by j = 1, ....,M and
the complete data as D = {xj,i, yj,i} s.t. i = 1, ...Nj .



Fig. 1. Graphical Representation of iMG-GLM-1 Model.

{xj,i, yj,i} are covariate-response pairs and are drawn i.i.d.
from an underlying density which differs along with the
nature of {xj,i, yj,i} among various models.

A. Normal iMG-GLM-1 Model: In the Normal iMG-
GLM-1 model, the generative model of the covariate-
response pair is given by the following set of equa-
tions. Here, Xji and Yji represent the ith continuous
covariate-response pairs of the jth group. The distribution
of Yj,i|Xj,i is normal parametrized by β0:D and λ. The
distribution, {βkd, λk} (Normal-Gamma) is the prior dis-
tribution on the covariate coefficient β. This distribution
is the base distribution (G) of the Dirichlet Process. The
set {m0, β0, a0, b0} constitute the hyper-parameters for
the covariate coefficients (β) distribution. The graphical
representation of the normal model is given in Figure 1.

vk ∼ Beta(α1, α2), πk = vkΠ
k−1
n=1 (1− vn)

N
(
βkd|m0, (β0, λk)

−1)Gamma (λk|a0, b0)
Zj |vk ∼ Categorical (π1, ......π∞)

Yji|Xji ∼ N
(
Yji|

∑D
d=0 βZjdXjid, λ

−1
Zj

) (3.4)

B. Logistic Multinomial iMG-GLM-1 Model: In the
Logistic Multinomial iMG-GLM-1 model, a Multinomial
Logistic Framework is used for a Categorical response,
Yji, for a continuous covariate, Xji, in the case of ith
data point of the jth group. t is the index of the category.
The distribution of Yj,i|Xj,i is Categorical parametrized
by β0:D,0:T . The distribution, {βktd} (Normal) is the prior
distribution on the covariate coefficient β which is the
base distribution (G) of the Dirichlet Process. The set
{m0, s0} constitute the hyper-parameters for the covariate
coefficients (β) distribution.

vk ∼ Beta(α1, α2), πk = vkΠ
k−1
n=1 (1− vn)

βktd ∼ N
(
βktd|m0, s

2
0

)
, Zj |vk ∼ Categorical (π1, ......π∞)

Yji = t|Xji, Zj ∼
exp

(∑D
d=0 βZjtd

Xjid

)
∑T

t=1 exp
(∑D

d=0
βZjtd

Xjid

)
(3.5)

C. Poisson iMG-GLM-1 Model: In the Poisson iMG-
GLM model, a Poisson distribution is used for the count
response. Here, Xji and Yji represent the ith contin-
uous/ordinal covariate and categorical response pair of
the jth group. The distribution of Yj,i|Xj,i is Poisson
parametrized by β0:D,0:T . The distribution, {βkd} (Nor-
mal) is the prior distribution on the covariate coefficient β
which is the base distribution (G) of the Dirichlet Process.
The set {m0, s0} constitute the hyper-parameters for the
covariate coefficients (β) distribution.

vk ∼ Beta(α1, α2), πk = vkΠ
k−1
n=1 (1− vn) ,

{βk,d} ∼ N
(
βkd|m0, s

2
0

)
Yji|Xji, Zj ∼ Poisson

(
yji| exp

(∑D
d=0 βZjdXjid

))
(3.6)

IV. Variational Inference
The inter-coupling between Yji, Xji and zj in all three
models described above makes computing the posterior of
the latent parameters analytically intractable. We therefore
introduce the following fully factorized and decoupled
variational distributions as surrogates.

A. Normal iMG-GLM-1 Model: The variational distri-
bution for the Normal model is defined formally as:
q (z, v, βkd, λk) =

∏K
k=1Beta

(
vk|γ1

k, γ
2
k

)∏M
j=1Multinomial (zj |ϕj)∏K

k=1

∏D
d=0 N

(
βkd|mkd, (βk, λk)

−1
)
Gamma (λk|ak, bk)

(4.7)
Firstly, each vk follows a Beta distribution. As in

[22], we have truncated the infinite series of v
′

ks into a
finite one by making the assumption p (vK = 1) = 1
and πk = 0∀k > K. Note that this truncation applies
to the variational surrogate distribution and not the actual
posterior distribution that we approximate. Secondly, zj
follows a variational multinomial distribution. Thirdly,
{βkd, λk} follows a Normal-Gamma distribution.

B. Logistic Multinomial iMG-GLM-1 Model: The
variational distribution for the Logistic Multinomial model
is given by:
q (z, v, βkd, λk) =

∏K
k=1Beta

(
vk|γ1

k, γ
2
k

)∏M
j=1Multinomial (zj |ϕj)∏K

k=1

∏T
t=1

∏D
d=0

{
N

(
βktd|mktd, s

2
ktd

)}
(4.8)

Here, vk and zj represent the same distributions as
described in the Normal iMG-GLM-1 model above. {βktd}
follows a variational Normal Model.

C. Poisson iMG-GLM-1 Model: The variational distri-
bution for the Poisson iMG-GLM-1 model is given by:



q (z, v, βkd, λk) =
∏K

k=1Beta
(
vk|γ1

k, γ
2
k

)∏M
j=1Multinomial (zj |ϕj)

∏K
k=1

∏D
d=0

{
N

(
βktd|mktd, s

2
ktd

)}
(4.9)

Here, vk and zj represent the same distributions as
described in the Normal iMG-GLM-1 model above. {βkd}
follows a variational Normal Model.

V. Parameter Estimation for Variational Distribution
We bound the log likelihood of the observations in the
generalized form of iMG-GLM-1 (same for all the models)
using Jensen’s inequality, ϕ (E [X])≥E[ϕ (X)], where, ϕ
is a concave function and X is a random variable. In this
section, we differentiate the individually derived bounds
with respect to the variational parameters of the specific
models to obtain their respective estimates.

A. Parameter Estimation of iMG-GLM-1 Normal
Model: The parameter estimation of the Normal Model
is as follows:

γ1
k = 1 +

∑M
i=1 ϕik, γ2

k = α+
∑M

i=1

∑K
p=k+1 ϕn,p

ϕjk =
exp(Sjk)∑K

k=1
exp(Sjk)

s.t.

Sjk =
∑k

j=1

{
Ψ
(
γ1
j

)
−Ψ

(
γ1
j + γ2

j

)}
+ Pjk s.t.

Pjk = 1
2

∑M
j=1

∑Nj

i=1 ϕjk{log
(

1
2π

)
+Ψ(ak)− log (bk)

−βk
(
1 +

∑D
d=1X

2
jid

)
− ak

bk

(
Yji −mk0 −

∑D
d=1mkdXjid

)2

}

βk =
(D+1)β0+

∑M
j=1

∑Nj
i=1 ϕjk(1+

∑D
d=1 X2

jid)
D+1

ak =
∑D

d=0 a0 +
1
2

∑M
j=1

∑Nj

i=1 ϕjk

bk = 1
2
{
∑D

d=0 β0 (mkd −m0)
2 + 2b0

+
∑M

j=1

∑Nj

i=1 ϕjk

(
Yji −mk0 −

∑D
d=1mkdXjid

)2

}

mk0 =
m0β0+

∑M
j=1

∑Nj
i=1 ϕji(Yji−

∑D
d=1 mkdXjid)

β0+
∑M

j=1

∑Nj
i=1 ϕjk

mkd =
m0β0+

∑M
j=1

∑Nj
i=1 ϕji

(
Yji−mk0−

∑D−(d)
d=1

mkdXjid

)
Xjid

β0+
∑M

j=1

∑Nj
i=1 ϕjkX2

jid

(5.10)

B. Parameter Estimation of iMG-GLM-1 Multinomial
Model: For the Logistic Multinomial Model, the estima-
tion of γ1i , γ

2
i , ϕjk and are identical to the Normal model

with the only difference being that Pjk is given as,

Pjk = 1
2

∑M
j=1

∑Nj

i=1 ϕjk{log
(

1
2π

)
+∑T

t=1 Yjit

(
mk0t +

∑D
d=1Xjidmkdt

)
mkdt = m0s

2
0 + s2kdt

∑M
j=1 ϕjk

∑Nj

j=1 YjitXjid, s2kdt = s20+∑M
j=1 ϕjk

∑Nj

j=1

(∑D
d=0X

2
jid exp

(∑D
d=0Xjidmkdt

))
(5.11)

C. Parameter Estimation of Poisson iMG-GLM-1
Model: Again, in the Poisson Model, estimation of
γ1i , γ

2
i , ϕjk, are similar to the Normal model with the only

difference being that the term Pjk is given as,

1. Initialize Generative Model Latent Parameters q (z, v, βkd, λk) Ran-
domly in its State Space.
Repeat
2. Estimate γ1

k and γ2
k according to Eq.5.10. for k = 1 to K.

3. Estimate ϕjk according to Eq.5.10. for j = 1 to M and for k = 1 to K.
4. Estimate the model density parameters, {mkd, βk, ak, bk} according
to Eq.5.10. for k = 1 to K and d = 0 to D. until converged
6. Evaluate E[Yj,new] for a new covariate, Xj,new , according to Eq.5.14
and Eq.5.15.

TABLE I. ALGORITHM: VARIATIONAL INFERENCE ALGORITHM

FOR IMG-GLM-1 NORMAL MODEL.

Pjk = 1
2

∑M
j=1

∑Nj

i=1 ϕjk{−
∑D

d=0 exp
(

skd

2
+

mkdXjid

skd

)
+

Yji

(∑D
d=0Xjidmkd

)
− log (Yji)

mkd

s2
kd

+ exp (mkd) +
∑M

j=1 ϕjk

∑Nj

i=1

Xjid

s2
kd

=
∑M

j=1

∑
i=1NjϕjkYjiXjid

(5.12)
For, mkd and skd, does not have a close form solution.

However, it can be solved quickly via any iterative root-
finding method.

D. Predictive Distribution: Finally, we define the pre-
dictive distribution for a new response given a new covari-
ate and the set of previous covariate-response pairs for the
trained groups.

p (Yj,new|Xj,new, Zj , βk=1:K,d=0:D) =∑K
k=1

∫
Zjkp

(
Yj,new|Xj,new, β

D
k,d=0

)
q (z, v, βkd, λk)

(5.13)
Integrating out the q (z, v, βkd, λk), we get the follow-

ing equation for the Normal model.

p (Yj,new|Xj,new) =∑K
k=1 ϕjkSt

(
Yj,new|

(∑D
d=0mkdXj,new,,d, Lk, Bk

))
(5.14)

Here, Lk = (2ak−D)βk

2(1+βk)bk
, which is the precision param-

eter of the Student’s t-distribution and Bi = 2ay,i −D is
the degrees of freedom. For the Poisson and Multinomial
Models, the integration of the densities is not analytically
tractable. Therefore, we use Monte Carlo integration to
obtain,

E [Yj,new|Xj,new,X,Y] = E [E [Yj,new|Xj,new,q (βkd)] |X,Y]

= 1
S

∑S
s=1 E [Yj,new|Xj,new,q (βkd)]

(5.15)
In all experiments presented in this paper, we collected

100 i.i.d. samples (S=100) from the density of β to evaluate
the expected value of Yj,new. The complete Variational
Inference Algorithm for iMG-GLM-1 Normal Model is
given Table I.

VI. iMG-GLM-2 Model
We can now learn a new group M + 1, after all of the
first M groups have been trained. For this process, we
memorize the learned latent parameters from the previ-
ously learned data.



A. Information Transfer From Prior Groups: First,
we write down the latent parameter conditional distribu-
tion given all the parameters in the previous groups. We
define the set of latent parameters (Z, v, β, λ) as η. From
the description of Dirichlet Process we write down the
probability for the latent parameters for the (M + 1)th

group given previous ones,

p (ηM+1|η1:M , α,G0) =
α

M+α
G0 +

1
M+α

∑K
k=1 nkδη∗

k
(6.16)

Where, nk =
∑M

j=1 Zjk, represents count where
ηj = η∗k. If we substitute η∗k = E [η∗k], which we define by
Ω = {ϕjk, γk,mdk, λk, sdk}, we get,

p (ηM+1|η∗k, α,G0) =
α

M+α
G0 +

1
M+α

∑K
k=1 nkδη∗

k
(6.17)

Where, nk =
∑M

j=1 indexjk and indexjk =
δargmax(ϕjk). This distribution represents the prior belief
about the new group latent parameters in the Bayesian
setting. Now our goal is to compute the posterior distribu-
tion of the new group latent parameters after we view the
likelihood with the data in (M + 1)th group.

p (ηM+1|Ω, α,DM+1) =
p(DM+1|ηM+1)p(ηM+1|Ω,G0)

p(DM+1|Ω,G0)
(6.18)

Here, p (DM+1|ηM+1) =

Π
NM+1

i=1 p (YM+1,i|ηM+1, XM+1,i).

B. Posterior Sampling: The posterior of Eq. 6.18 does
not have a closed form solution apart from the Normal
Model. So, we apply a Metropolis Hastings Algorithm
[23], [24] for the Logistic Multinomial and Poisson Model.
For the Normal model, p (ηM+1|Ω, α,DM+1) turns out
to be a mixture of Normal-Gamma density, Normal −
Gamma

(
ηM+1|m

′

k, β
′

k, a
′

k, b
′

k

)
with following parame-

ters,

m
′
k =

{
XT

M+1XM+1 + (βk) I
}−1 {

XT
M+1YM+1 + βkImk

}
β

′
k =

(
XT

M+1XM+1 + βkI
)
, a

′
k = ak +NM+1/2

b
′
k = bk + 1

2

{
Y T
M+1YM+1 +mT

k βkmk −m
′T
k β

′
km

′
k

}
(6.19)

For the Poisson and Logistic Multinomial Model, The
Metropolis Hastings Algorithm has the following steps.
First, we draw a sample η̇ from Eq. 6.17. Then we draw
a candidate sample η, Next, we compute the acceptance
probability,

[
min

[
1, p(DM+1|η)

p(DM+1|η̇)

]]
. We set the new η̇ to

η with this acceptance probability. Otherwise, it remains
the old value. We repeat the above 4 steps until enough
samples has been collected. This yields the approximation
of the posterior.

C. Prediction for New Group Test Samples: We
seek to predict the future YM+1,new|XM+1,new,Ω, by the
following equation with the previous collection of posterior
samples ηt=1:T . T is the number of samples.

p (YM+1,new|XM+1,new,Ω)

= 1
T

∑T
t=1 p (YM+1,new|XM+1,new, ηt)

(6.20)

VII. Experimental Results
We present empirical studies on two realworld applica-
tions: (a) a Stock Market Accuracy and Trend Detection
problem and (b) a Clinical Trial problem on the efficacy
of a new drug.

A. Trends in Stock Market: We propose iMG-GLM-1
and iMG-GLM-2 as a trend spotter in Financial Markets
where we have chosen daily close out stock prices over
51 stocks from NYSE and Nasdaq in various sectors,
such as, Financials (BAC, WFC, JPM, GS, MS, Citi,
BRK-B, AXP), Technology (AAPl, MSFT, FB, GOOG,
CSCO, IBM, VZ), Consumer Discretionary (AMZN, DIS,
HD, MCD, SBUX, NKE, LOW), Energy (XOM, CVX,
SLB, KMI, EOG), Health Care (JNJ, PFE, GILD, MRK,
UNH, AMGN, AGN), Industrials (GE, MMM, BA, UNP,
HON, UTX, UPS), Materials (DOW, DD, MON, LYB)
and Consumer Staples (PG, KO, PEP, PM, CVS, WMT).
The task is to predict future stock prices given past stock
value for all these stocks and spot general trends in the
cluster of the stocks which might be helpful in finding a far
more powerful model for prediction. The general setting
is a auto-regressive process via the Normal iMG-GLM-1
model with lags representing the predictor variables and
response being the current stock price. The lag-length was
determined to be 3 by trial and error with 50-50 training-
testing split. Data was collected from September 13th,
2010 to September 13th, 2015 with 1250 data points, from
Google Finance.

Some very interesting trends were noteworthy. After
the clustering was accomplished for the Normal model,
the stocks became grouped almost entirely by the sectors
they came from. Specifically, we witnessed a total of 9
clusters of stocks, close in makeup to the 8 sectors chosen
originally consolidating all the stocks sectors such as,
financial, healthcare etc. For example, Apple, Microsoft
Verizon, Google, Cisco and AMZN were clubbed together
in one cluster. This signifies that all of these stocks share
the same auto-regressive density with the same variance.
In comparison, single and separate modeling of the stocks
resulted in a much inferior model. Joint modeling was
particularly useful because we had only 625 data points
per stocks for training purposes over the past 5 years.
As a result, transfer of stock data points from one stock
to another helped mitigate the problem of over-fitting the
individual stocks while ensuring a much improved model
for density estimation for a cluster of stocks. We report
the clustering of the stocks in Table II. We also show the
accuracy of the prediction for the iMG-GLM-1 model in
terms of the Mean Absolute error (MAE) in Table III. Note
that MAE for the Normal model significantly outperformed
the GLMM normal model, stock specific Random Forest,
Linear Regression and Gaussian Process Regression.

We now highlight the utilization of information trans-
fer in the iMG-GLM-1 model. We trained the first 51
stocks where we varied the number of training samples
in each group/stock from 200 to 1200 in steps of 250.
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Fig. 2. The Average Mean Absolute Error for 10 New Stocks for 50 random runs for iMG-GLM-2 Model with varying number of training samples
in both previous and New Groups

For each group we chose the training samples randomly
from the datasets and the remaining were used for test-
ing. The hyper-parameters were set as, {m0, β0, a0, b0} =
0, 1, 2, 2. We also ran our inference with different settings
of the hyper-parameters but found the results not to be
particularly sensitive to the hyper-parameters settings. We
plot the average MAE of 50 random runs in Figure 3.
The iMG-GLM-1 Normal Model generally outperformed
the other competitors. Few interesting results were found
in this experiment. When very few training samples were
used for training, virtually all the algorithms performed
poorly. In particular, iMG-GLM-1 clubbed all stocks into
one cluster as sufficient data was not present to identify
the statistical similarities between stocks. As the number of
training samples increased iMG-GLM-1 started to pick out
cluster of groups/stocks as it was able find latent common
densities among different groups. As, the training samples
got closer to the number of data points (1200), all other
models started to perform close to the iMG-GLM-1 model,
because they managed to learn each stock well in isolation,
indicating that further data from other groups became less
useful.

We now proceed to iMG-GLM-2, where we trained 10
new stocks from different sectors (CMCSA, PCLN, WBA,
COST, KMI, AIG, GS, HON, LMT, T). Two features

which influenced the learning were considered. First, we
varied the number of training samples from 400 to 750 to
1100 for each previous groups that were used to further
train βM+1. Then, we changed the number of training
samples for the new groups from 200 to 1200 in steps
of 250. We plot the MAE results for 50 random runs in
Figure 2. The prior belief is that the new groups are similar
in response density to the previous groups. iMG-GLM-
2 efficiently transfers this information from a previous
groups to new groups. The iMG-GLM-1 model learns
an informative prior for new groups when the number of
training samples for each previous group is very small (as
seen in the first part in Figure 2). The accuracy increases
very slightly as the number of training samples increases in
each group. But, with the number of training samples for
the new groups increasing, iMG-GLM-2 does not improve
at all. This is due to the flexible information transfer from
the previous groups. The model does not require more
training samples for its own group to model its density,
because it has already obtained sufficient information as
prior from the previous groups.

B. Clinical Trial Problem modeled by Poisson iMG-
GLM Model: Finally, we explored a Clinical Trial
problem [25] for testing whether a new anticonvulsant drug



Group No. 1 2 3 4 5 6 7 8 9
AAPL,
MSFT,

VZ,
GOOG,
CSCO,
AMZN

BAC,
WFC,
JPM,
AXP,

PG, CITI,
GS,MS

DIS,
HD,

LOW,
SBUX,
MCD

XOM,
CVX,
SLB,
EOG,
KMI

GILD,
MRK,
UNH,

AMGN,
AGN

GE,
MMM,

BA,
UNP,
HON

DOW,
DD,

MON,
LYB,
JNJ,
PFE

KO,
PEP,
PM,
CVS,
WMT

BRK-B,
IBM,
FB,

NKE,
UTX,
UPS

TABLE II. CLUSTERS OF STOCKS FROM VARIOUS SECTORS. WE NOTE 9 CLUSTERS OF STOCKS CONSOLIDATING ALL THE PRE-CHOSEN

SECTORS SUCH AS, FINANCIALS, MATERIALS ETC.

AAPL MSFT VZ GOOG CSCO AMZN BAC WFC JPM AXP PG CITI GS MS DIS HD LOW
GPR .023 .004 .087 .078 .093 .189 .452 .265 .176 .190 .378 .018 .037 .098 .278 .038 .011
RF .278 .903 .370 .256 .290 .570 .159 .262 .329 .592 .746 .894 .956 .239 .934 .189 .045
LR .381 .865 .280 .038 .801 .706 .589 .491 .391 .467 .135 .728 .578 .891 .389 .790 .624
GLMM .378 .489 .389 .208 .972 .786 .289 .768 .189 .389 .590 .673 .901 .490 .209 .391 .991
iMG-GLM .012 .002 .009 .011 .018 .028 .047 .038 .035 .079 .069 .087 .019 .030 .139 .189 .213

SBUX MCD XOM CVX SLB EOG KMI GILD MRK UNH AMGN AGN GE MMM BA UNP HON
GPR .837 .289 .849 .583 .185 .810 .473 .362 .539 .289 .306 .438 .769 .848 .940 .829 .691
RF .884 .321 .895 .843 .774 .863 .973 .729 .894 .794 .695 .549 .603 .738 .481 .482 .482
LR .380 .391 .940 .995 .175 .398 .539 .786 .591 .320 .793 .839 .991 .839 .698 .389 .298
GLMM .649 .720 .364 .920 .529 .369 .837 .630 .729 .481 .289 .970 .740 .649 .375 .439 .539
iMG-GLM .003 .018 .128 .291 .005 .060 .052 .017 .014 .078 .009 .067 .191 .034 .098 .145 .238

DOW DD LYB JNJ PFE KO PEP PM CVS WMT BRK-B IBM FB NKE UTX UPS MON
GPR .689 .890 .745 .907 .678 .378 .867 .945 .361 .934 .589 .845 .901 .310 .483 .828 .748
RF .181 .098 .489 .237 .692 .827 .490 .295 .749 .692 .957 .295 .478 .694 .747 .806 .945
LR .67 .386 .984 .982 .749 .294 .256 .567 .345 .767 .893 .956 .294 .389 .694 .921 .702
GLMM .727 .389 .288 .592 .402 .734 .923 .900 .571 .312 .839 .956 .638 .490 .390 .372 .512
iMG-GLM .038 .078 .063 .019 .024 .007 .089 .192 .138 .111 .289 .390 .289 .218 .200 .149 .087

TABLE III. MEAN ABSOLUTE ERROR (MAE) FOR ALL STOCKS. IMG-GLM HAS MUCH HIGHER ACCURACY THAN OTHER COMPETITORS.
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Fig. 3. The Average Mean Absolute Error for 51 Stocks for 50 random
runs for iMG-GLM-1 Model with varying number of training samples.

reduces a patient’s rate of epileptic seizures. Patients were
assigned the new drug or the placebo and the number of
seizures were recorded over a six week period. A measure-
ment was made before the trial as a baseline. The objective
was to model the number of seizures, which being a count
datum, is modeled using a Poisson distribution with a Log
link. The covariates are: Treatment Center size (ordinal),
number of weeks of treatment (ordinal), type of treatment–
new drug or placebo (nominal) and gender (nominal). A
Poisson distribution with log link was used for the count
of seizures. Here, Xji and Yji represent the ith covariate
and count response pair of the jth group. The distribution,
{βkd} (Normal) is the prior distribution on the covariate
coefficient β.

We found that a patient’s number of seizures are
clustered (they form the groups) in multiple collections.

This signifies that a majority of the patients across groups
show the same response to the treatment. We obtained
8 clusters from 300 out of 565 patients for the iMG-
GLM-1 model (the remaining 265 were set aside for
modeling through the iMG-GLM-2 model). Among them
5 clusters showed that the new drug reduces the number
of epileptic seizures with increasing number of weeks of
treatment while the remaining 3 clusters did not show
any improvement. We also report the forecast error of
the number of epileptic seizures of the remaining 265
patients in Table IV. Our recommendation for the usage
of the new drug would be a cluster based solution. For
a specific patient, if she falls in one of those clusters
with decreasing trend in the number of seizures with
time, we would recommend the new drug, and otherwise
not. Out of 265 test case patients modeled through iMG-
GLM-2, 180 showed signs of improvements while 85
did not. We kept all the weeks as training for the iMG-
GLM-1 model and the first five weeks as training and
the last week as testing data for the iMG-GLM-2 model.
Traditional Poisson GLMM cannot infer these findings
since the densities are not shared at the patient group
level. Moreover, only the Poisson iMG-GLM-1/2 based
prediction is formally equipped to recommend a patient
cluster based solution for the new drug, whereas all
traditional mixed models predict a global recommendation
for all patients.

VIII. Conclusion
In this paper, we have formulated an infinite multigroup
Generalized Linear Model (iMG-GLM), a flexible model
for shared learning among groups in grouped regres-
sion. The model clusters groups by identifying identi-
cal response-covariate densities for different groups. It



Patient Number in Clusters for iMG-GLM-1 Model
Positive Negative

46 30 40 27 33 24 37 24
Patient Number in Clusters for iMG-GLM-2 Model

Positive Negative
33 24 41 29 30 31 34 43
iMG-GLM Poisson GLMM Poisson Regression RForest

Mean Square Root Error(L2 Error) fpr iMG-GLM-2 Model
1.53 1.58 1.92 1.75

Mean Absolute Error Root Error(L1 Error) for iMG-GLM-2 Model
1.14 1.34 1.51 1.62

TABLE IV. MSE AND MAE OF THE ALGORITHMS FOR THE CLINICAL TRIAL DATASET AND NUMBER OF PATIENTS IN CLUSTERS FOR

IMG-GLM-1 AND IMG-GLM-2 MODEL.

also models heteroscedasticity among groups by modeling
different uncertainty among groups. We experimentally
evaluated the model on a wide range of problems where
traditional mixed effect models and group specific regres-
sion models fail to capture structure in the grouped data.
Although the Metropolis Hastings algorithm turned out to
be fairly accurate for the iMG-GLM-2 model, developing
a variational inference alternative would be an interesting
topic for future research. Finally, the number of groups
in each cluster depends on the scale factors α1 and α2

(scale parameters of the DP) of the model, and at times
grows large in specific cluster. This occurs mostly when
any cluster has a large number of groups which becomes
representative of the whole data. In most cases, beyond
a few primary clusters, the remaining clusters represent
outliers. Although, careful tuning of scale parameters can
mitigate these problems, a theoretical understanding of the
dependence of the model on scale parameters could lead
to better modeling and application.
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