
Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Joint genome-wide prediction in several populations accounting for
randomness of genotypes: A hierarchical Bayes approach. II: Multivariate
spike and slab priors for marker effects and derivation of approximate Bayes
and fractional Bayes factors for the complete family of models

Carlos Alberto Martíneza,b,⁎, Kshitij Khareb, Arunava Banerjeec, Mauricio A. Elzoa

a Department of Animal Sciences, University of Florida, Gainesville, FL, USA
b Department of Statistics, University of Florida, Gainesville, FL, USA
c Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA

A R T I C L E I N F O

Keywords:
Bayesian whole-genome regressions
Finite mixture priors
Genetic heterogeneity
Laplace approximation
Multi-population genome-enabled prediction

A B S T R A C T

This study corresponds to the second part of a companion paper devoted to the development of Bayesian
multiple regression models accounting for randomness of genotypes in across population genome-wide
prediction. This family of models considers heterogeneous and correlated marker effects and allelic frequencies
across populations, and has the ability of considering records from non-genotyped individuals and individuals
with missing genotypes in any subset of loci without the need for previous imputation, taking into account
uncertainty about imputed genotypes. This paper extends this family of models by considering multivariate
spike and slab conditional priors for marker allele substitution effects and contains derivations of approximate
Bayes factors and fractional Bayes factors to compare models from part I and those developed here with their
null versions. These null versions correspond to simpler models ignoring heterogeneity of populations, but still
accounting for randomness of genotypes. For each marker loci, the spike component of priors corresponded to
point mass at 0 in  , where is the number of populations, and the slab component was a -variate Gaussian
distribution, independent conditional priors were assumed. For the Gaussian components, covariance matrices
were assumed to be either the same for all markers or different for each marker. For null models, the priors were
simply univariate versions of these finite mixture distributions. Approximate algebraic expressions for Bayes
factors and fractional Bayes factors were found using the Laplace approximation. Using the simulated datasets
described in part I, these models were implemented and compared with models derived in part I using measures
of predictive performance based on squared Pearson correlations, Deviance Information Criterion, Bayes
factors, and fractional Bayes factors. The extensions presented here enlarge our family of genome-wide
prediction models making it more flexible in the sense that it now offers more modeling options.

1. Introduction

The scenario of across population genome-wide prediction account-
ing for randomness of genotypes was addressed in part I of our series of
studies. There, we adopted a hierarchical Bayesian modeling strategy to
accommodate heterogeneous and correlated marker effects across
subpopulations and random genotypes. In that companion paper we
provided a detailed derivation of the joint pmf of the genotypes
conditional on pedigree information and allelic frequencies and also
discussed some of its properties. Furthermore, the flexibility of
hierarchical Bayesian modeling allowed us to account for heteroge-
neous and correlated allelic frequencies. The “MG-GBLUP” model

proposed by Lehermeir et al. (2015) is similar to the models developed
in part I of this study, except that they did not consider randomness of
genotypes. In addition, they did not consider models with different
(heterogeneous) covariance matrices of marker effects. One of the main
properties of our models is that individuals with phenotypic records
and missing genotypes at any subset of loci (including non-genotyped
individuals) can be considered in the analysis without previous
imputation. Furthermore, due to the use of a Bayesian approach,
uncertainty about imputed genotypes is automatically taken into
account.

The so called “spike and slab” priors, are finite mixtures of a
continuous distribution (the slab) and a mass point at some constant
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(the spike) (Mitchell and Beauchamp, 1988). A particular case of these
priors are the zero-inflated priors which have point mass at zero. This
sort of priors has been used in high dimensional problems to induce a
stronger shrinkage and perform variable selection. In single population
analyses, it has been reported that when there are genes with major
effects controlling the trait under study or the number of genes
controlling the trait is low, Bayesian variable selection models tend
to perform better (Daetwyler et al., 2012; Heslot et al., 2012; Gianola
and Rosa, 2015). In the case of multiple population analyses, van den
Berg et al. (2015) studied scenarios under which Bayesian variable
selection models outperformed genomic BLUP (GBLUP). They found
that GBLUP was outperformed when the number of QTL was smaller
than the number of independent chromosome segments. They also
found that the difference in accuracy between these models was larger
than in the single population case.

In a Bayesian framework, model comparison can be performed via
Bayes factors and some modifications of them known as non-subjective
Bayes factors (Ghosh et al., 2006). Bayes factors measure the change in
the odds favoring a model once data are observed (Lavine and
Schervish, 1999). On the other hand, O’Hagan (1994, 1995) proposed
a non-subjective Bayes factor known as fractional Bayes factor which
uses a fractional part of the likelihood resulting in a “partial” Bayes
factor. Analytical forms of Bayes factors involve integration of the joint
distribution of data and parameters over the parameter space of a given
model to obtain marginal likelihoods, and even for some simple models
these integrals do not have a closed form solution. One option to obtain
algebraic approximations is to use the Laplace approximation after
arranging the integrand in an appropriate form (Ghosh et al., 2006).
Another criterion to compare models is the Deviance Information
Criterion (DIC, Spiegelhalter et al., 2002, 2014) which combines
measures of model fit and model complexity and, despite some
limitations, it has been used in several research areas (Spiegelhalter
et al., 2014).

Thus, the objectives of this study were to extend the family of
models developed in a companion paper (part I) by considering the so
called spike and slab priors for marker effects and to derive approx-
imate expressions for Bayes factors and fractional Bayes factors to
compare the proposed models with their corresponding null versions
that ignore population structure.

2. Methods

2.1. The models

The complete population or simply the population is defined as the
set of individuals with phenotypes considered in the analysis, which is
comprised by a set of subpopulations defined by some criterion like
environment, race, breed, line, etc. Also the following assumptions are
made: linkage equilibrium, Hardy-Weinberg equilibrium, no mutation,
and starting from the oldest individuals with phenotypes, the pedigree
is fully known.

The following is the linear model describing the relationship
between records and mappings of marker genotypes: y g eW= + , where

y ∈ n is a vector containing response variables (e.g., records corrected
for non-genetic factors), Wnxsm is an observable random matrix with
entries corresponding to a one to one mapping from the set of
individual marker genotypes to a subset of the integers (defined later),

g ∈ sm is an unknown random vector of average marker allele
substitution effects for every population and e ∈ n is a random vector
of residuals. If records are sorted by subpopulation as well as the
columns of W and the elements of g, then for every l=1, 2,…, ,
y g eW= +l l l l, with dimensions: y( ) ,l n ×1l gW( ) , ( )l n m l m× ×1l and e( )l n ×1l where nl
is the sample size of subpopulation l, and m is the number of marker
loci; therefore, n n= ∑l l=1 .

In our models, the mapping from the set of genotypes at each locus
and each individual into a subset of the integers is defined as follows,

biallelic loci are considered. If A and B are the marker alleles at each
locus and B is considered the reference allele then:

⎧
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where σel
2 is the residual variance in subpopulation l, σ j

2
l
is the variance

of the effect of the jth marker in the lth subpopulation, σ jl l, ′ is the

covariance between effects of marker j in subpopulations l and l′, p*j is

a parameter related to allelic frequencies of the jth marker in each
subpopulation and pπ ( *) is its probability density function (pdf). This
set of parameters and their pdf are described in part I of this series of
papers. Here, parameter π0 was assumed to be known.

The model presented above assumed a different covariance matrix
for the vector of allele substitution effects for each marker in the slab
component of the mixture distribution and consequently this sort of
models will be referred to as heterogeneous marker effects covariance
matrix models. On the other hand, models with G G G=…= =m1

0 will be
referred to as homogeneous marker effects covariance matrix models.
Moreover, the special case σ σ σ=…= =e e1

2 2 2 corresponds to that of
models with homoscedastic residuals.

In part I, it was discussed that the scenario of completely (i.e., at all
loci) or partially missing genotypes can be handled because of the
use of the pmf p p pπ W P P( *), *=( *, *,…, *)m1 2 and the fact that
these missing genotypes are regarded as model parameters. There,
it was also shown that the likelihood can be written as

y g y gf W W R P f W R f W W P( , | , , , *)= ( | , , ) ( | , *)N N where W is the fraction
ofW corresponding to observed genotypes,WN the fraction correspond-
ing to missing genotypes, and y gf W R( | , , ) and f W W P( | , *)N are
referred to as the y component and the W component of the likelihood.

The conditional prior for gj can be written as:

g gπ G π π I π MVN G I( , )= +(1 − ) ( ; 0, )g gj j j j0 00 { = } 0 { ≠ }j j

where I{∙} is the indicator function. This form is more convenient from
the algebraic point of view because it allows carrying out computations
and writing expressions for the joint conditional prior in an easier way.
Under the conditional independence assumption, the joint conditional
prior for g is:

⎧⎨⎩
⎫⎬⎭∏g gπ G π π I π MVN G I( , )= +(1 − ) ( ; 0, ) .g g

j

m

j j0 00
=1

0 { = } 0 { ≠ }j j

An explicit form of this prior pdf can be found as follows. Let
i m= 0,1,…, be the number of markers having a null effect.
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Consequently, when expanding the product above, for each i there are

( )m
i combinations of i markers with null effect chosen from m markers.

For ( )l m
i= 1,2,…, , let δil denote the event that the lth subset of i

markers (i.e., the lth combination of i markers with null effect chosen
from the total set of m markers) have null effect and Iδil the indicator

function of this event. Thus, there are ( )m
i terms in the expansion with

π0 appearing exactly i times; therefore, each one of these ( )m
i terms is

of the form:

∏ gI π π MVN G0(1− ) ( ; , )δ
i m i

k g δ
k k0 0

−

: ∈
il

k il
c
0

where δil0 is the set of marker loci with null effects given δil, and δil
c
0 is

its complement, i.e., the set of m i− markers with non-null effect under
δil. Therefore when expanding gπ G π( , )0 for the heterogeneous marker
effect covariance matrix model:
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while for the homogeneous marker effect covariance matrix model the
expression is the same except that G G j m= ∀ = 1,2…,j

0 .
Regarding the marginal priors, under homogeneous covariance

matrix of marker effects:
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Hence, marker effects are not marginally independent a priori and
their joint marginal prior distribution is a mixture of non-standard
distributions with mixing probabilities π π(1− )i m i

0 0
− .

For heterogeneous marker effect covariance matrix model:
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This is a mixture distribution with mixing probabilities π π(1− )i m i
0 0

− .

Each component in the mixture is a sum of ( )m
i elements. Each one of

these elements is the product of m i− multivariate t distributions with
scale matrix Σ Σ*= a

1
+ 1 − and degrees of freedom a + 1 − for non-

null vectors of markers effects, and point mass at zero for i null vectors
of marker effects, under event δil. In this case, marker effects are
marginally independent a priori.

2.2. Full conditionals

Only full conditionals that change with respect to those considered
in part I are presented.
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m i0 1 − , corresponds to the vector of

dimension m i( − ) with the non-null marker effects under δil, Wδil
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the submatrix of the design matrix corresponding to gδil
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0 and
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Remark 1 Notice that each element in the summation above
corresponds to a multivariate normal distribution of dimension

m i( − ) for those markers in δil
c
0 and point mass at zero for those

markers in δil0. Thus, in each term, the multivariate normal corre-
sponds to the distribution of the effects of the subset of markers with
non-null effects given δil. Therefore, this joint full conditional distribu-
tion of g suggests that for each marker, the full conditional distribution
of gj (given data, and other parameters in the model including the
remaining components of g) is a spike and slab distribution. Note that
it is easier to deal with gπ Else( | )j than with gπ Else( | ). The full
conditional gπ Else( | )j can be found from gπ Else( | ) using the Bayes
theorem. However, this could be complex because it requires identify-
ing all the cases in which g=0j and all the cases in which g≠0j . An easier
way is to derive it using the conditional prior for gj. Details are
presented in Appendix A. The final result is:

gπ Else( | ) =j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g g

y g

p Else I p Else MVN

G
W
σ

W G I

( = 0| ) + (1 − ( = 0| ))

( − ),

g

g

j j

Fj
j

j j Fj

0

0

{ = }

−1
′

2 (− ) (− )
−1

{ ≠ }

j

j

G
W W

σ
G=

′
+( )Fj

j j
2

0 −1

( )
g

y g

p Else
π

π π G G G W W

( = 0| )

=
+ (1 − )( ) exp * ( − )

,

j

Fj σ Fj j j j

0

0 0
0 −1/2 1

2
−1/2 ′

(− ) (− ) 2

2
2

where G σ G W W σ G* = = ′ + ( )Fj Fj j j
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tion of gj is a spike and slab distribution where the slab component is a
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For the heterogeneous marker effect covariance matrix model the
full conditional gπ Else( | )j has the same form as for the homogeneous

marker effect covariance matrix model except that now G G= +Fj
W W

σ j
′ −1j j
2

and G W W σ G* = ′ +Fj j j j
2 −1 and
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The expressions for models with heteroscedastic residuals are very
similar and therefore these are omitted. Such expressions can be found
in Appendix A along with joint posterior distributions.

2.3. Model comparison

2.3.1. Theoretical approximation to model comparison via Bayes
factors and fractional Bayes factors

Here, the term null model refers to simplified versions of the
proposed models in two scenarios. The first one corresponds to the case
in which all data are pooled and the factor splitting the complete
population into subpopulations is ignored. In the second scenario, the
complete population is split into subpopulations and each one of them
is analyzed independently. The null model corresponding to the first
scenario was already presented in part I, and for the second scenario,
the model for each subpopulation is the same, but only considering
data from the corresponding subpopulation. This model is referred to
as independent subpopulations model.

In order to find some theoretical approach to compare the full
models with their null versions, approximate Bayes factors and
fractional Bayes factors are derived in this section. To this end,
analytical approximations of multivariate integrals that have to be
solved to find marginal likelihoods are derived. The Laplace approx-
imation (Ghosh et al., 2006) is used to solve some of these multivariate
integrals. As will be shown in this section, the use of the Laplace
approximation requires the matrix W to be of full column rank. This
assumption does not hold in many real life situations where m n> and
therefore this matrix cannot be of full column rank. However, as more
individuals are genotyped, this situation can be found more frequently,
especially for chips of intermediate density. Notice that for matrix W to
be of full rank, the number of observations in each subpopulation
cannot be smaller than m; therefore, the requirement is that
n m l≥ ∀ = 1,2,…,l . As a matter of fact, in countries like the US there
exist data sets where the number of genotyped animals exceeds the
number of molecular markers in chips like the Illumina 50k (CDCB,
2016). Moreover, in certain cases, some filtering or preselection criteria
reduces the set of markers to be included in the analyses and for
populations with a large amount of genotyped individuals this could
also lead to the full rank scenario. More comments on this will be made
in the discussion. Therefore, in real life situations like across country or
across breed analysis, the situation n m l≥ ∀ = 1,2,…,l could be
observed, thus the assumption of matrix W being of full column rank
could be satisfied. Of course, n m l≥ ∀ = 1,2,…,l is not a sufficient
condition for matrix W to be of full column rank, but given the
structure of this matrix, this would generally be the case except in
certain situations, for example, having clones in the same subpopula-
tion.

2.3.1.1. Bayes factors. Bayes factors have generally been interpreted
as measures of support in favor of a model provided by data. Lavine
and Schervish (1999) showed that Bayes factors are actually measuring
the change in the odds favoring a model once data are observed.
The Bayes factor comparing two models denoted as M1 and M0 is
defined as:

y
y

BF f M
f M

= ( | )
( | )10

1

0

∫
∫

θ y θ θ

θ y θ θ

π f d

π f d
=

( ) ( | )

( ) ( | )
Θ 1 1 1 1 1

Θ 0 0 0 0 0

1

0

where θi, θπ ( )i i , y θf ( | )i i and Θi are the parameters, prior, likelihood and
parametric space under model i, respectively, i = 1,2.

Approximate Bayes factors comparing homogenous marker effect
covariance matrix models (Gaussian and spike and slab priors, homo-
scedastic residuals) and heterogeneous marker effect covariance matrix
models (Gaussian and spike and slab priors, homoscedastic residuals)
to their null versions were derived. Also, an approximate Bayes factor
comparing the heterogeneous marker effect covariance matrix model
with heteroscedastic residuals with the independent subpopulations
model was found. These approximate Bayes factors were conditioned
on the genotypes (i.e., conditioned on W and W0). Therefore, the y
component of the likelihood is used. The case when a part of W is not
observed is treated at the end of this section.

A brief outline of the derivation of these approximate Bayes factors
is presented. In each case, model sub-index 1 corresponds to the full
model while sub-index 0 denotes the null model. The Bayes factor
comparing homogeneous marker effect covariance matrix models with
its null version is denoted BF W10 when a Gaussian prior is posed over g
and residuals are homoscedastic. Whenever residuals are heterosce-
dastic the letter H appears in the subindex and when the prior posed
over g is spike and slab the letter G is replaced by SS. Moreover, the
superindex * is used to identify models with heterogeneous marker
effect covariance matrices. The same subindex notation is used for
fractional Bayes factors.

In general, let:

y
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For the homogeneous marker effect covariance matrix model
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2
0

2
0 .

Let + denote the positive reals. Then:

y θ y θ θ ϕπ f π( , ) = ( | ) ( , )1
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Thus, the previous multiple integral has to be solved in order to find
yf W( ). An analytic expression for the inner integral

 
∫ ∫ y g g gf σ W π G π σ dσ d( , , ) ( ) ( )2 0 2 2

mn
+

is approximated using the

Laplace approximation (Ghosh et al., 2006). As shown in appendix B,
after obtaining this approximation, the external integral can be found
in a closed form. The Laplace method is based on a second order Taylor
series expansion and allows finding an approximation to integrals of
the form:


∫ θ θI q e d= ( ) ,θnh ( )

p

where q and h are smooth functions of θ and h has a unique maximum
at θ̂. In Bayesian statistics, θnh ( ) is usually taken to be the log-
likelihood or the log of the unnormalized posterior. Hence, θ̂ can be
the MLE or the posterior mode when the posterior is unimodal. The
Laplace approximation has the form (Ghosh et al., 2006):

θ θI e π n q O n= (2 ) ∆ ( ˆ) ( ˆ)(1 + ( )),θnh p p
h

( ˆ) /2 − /2 −1/2 −1

where θp = dim( ) and θ∆ ( ˆ)h is the determinant of the Hessian matrix
of h− evaluated at θ̂. The inner integral in yf W( | ) can be written as:

  
∫ ∫ ∫g g θ θπ G π σ e dσ d q e d( ) ( ) : = ( *) *,y g θf σ W nh0 2 ln ( , , ) 2 ( *)

m m
+

2
+1

where θ g σ≔* ( , )2 .
Under the assumption that y gf σ W( , , )2 has a unique maximum at
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θ g σˆ*:=( ˆ , ˆ )2 , Laplace approximation can be used. The y component of
the likelihood function is a MVN Wg σ I( , )2 . Therefore, following stan-
dard results from linear models theory, ifW is of full column rank then,

g yW W Wˆ=( ′ ) ′−1 is the MLE of g, and σ Sˆ = = =y g y yW
n

I H
n

n r
n

2 − ˆ ′ ( − ) ( − ) 2W2
is the

MLE of σ2, where S = y yI H
n r

2 ′ ( − )
−

W is the least squares estimator of σ2,
r rank W W m= ( ′ )= and H W W W W= ( ′ ) ′W

−1 is the projection matrix onto
the column space of W .

After computing all the required expressions and making algebraic
simplifications (see Appendix B), it follows that:
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Following similar steps (see Appendix B),
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Before presenting fractional Bayes factors, the following result
comparing SSR0 and SSR in the particular case of our models is
presented and proven. This result will be used in the discussion section
to help in the interpretation of Bayes factors and fractional Bayes
factors.

Result 1. For the models considered in this study, the following
inequality holds: SSR SSR≥0 .

Proof.
Let y ySSM H= ′ W1 and y ySSM H= ′ W0 0 . Thus, proving that SSR SSR≥0 is

equivalent to prove that SSM SSM≥1 0. Let C W( )0 be the column space of
W0 and C W( ) the column space of W . Now, it is proven that
C W C W( )≼ ( )0 , where the notation "C W C W( )≼ ( )"0 means that C W( )0 is
a subspace ofC W( ). Let z C W∈ ( )0 , then a∃ ∈ m such that z aW= 0 , that is,

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥z

a

a

W

W
= ⋮ .

1

Similarly, let w C W∈ ( ), then b∃ ∈ m such that w bW= . Without loss
of generality vector b can be partitioned as b b b= ( ,…, )1 where

b l∈ ∀ = 1,2,…,l
m . Then w is of the form

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥w

b

b

W

W
= ⋮ .

11

In particular, if b a l= ∀ = 1,2,…, ,l it follows that z also has the
form of an element of C W( ), that is, z C W∈ ( ). Clearly, w cannot be
written as a linear combination of the columns of W0; therefore,
C W C W( )≼ ( )0 . Applying theorem B.47 of Christensen (2011), it follows
that H H−W W0 is an orthogonal projection. By properties of orthogonal
projections (Harville, 2000) it follows that H H−W W0 is a semi-positive
definite matrix, and consequently y y y y y yH H H H′( − ) ≥0⟺ ′ ≥ ′W W W W0 0 .

2.3.1.2. Fractional Bayes factors. O’Hagan (1994, 1995) proposed a
non-subjective Bayes factor known as fractional Bayes factor which
uses a fraction c of the likelihood resulting in a “partial” Bayes factor
having the following form:

∫
∫

θ y θ θ

θ y θ θ
FBF BF

π f d

π f d
=

( )( ( | ))

( )( ( | ))
.

c

c10 10
Θ 0 0 0 0 0

Θ 1 1 1 1 1

0

1

Thus, given W , the fractional Bayes factor for the homogeneous
marker effect covariance matrix model with homoscedastic residuals
and Gaussian prior for g has the form:

y
y

FBF BF
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Hence, yθf iln( ( )) , = 0,1,i i
c and their corresponding Hessian ma-

trices evaluated at the MLE have to be found in order to find the
Laplace approximation to the integrals inside the brackets in the
numerator and denominator of FBF GW10 . This is easily done because
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yθ yθf c fln( ( )) = ln ( )i i
c

i i . The determinants of the negative Hessian ma-
trices are now denoted by D D,͠ ͠0 1 and they satisfy: D c D=͠ m

0
+1

0 and
D c D=͠ m
1

+1
1. The approximate FBF GW10 is denoted as FBF GW10 .

Fractional Bayes factors derived in this study were FBF SSW10 ,
FBF*SSW10 and FBF*GHW10 . It turned out that FBF FBF= *GW GW10 10 because
the components making BF GW10 different from BF*GW10 cancelled when

multiplying them by y
y

f W M
f W M
( | , )
( | , )

c

c

0 0
1

and
y
y

f W M
f W M
( | , * )
( | , *)

c

c

0 0

1
respectively. For details

on the derivation see Appendix B. Moreover, the same cancellation
happened when deriving FBF SSW10 and FBF*SSW10 . The resulting expres-
sion was:

FBF FBF FBF FBF FBF= * = = * ≔GW GW SSW SSW W10 10 10 10 10
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Notice that in the case m n> whereW andW0 are not of full column
rank, this expression is invariant to the choice of the generalized
inverses W W( ′ )− and W W( ′ )0 0

−. This follows because of the uniqueness
of the projection operator onto the column space of W , HW (Harville,
2000), which implies that SSR and SSR0 are invariant to the choice of
the generalized inverses. The approximate fractional Bayes factor
FBF*GHW10 was equal to 1 (see Appendix B for details). Thus, it does
not provide information for comparing the corresponding models.

Based on the fact that the FBF W10 is invariant to the choice of
generalized inverses of W W′ and W W′0 0 when m n> , a brief discussion
about the possible use of this criterion in the non-full rank case is
provided in Appendix C. The issue is that the derivation that led to the
fractional Bayes factor in the full rank case cannot be applied to the
non-full rank case due to the fact that W W W W′ = ′ =00 0 and W W( ′ )−1
and W W( ′ )0 0

−1 do not exist. Although expressions involving these
quantities cancel later on, it is clear that the derivations presented in
Appendix B do not justify using FBF W10 in the non-full rank case.

These Bayes factors are useful for carrying out the conventional
model selection conditioned on W , that is, conditioned on the observed
genotypes. When part of W is not observed, the joint distribution of y
and WN given W can be obtained and then summing over the set N

yields Bayes factors and fractional Bayes factors conditioned on W .
Recall that BF = ,y

yW
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computation has to be performed:
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For r known:

where p p r l rΩ ≔{ ∈ 0< ≤ ∀ , ∑ =1}r
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but computing w pπ ( | )j j requires w pπ∑ ( )j jN which can be unfeasible

from the computational point of view. Alternatively, π W W P( , *)N can
be derived from first principles by noticing that the dependence on W
comes from the term where genotypes of individuals are conditioned

on parental genotypes and then proceeding as in section 2.1.1 of part I.
Using the expressions derived in Section 2.2.1 of part I and assuming r
known:
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where fljN is the number of founders with missing genotypes at locus j
in subpopulation l, nljN is the total number of individuals with missing
genotypes at locus j in subpopulation l. Given that

π w w w∏ ( , )i f
n

i j
l

S D′= +1 ′ljN

ljN
i j i j′ ′ does not depend on P*, the problem of finding

π W W M( , )N
1 involves the evaluation of m integrals of the form:
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this integral corresponds to the expectation of the function

r p∏ ( − )l l lj
n

=1
lN
Aj

of the random vector pj taken over p rπ ( )j . It does
not have a closed form solution, but these integrals could be evaluated
numerically in order to find a numerical approximation to
π W W M( , )N

1 . A similar situation occurs when r is not known, that
is, integrals with no closed form solutions have to be evaluated in order
to find π W W M( , )N

1 .
Notice that matrices W and W0 contain the same random variables

but in different arrays. Consequently, WN and W are the same in both
cases and the analytic form of pπ W( )0 0 , can be easily derived from
π W P( | *) by setting =1 and taking into account that the prior posed
over p0 is the product of m Beta α β( , ) densities.

∑y yf W M f W M π W W M( | , )= ( | , ) ( , )N
0 0 0 0

N

where
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an m−dimensional unit hypercube.
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then, using the fact that n n f+ =2N
B

N
A

Nj
j j (which is twice the total number of

founders with missing genotypes at locus j), it follows that:
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where nNj is the total number of individuals with missing genotypes at
locus j. Applying properties of the Gamma function (Casella and
Berger, 2002; Kosmala, 2004) this can be reduced to (see Appendix A):

π W W M( , )N
0
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Therefore, in the case =1, there is an explicit expression for
π W W M( , )N

0 .
Notice that obtaining an approximation to the pdf yf W M( , )1

involves computation of g g gSSR Σ, ˆ , +∑ ˆ ˆ′j
m

j j

a m

=1

( + )/2

and W W′ for every

possible value of WN . Thus, this could be computationally unfeasible
even for small or moderate sample sizes and chip densities.

Regarding interpretation of Bayes factors, their values can be
classified according to the recommendations of Raftery (1996). This
author proposed a scale to interpret Bayes factors based on a previous
scale proposed by Jeffreys (1961); however, Raftery’s scale is more
granular and more conservative (Raftery, 1996). The scale is as follows:
if BF10 < 1, the evidence is negative (i.e., against model 1), values
between 1 and 3 indicate that evidence for model 1 is not worth more
than a bare mention, values between 3 and 20 indicate positive
evidence in favor of model 1, values between 20 and 150 indicate
strong evidence in favor of model 1 and values greater than 150 suggest
very strong evidence for model 1.

2.3.2. Deviance information criterion
As in part I, another criterion used to compare models is the

Deviance Information Criterion (DIC; Spiegelhalter et al., 2002). It
combines a measure of goodness of fit based on the posterior
distribution with a penalty for model complexity. In part I it was
shown that for our family of models DIC can be written as the sum of
two components, one computed from the y component of the likelihood
and the other from the W component of the likelihood:

y gDIC f W W R p f W W P p=−2 log ( | , ˆ , ˆ , ˆ )+2 −2 log ( | ˆ , ˆ*)+2yB
N

B B DIC B
N

B DIC W− −

DIC DIC: = +y W

where y g y gp f W W R E f W R=2(log ( | , ˆ , ˆ , ˆ )− [log ( | , , )])y g yDIC B
N

B B W R P W− , , , * ,N

and p f W W P E f W W P=2( ( | ˆ , ˆ*)− [ ( | , *)])yDIC W B
N

W P W
N

− B , * ,N .

2.4. Analysis of simulated data

With the aim of providing an example of the implementation of
some of the proposed models and to compare their performance, the
two small simulated datasets described in part I were used here as well.
For the sake of completeness some minor details about the simulation
are provided. After simulating a historical population using a forward-
in-time approach, subpopulations were created using individuals
pertaining to the historical population as founders. Each subpopulation
had different selection criteria, selection pressures, and mating sys-
tems. Dataset 1 was comprised of three subpopulations with different
number of generations, migration was allowed and the heritability of
the trait was high. Dataset 2 consisted of two subpopulations with two
generations each, migration was not allowed and the heritability of the
trait was low (see Table 2 of companion paper for further details).
These simulations were performed using the software QMSIm
(Sargolzaei and Schenkel, 2013). For further details, see part I.

These datasets were used to carry out analyses using the following
models. Spike and slab prior and heterogeneous marker effect covar-
iance matrices with π π=0.5, =0.90 0 and π =0.20 and their null versions.
All models assumed homoscedastic residuals. In the results and
discussion sections, results from the models fitted to these datasets
in part I will also be considered. Models fit in part I were Multivariate
Gaussian prior and homogeneous marker effect covariance matrices,

Multivariate Gaussian prior and heterogeneous marker effect covar-
iance matrices, both with homoscedastic residuals. Not all models were
used to analyze these data because of the following reasons. Firstly,
taking into account that simulations did not consider heteroscedastic
residuals, only models with homoscedastic residuals were fit. Secondly,
some models have computational issues that make their implementa-
tion intractable. This is the case of models with a spike and slab prior
over g with homogeneous marker effect covariance matrices. In these
models, the full conditional distribution of the covariance matrix G0

involves all the combinations of i out of m markers with null effects for
i m= 0,1,…, ; therefore, it is not easy to sample from π G Else( )0 due to
the number of combinations being exponential in m. As shown in
Section 2.2.2, for the model with heterogeneous marker effect covar-
iance matrices, it is easy to sample from the full conditional distribu-
tion of the covariance matrix of each marker locus which makes its
implementation possible.

Data were analyzed using the MCMC algorithm described in part I

assuming that
⎛
⎝⎜

⎞
⎠⎟r= ,…,1 1 and using the product of independent

uniform
⎛
⎝⎜

⎞
⎠⎟0, 1 distributions as proposal for π P Else( ). The following

criteria for model comparison were computed: approximate Bayes
factors and fractional Bayes factors derived in Section 2.3.1, the
squared correlation between predicted breeding values and phenotypes
in the testing populations (predictive ability), squared correlations
between true and predicted breeding values in the testing and training
populations (accuracy) and DIC.

The hyper-parameter π0 was assumed to be given. In practice,
values close to 1 are used reflecting the belief that many of the SNP do
not have an effect. Alternatively, this hyperparameter can be tuned or a
prior can be posed over it in order to reflect uncertainty. Here, three
values of this parameter were implemented in the analyses, 0.9, 0.5 and
0.2. This does not correspond to a tuning procedure; it was done only
for illustrative purposes. The three values were chosen to reflect
situations in which the prior belief is that a high proportion of marker
loci do not have an effect π( =0.9)0 , approximately half of them have an
effect π( =0.5)0 , and a high proportion of markers have an effect π( =0.2)0 .
In dataset 2, the full genotypes of three individuals (one founder from
each subpopulation and a non-founder from subpopulation 1) were not
included in the analysis in order to simulate the case of missing
genotypes.

For each analysis, 20.000 iterations were run, considering the first
10.000 as burn-ins. In-house R scripts (R Core Team, 2015) were
created to accommodate spike and slab priors and to compute Bayes
factors and Fractional Bayes factors as well as DIC. Analyses were
performed using the University of Florida’s high performance comput-
ing cluster.

3. Results

3.1. Bayes factors

Using the expressions derived in Section 2.3.1, approximate Bayes
factors and fractional Bayes factors were computed for dataset 1. Recall
that FBF FBF FBF FBF= * = = *GW GW SSW SSW10 10 10 10 ; therefore, the same expres-
sion permits the comparison of models M M M, * ,G G SS1 1 1 and M*SS1 with
their corresponding null models. Because of the same reason that
makes the sampling from the full conditional distribution of G0 under
model M SS1 difficult, approximate Bayes factors for models with spike
and slab priors were not computed. According to the Raftery’s scale,
BF GW10 and BF*GW10 suggested very strong evidence in favor of all full
models (they were greater than 150) in dataset 1. The same result was
found when using the fractional Bayes factor which was computed with
c = 0.5.

In dataset 2, computation of Bayes factors was not possible because
m n> 1. Furthermore, even though only three individuals were assumed
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to be non-genotyped and the number of markers was small, computa-
tion of the fractional Bayes factor was not performed due to its
computational demands. All evidence provided by the approximate
fractional Bayes factors computed using the posterior means of WN

(which could be seen as a sort of plug-in criteria) was against the full
models, that is, all fractional Bayes factors were smaller than 1.

3.2. DIC, predictive ability and accuracies of predicted breeding
values

In dataset 1, DICW is common to all full models and to all null
models, i.e., there are only two values. It is due to the fact that there
were no missing genotypes (see part I for details). The values were
4717671 for full models, and 6589105 for null models, that is,
information coming from observed genotypes provided evidence in
favor of the full models. It means that in this population, genotypic
data provided support for the assumption of heterogeneous and
correlated allelic frequencies when comparing it with the competing
assumption that allelic frequencies are the same in all subpopulations.

Tables 1 and 2 contain DIC values for datasets 1 and 2 respectively,
whereas Table 3 shows predictive abilities and accuracies for the two
datasets. For Tables 1–3, the following is the meaning of abbreviations
for the different models fitted to datasets 1 and 2: M G1 = full model with
Multivariate Gaussian prior and homogeneous marker effect covar-
iance matrices, M*G1 = full model with Multivariate Gaussian prior and
heterogeneous marker effect covariance matrices, M*SS1 0.5 = full model
with spike and slab prior, π =0.50 and heterogeneous marker effect
covariance matrices, M*SS1 0.9 = full model with spike and slab prior,
π =0.90 and heterogeneous marker effect covariance matrices, M*SS1 0.2 =
full model with spike and slab prior, π =0.20 and heterogeneous marker
effect covariance matrices. The remaining models with subindex 1
replaced by 0 correspond to null versions of the corresponding full
models.

Therefore, according to the component of total DIC computed from
the y component of the likelihood, except for the models with

homogeneous marker effect covariance matrices (variances), full
models should be preferred over their null versions in this dataset.
When considering total DIC, all full models had a smaller DIC.
Additionally, the model with the smallest DIC, and therefore the one
to be preferred was model M SSH0 0.2 followed by model M GH1 .
Notwithstanding, the DIC values for models M M M, ,GH SSH SSH1 1 0.5 1 0.9
and M SSH1 0.2 were close.

In this dataset the two components of the DIC values and therefore
DIC values were similar for all models. The y components of DIC were
smaller for the full models except for the model with spike and slab
prior for g and π =0.20 . Conversely, the W components were smaller for
null models as well as total DIC values.

According to the behavior of predictive abilities in dataset 1, the
performance of the different models was similar except for M G1 . The
model with the best predictive ability was model M*G0 while model M G1
had the worst. The accuracies in testing dataset 1 showed a pattern
similar to that followed by predictive abilities. The performance of the
models was similar except for model M G1 which made the poorest job
when predicting breeding values and model M G0 which had the worst
performance of all null models. The highest accuracies of predicted
breeding values in testing population 1 were observed for models
M M* , * ,SS SS1 0.5 1 0.2 and M*G0 . Finally, the accuracies of predicted breeding
values in the training population showed the same behavior than the
other measures, a poorer performance for models with homogeneous
covariance matrix (or variance for null models) of marker effects with
model M G1 having the smallest accuracy. Models with the highest
accuracies were M*G1 and M*SS1 0.2.

For dataset 2, predictive abilities and accuracies in the testing sets
were very low. Accuracies in training set were slightly larger. All these
measures based on squared correlations did not show marked differ-
ences between models. Full models had higher predictive abilities and
smaller accuracies in testing and training sets.

4. Discussion

4.1. General features of the models

The set of hierarchical Bayesian linear regression models for
simultaneous genome-wide prediction in several subpopulations ac-
counting for randomness of genotypes developed in part I was
extended by incorporating spike and slab priors. The slab components
of the conditional priors for marker effects were -variate Gaussian
distributions considering homogeneous or heterogeneous covariance
matrices (or variances) and the spike component was multivariate mass
at zero for full models and univariate mass at zero for null models.
Then, in order to provide general criteria for comparison of the
proposed models with some null versions of them, approximate

Table 1
y component and total DIC for dataset 1.

Model DICy Total DIC

M G1 33702.55 4751373.55

M*G1 11599.05 4729270.05

M*SS1 0.5 11604.09 4729275.09

M*SS1 0.9 11648.94 4729319.94

M*SS1 0.2 11437.05 4729108.05

M G0 15396.32 6604501.32

M*G0 13008.42 6602113.42

M*SS0 0.5 12502.17 6601607.17

M*SS0 0.9 12625.29 6601730.29

M*SS0 0.2 12137.88 6601242.88

Table 2
y component, W component and total DIC for dataset 2.

Model DICy DICW Total DIC

M G1 1314.0 38367.4 39681.4

M*G1 1328.8 38356.4 39684.2

M*SS1 0.5 1313.6 38394.9 39708.5

M*SS1 0.9 1304.8 38382.7 39687.5

M*SS1 0.2 1323.4 38373.8 39697.2

M G0 1365.6 38180.3 39545.9

M*G0 1370.1 38179.0 39549.1

M*SS0 0.5 1350.4 38173.4 39523.8

M*SS0 0.9 1361.2 38195.8 39557.0

M*SS0 0.2 1245.5 38178.4 39432.9

Table 3
Predictive abilities and accuracies in datasets 1 and 2.

Model Predictive Ability Accuracy in testing
population

Accuracy in
Training
population

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

M G1 0.29 0.019 0.27 0.04 0.32 0.17

M*G1 0.76 0.016 0.83 0.03 0.94 0.21

M*SS1 0.5 0.81 0.017 0.88 0.04 0.92 0.19

M*SS1 0.9 0.81 0.018 0.88 0.04 0.90 0.14

M*SS1 0.2 0.79 0.016 0.86 0.03 0.94 0.20

M G0 0.53 0.004 0.50 0.07 0.55 0.24

M*G0 0.83 0.013 0.88 0.05 0.88 0.23

M*SS0 0.5 0.72 0.003 0.77 0.06 0.86 0.24

M*SS0 0.9 0.69 0.008 0.76 0.05 0.85 0.20

M*SS0 0.2 0.72 0.009 0.79 0.05 0.79 0.24
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Bayes factors and fractional Bayes factors were derived under the
assumption that n m l≥ ∀ = 1,2,…,l and the possible use of fractional
Bayes factors for the case m n> was briefly discussed. These
Bayes factors and fractional Bayes factors were approximations
because some of the multiple integrals required to find the marginal
distribution of data given a model were approximated via the Laplace
method.

Spike and slab priors assign positive mass at zero; therefore, models
considering this class of priors can be used for variable selection and
they induce a stronger shrinkage towards zero (Gianola, 2013; Xu and
Ghosh, 2015). Our spike and slab models can perform variable
selection at the marker level, that is, it is assumed that either a given
marker has effects in all subpopulations or it does not have effect in any
subpopulation. In statistics, this is known as sparsity at the group level
(Xu and Ghosh, 2015). Xu and Ghosh (2015) reparametrized the
coefficients of the multiple linear regression as the product of a positive
diagonal matrix and a vector, i.e., g V b j m≔ , = 1,2,…,j g j . Then, they
posed independent univariate spike and slab priors for the elements of
the positive diagonal matrix and independent multivariate spike and
slab priors for bj. This strategy permits to induce two kinds of sparsity,
at group level and within group. Thus, an extension of our models that
would induce sparsity at the group (i.e., marker) and within group
levels would be to consider conditional priors similar those developed
in Xu and Ghosh (2015). Therefore, a given marker would have positive
probability of having null effects only in a proper subset of subpopula-
tions.

Uncertainty on the hyper-parameter π0 can be accounted for by
posing a prior over it. A usual choice is a Beta distribution or its special
case the Uniform(0,1). Implementation of this approach in the models
presented here is straightforward. It implies adding one more level in
the hierarchy. In this case, the question arising is the impact of this on
inferences. Using the Kullback-Leibler divergence, Lehmann and
Casella (1998, Theorem 5.7) provide theoretical justification for the
idea that parameters that are in lower levels of the hierarchy have a
smaller impact on inference. Notwithstanding, this does not mean that
the impact of this extra level in the hierarchy is negligible and
therefore, if the prior knowledge about π0 is poor or null it may be
worth to account for uncertainty. As mentioned before, alternatively
this parameter can be tuned.

Regarding approximate Bayes factors and fractional Bayes factor,
those derived here were obtained via Laplace approximation which has
an error of order O n( )−1 (Ghosh et al., 2006). This means that the error
of approximation is bounded from above by a constant times n−1. There
is a refinement based on the Laplace method that allows obtaining an
approximation with error of order O n( )−2 when θq ( ) is a positive
function (Tierney and Kadane, 1986), which is always satisfied in the
context of this study (see Section 2.3.1). This refinement could be
implemented to obtain more accurate approximations of Bayes factors
and fractional Bayes factors.

Other authors, e.g., Raftery (1996) and Lewis and Raftery (1997)
have also used the Laplace method or modifications of it (DiCiccio
et al., 1997) to derive approximate Bayes factors. The following
comments regarding the algebraic expressions of Bayes factors
and fractional Bayes factors are made for a given dataset, that is,
given y n m, , and W . It is well known that for nested models (i.e., the
null model corresponds to the full model with some parameters set
to zero) SSR SSR>0 (Searle, 1971). In this case the models are
not nested; therefore, this standard result cannot be used. However,
Result 1 establishes the relationship between SSR0 and SSR for our
models.

Thus, by Result 1, the following component of the algebraic

expression for BF GW10 is always greater or equal than 1:
⎛
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and as a consequence it never provides evidence against model 1.
Conversely, for n ≥ 2 the following component is always smaller or

equal than 1, that is, it never provides evidence in favor of model 1:
⎛
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Of course, the strength of the evidence in

favor or against model 1 (when SSR SSR>0 ) depends on the observed
data. Both expressions depend on the data and the hyper-parameters
assigned to the residual variance. On the other hand, the following
expression
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depends only on the data. However, there are no general results
establishing the relationship between the determinants inside the
parenthesis and this is why it cannot be established if this component
is always smaller or greater than 1. Of course, these determinants are
always positive because of the assumption that all submatrices
W W,…,1 are of full column rank. Thus, if this component favors
model 1 or not depends on each dataset. The following component
depends on both, the priors and the data:
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The relative value of this component with respect to 1 cannot be
established. Thus, as with the previous component, its contribution to
the evidence in favor or against model 1 varies with each dataset. A
similar situation occurs with BF*GW10 and BF*GWH10 , while for BF SSW10 and
BF*SSW10 there are new terms induced by the spike and slab priors posed
over g and g0 whose relative value with respect to 1 depends on the
observed data. However, the following statement can be made for the
term involving gamma functions. In its positive domain, the Gamma
function has a minimum point at approximate coordinates (1.461,0.885)
(Kosmala, 2004), this implies that after1.461 the function is increasing.
Furthermore as x x↓ 0,Γ( )→∞. Note that for l = 2,3,…, and a> − 1
(recall that the inverse Wishart distribution requires this condition)

>a m l m+ + 1 −
2 2 and >0a l+ 1 −

2 . Therefore, given that in genome-wide

prediction m has order of magnitude of at least 102, for values of a such
that a( + 1− )/2>1.461 this term is always greater than 1.

Regarding fractional Bayes factors, as mentioned before,

FBF FBF FBF FBF= * = = *GW GW SSW SSW10 10 10 10

⎛
⎝⎜

⎞
⎠⎟c SSR

SSR
SSR
SSR

= m

n c
m

m
( −1)/2

0

( −1)
2 ( +2)/2

0
( +2)/2

due to cancellation of terms making approximate Bayes factors
different. Recall that c ∈ (0,1). As c ↑ 1 and m and n remain constant

the fractional Bayes factor approaches SSR
SSR

m

m

( +2)/2

0
( +2)/2 . For c ∈ (0,1) the

exponent n c( − 1)
2

is always negative and therefore
⎛
⎝⎜

⎞
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SSR
SSR

n c( −1)
2

0
never

provides evidence against model 1. On the contrary, cm ( −1)/2 provides
evidence against model 1; however, as noted before, given m and , as
c ↑ 1 the evidence provided by this component is negligible because the
whole expression approaches 1.

Some recommendations to choose the value of c are given in
O’Hagan (1994) and Ghosh et al. (2006). Finally, the behavior of
SSR
SSR

m

m

( +2)/2

0
( +2)/2 depends on the magnitude of the difference between SSR and

SSR0 and the number of subpopulations.
An important aspect of these approximations is that they require

n m l≥ ∀ = 1,2,…,l . As discussed in Section 2.3.1, the fast growth in
the number of genotyped individuals may make this assumption
possible for SNP chips of moderate size (i.e., 50 to 100k). However,
the availability of denser chips and full sequences implies that m also
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grows. On one hand, it is said that the higher the number of SNP the
better the accuracy of genome-wide predictions because more LD
between markers and QTL is “captured”. On the other hand, some
studies with real data such as Vázquez et al. (2010) in Holstein cattle
and de los Campos et al. (2013) in humans have found that using
subsets of SNP yields reasonable accuracy of genome-wide predictions.
Moreover, the curve relating accuracy to marker density has been
reported to reach a plateau for traits as height in humans (Vázquez
et al., 2012) which suggests that in some cases not too much accuracy is
lost when selecting subsets of SNP using some criteria.

Finally, the ability of our models to include non-genotyped in-
dividuals allows having a larger n, which combined with the factors
mentioned before, increases the likelihood of having situations with
n m l≥ ∀ = 1,2,…,l . The approximate fractional Bayes factor FBF W10
could be used for the case m n> but there is no formal mathematical
justification for it. A brief discussion with an outline of the steps
required to justify its use in such case is provided in Appendix C. Thus,
the use of this expression for model comparison in the non-full rank
case has to be seen as an ad hoc approach because there is no formal
proof of its validity yet. Therefore, the question if the approximate
fractional Bayes factor derived here is also valid for the non-full rank
case remains to be formally answered. Thus, refuting this result or
establishing a rigorous proof of it is an open problem.

4.2. Simulation results

Our small simulations correspond to two populations comprised by
three and two subpopulations respectively. One trait per population
was simulated. In both cases subpopulations had different mating
designs, selection criteria, selection pressures and heritabilities.
However, these populations display two contrasting scenarios. The
first one (dataset 1) corresponded to a population comprised of three
subpopulations that diverged by several generations, heritabilities were
high, migration was allowed, the number of individuals in each
subpopulation was larger than the number of SNP and there were no
missing genotypes. Conversely, the second scenario (dataset 2) con-
sidered a population comprised by two subpopulations that diverged by
only two generations, trait heritabilities were low, there was no
migration, the number of individuals was smaller than the number of
SNP in one subpopulation (hence the model was not of full rank) and
there were missing genotypes.

In dataset 1, predictive ability did not suggest a superior predictive
capability of full models, that is, models accounting for potential
heterogeneity induced by the existence of subpopulations. As shown
in Table 3, its values were very similar across models (except for the
model with a homogeneous covariance matrix of marker effects which
had considerably lower predictive ability). In this dataset, the number
of marker loci considered in the analysis was equal to the number of
QTL; therefore, it could be expected that the smallest value of π0 had
the best performance. The different squared correlations between
predicted and observed values yielded similar results for the three
values of π0 used here with a slightly better performance for the model
with the smallest value of π0. While this set of correlations did not
provide conclusive evidence in favor of the full models, the DIC, Bayes
factors and fractional Bayes factors favored the full models.

Due to the low heritabilities in the two subpopulations forming
dataset 2, predictive ability and accuracies were very low (Table 3). In
this dataset full models had slightly higher predictive abilities than
their null versions. Conversely, accuracies of predicted breeding values
in training and validation datasets suggested a tiny superiority of null
models. Total DIC and DICW provided evidence in favor of null models,
but differences were not substantial. In addition, the “plug-in” frac-
tional Bayes factors also gave evidence in favor of null models. As in
part I, the performance of the fitted models was more similar in dataset
2 than in dataset 1.

A broad observation is that when combining the results obtained

here with those obtained in the companion paper, the overall behavior
observed in part I was kept. In general, what was observed in these
small simulations was that under the biological scenario simulated in
dataset 1, full models tended to have better performance, whereas in
the setting simulated in dataset 2, null models tended to outperform
full models. In all cases differences were small (except for models M G1
and M G0 in dataset 1). Therefore, after including the outputs of the
spike and slab models, our results are still in agreement with those
found by Olson et al. (2012), Makgahlela et al. (2013), de los Campos
et al. (2015) and Lehermeir et al. (2015).

5. Conclusions

This study enlarges the family of hierarchical Bayesian models for
across population genome-wide prediction accounting for randomness
of genotypes derived in the companion paper (part I) by considering
the so called spike and slab priors (multivariate and univariate) for
marker allele substitution effects. This class of priors allows a stronger
shrinkage towards zero and variable selection at group level. This
development concedes even more flexibility to our family of models
because the user will have more modeling options that permit to cope
with a wider spectrum of biological scenarios. For example, for traits
controlled by genes with major effects or controlled by a small number
of genes, using spike and slab priors is theoretically advantageous.

The approximate Bayes factors and fractional Bayes factors derived
here can be used to complement other criteria such as measures of
accuracy of predicted breeding values and correlations between pre-
dicted breeding values and phenotypes when comparing models. These
criteria were derived under the assumption of a full rank model which
is currently satisfied in certain populations and we believe that it will
become an increasingly more frequent situation as more individuals are
genotyped. The invariance of our approximate fractional Bayes factor
to the choice of the generalized inverses of W W′ and W W′0 0 seems
promising because it allows the use of this criterion in the non-full rank
case. However, a formal justification or rejection of this criterion
remains an open problem. For now, this criterion might be used ad
hoc, keeping always in mind the risks that it implies.

In addition to all the possible extensions and refinements of our
models discussed in the companion paper, the modification of the spike
and slab priors presented here to allow sparsity within group (marker)
is another aspect that opens a path for further research.
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