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ABSTRACT

It is important to consider heterogeneity of marker effects and allelic frequencies in across population genome-
wide prediction studies. Moreover, all regression models used in genome-wide prediction overlook randomness
of genotypes. In this study, a family of hierarchical Bayesian models to perform across population genome-wide
prediction modeling genotypes as random variables and allowing population-specific effects for each marker
was developed. Models shared a common structure and differed in the priors used and the assumption about
residual variances (homogeneous or heterogeneous). Randomness of genotypes was accounted for by deriving
the joint probability mass function of marker genotypes conditional on allelic frequencies and pedigree
information. As a consequence, these models incorporated kinship and genotypic information that not only
permitted to account for heterogeneity of allelic frequencies, but also to include individuals with missing
genotypes at some or all loci without the need for previous imputation. This was possible because the non-
observed fraction of the design matrix was treated as an unknown model parameter. For each model, a simpler
version ignoring population structure, but still accounting for randomness of genotypes was proposed.
Implementation of these models and computation of some criteria for model comparison were illustrated
using two simulated datasets. Theoretical and computational issues along with possible applications, extensions
and refinements were discussed. Some features of the models developed in this study make them promising for
genome-wide prediction, the use of information contained in the probability distribution of genotypes is
perhaps the most appealing. Further studies to assess the performance of the models proposed here and also to
compare them with conventional models used in genome-wide prediction are needed.

1. Introduction

from individual populations or pool data to perform a single analysis
(de Roos et al., 2009). On one hand, pooling data and performing a

The use of molecular markers located across the whole genome for
prediction of breeding values (Meuwissen et al., 2001) and phenotypes
(Goddard and Hayes, 2007; Gianola et al., 2009) has proven to be a
useful tool in animals (Hayes et al., 2009), humans (Guttmacher et al.,
2002; de los Campos et al., 2010) and plants (Bernardo and Yu, 2007;
Desta and Ortiz, 2014). This success has given rise to a tremendous
amount of research in the area of statistical genomics in order to obtain
better genome-wide predictions (Goddard and Hayes, 2007; Gianola,
2013; Hill, 2014; Gianola and Rosa, 2015).

Most of the methods have been developed for prediction in a single
population. Across population studies usually use predictions obtained

single analysis may increase the accuracy of genome-wide prediction
because the number of records has an important impact on it
(Meuwissen et al., 2001; Goddard, 2009; Zhong et al., 2009). On the
other hand, it may decrease accuracy when the effects of QTL
controlling the trait are not the same across populations (de Roos
et al., 2009; van den Berg et al., 2015; Wientjes et al., 2015).
Analyzing data from Holstein cattle performing in different
European countries, Lund et al. (2011) reported that pooling data
and carrying out a single analysis increased the accuracy of genomic
predictions. With simulated data, de Roos et al. (2009) found that
pooling data was beneficial when populations had diverged by few
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generations, marker density was high and heritability was low, but for
more distant populations and less dense marker panels they found a
small decrease in accuracy. Using simulated data, Wientjes et al. (2015)
studied the effect of differences in QTL allele substitution effects across
populations on the accuracy of genome-wide prediction. They found
that when allele substitution effects changed across populations, the
accuracies decreased in proportion to the genetic correlation between
populations. Using the same dataset, van den Berg et al. (2015) looked
for across population genomic prediction scenarios under which
Bayesian variable selection models had a better performance than
genomic BLUP (GBLUP). They concluded that Bayesian variable
selection models outperform GBLUP when the number of QTL is small
as in single population analyses, but the difference in accuracy is larger
in the across population case.

None of these studies allowed marker effects to differ from one
population to another. However, de Roos et al. (2009) highlighted the
need for alternative methods that allow population-specific estimation
of allele substitution effects in across population genome wide predic-
tion. Chen et al. (2014) proposed a Bayesian model with different SNP
effects for each population that permits sharing information across
populations through a common set of latent variables indicating
weather a given marker is associated with a QTL or not. They did not
model covariance matrices of marker effects explicitly. With real and
simulated data they found that this model increased the accuracy of
across population genome-wide prediction, especially when the num-
ber of QTL was small and correlations among QTL effects from
different populations were high. Recently, Bayesian models that
account for genetic heterogeneity have been proposed. Multivariate
models considering correlated population specific marker effects were
developed by Lehermeier et al. (2015) while de los Campos et al.
(2015a) proposed a model with main marker effects and interactions.
Using real data from three plant populations, Lehermeier et al. (2015)
found cases in which the strategy of pooling data and ignoring structure
performed better and others where the multivariate models yielded
better predictive performance. For example, in highly differentiated
populations within group and multivariate analyses performed better.
Using real datasets from pigs and wheat, de los Campos et al. (2015a)
found modest superiority of the interaction model relative to the model
using pooled data and the model that analyzed each subpopulation
separately. Similar studies have implemented multivariate models in
multibreed dairy cattle populations (Karoui et al., 2012; Olson et al.,
2012; Makgahlela et al., 2013). Huang et al. (2014) used non-linear
models to perform genome wide prediction in layer hens when the
reference population was comprised by individuals from several breeds
or lines and compared them with a multiple-trait GBLUP model. They
found that the various models used had a similar predictive perfor-
mance.

If several populations are to be evaluated simultaneously, the
possible existence of genotype by environment interaction, lack of
persistence of linkage phase and variation in allelic frequencies across
populations indicate the need for an analysis that accounts for the fact
that combining them creates a structured complete population. It has
been reported that population structure may act as an effect modifier
(de los Campos et al., 2015a). Furthermore, it has to be considered that
not only the allele substitution effects of a particular locus in different
populations may be correlated, but also its frequencies in each
population (e.g., due to gene flow).

Another feature that has been overlooked in the random linear
regression models used in genome-wide prediction is the randomness
of the matrix containing a one to one mapping from the set of
genotypes to a subset of the integers, namely the design matrix. This
matrix is treated as fixed in genome-wide prediction models, while in
classical quantitative genetics theory it is treated as random (Falconer
and Mackay, 1996; Lynch and Walsh, 1998). Besides being in agree-
ment with the classical theory, taking into account the randomness of
this matrix, that is, the randomness of genotypes, permits the estima-

Journal of Theoretical Biology 417 (2017) 8—19

tion of allelic frequencies because when treated as an observable
discrete random matrix, its probability mass function (pmf) depends
on the allelic frequencies. Thus, under a Bayesian setting, allelic
frequencies are treated as random because these are unknown para-
meters. Further, the works of Wright (1930, 1937) provide additional
support to treat allelic frequencies as random variables making
Bayesian inference even more attractive.

Thus, the objective of this study was to propose hierarchical
Bayesian models to carry out simultaneous genome-wide prediction
in several populations accounting for randomness of marker genotypes,
heterogeneity and correlation of allelic frequencies across populations,
and population-specific allelic substitution effects.

2. Methods
2.1. The models

Hereinafter the complete population or simply the population is
defined as the set of individuals with phenotypes considered in the
study. Suppose that there exists some criterion (e.g., environment,
race, breed, line, etc.) to split this population into S subpopulations. To
make the problem more tractable, some simplifying assumptions are
made. The first one is linkage equilibrium. The second one is Hardy-
Weinberg equilibrium. The third one is that starting from the oldest
individuals with phenotypes, the pedigree is fully known. Lastly,
mutations are ignored.

The basic linear model used to describe the relationship between
response variables and marker allele substitution effects is y=Wg+e,
where y is a vector containing dependent variables (e.g., records
corrected for non-genetic factors), W is an observable random matrix
containing a one to one mapping from individual marker genotypes to
a subset of the integers to be defined later, g is an unknown random
vector of marker allelic substitution effects for every population and e is
a random vector of residuals. A more detailed notation is the following.
If records are sorted by subpopulation as well as the columns of W and
the elements of g, then for every I=1,2,...,S, y=Wg-+e, with
dimensions: (¥)ux1, (Wuxm» &)mx1 and (e),x1 where n; is the sample
size of subpopulation /, and m is the number of marker loci. Thus, the
total sample size is n = Zf:l n.

The scenario where only a part of matrix W is observed because
some individuals are not genotyped or individuals are genotyped for
different numbers of marker loci is also considered. This is done by
treating this non-observed part of W as a parameter in the model as it
will be explained later.

The case of diploid individuals and biallelic marker loci is con-
sidered. The effect of every marker locus is defined as the regression of
records on a function of the number of copies of the reference allele and
in quantitative genetics it corresponds to the allele substitution effect
(Falconer and Mackay, 1996; Lynch and Walsh, 1998). The number of
copies can be “centered” at zero giving the following codification. Let A
and B be the marker alleles at each locus and let B be the reference
allele. Then:

1, if genotype = BB
W = {W,-} buxm =9 0, if genotype = AB .
— 1, if genotype = AA

Different versions of the hierarchy that represents the stochastic
component of each model were considered. Models vary according to
the assumptions on the variance of residuals and the priors posed over
the marker effects. The most parsimonious model is the one consider-
ing homoscedastic residuals and homogeneous marker effect covar-
iance matrices. The hierarchical Bayesian model assuming homosce-
dastic residuals and multivariate Gaussian priors for marker effects has
the following structure:

YW, g, a*>~MVN (Wg,  &°I)
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where 62 is the residual variance, O‘]% is the variance of the effect of the
j™ marker in the /" subpopulation, oj, is the covariance between
effects of marker j in subpopulations / and 7, p]* is a parameter
associated with allelic frequencies of the j” marker in each subpopula-
tion and #(p*) is its density. Details on these parameters and their
probability density function (pdf) are given later.

In the case of heterogeneous residual variances across subpopula-

. . . . . 2
tions, residual variances of, ..., a§ are given independent /G (’7 %)

and then: y|W.gR~MVN(Wg,V), R=(c3,...,0%) and

V = Block Diag.{af,lm}l f T Hill (1984) found that in the presence of

heterogeneous environmental variances, across population analyses
assuming homogenous residuals variances yielded an excess of indivi-
duals selected from populations with higher environmental variances.
This is why heterogeneity of residual variances across subpopulations
was considered in this study.

The general framework assumes that in each subpopulation there is
a fraction of genotyped individuals and a fraction of non-genotyped or
partially genotyped individuals. Let W° and WV denote the observed
(data) and non-observed (an unknown parameter) parts of W. Let
P*=(p/*, p,.... p}); therefore, = (W|P*)=r (W°, W¥|P¥) can be expressed
as: f(W|WVN, P¥)z (WN|P*). Thus, the full likelihood has the form:

priors

FO, WIWY, g, R, P*)=f (yIW°, W¥, g, R, P*)f (WIW", g, R, P¥)

=f IW, g, R)f (WIWN, P¥),

Henceforth, f (yIW, g, R) will be referred to as the y component of
the likelihood and f(W°IW", P*) will be referred to as the W compo-
nent.

The simplest case for the covariance matrix of marker effects is
G = IQG". Under this setting the assumption is that the covariance
structure is the same for all markers. This is statistically convenient due
to the fact that the number of covariance parameters is reduced.
Further, in analysis considering a single population, it has been found
that specifying a different variance for each marker does not allow too
much Bayesian learning about marker effect variances (Gianola et al.,
2009). Here, models assigning the same covariance matrix to the
effects of all marker loci and models considering a different covariance
matrix for the effects of each marker locus were considered and these
models were referred to as homogeneous marker effect covariance
matrix models and heterogeneous marker effect covariance matrix
models. Let P% denote the space of symmetric positive definite
matrices of dimension S X S. Then, the marginal prior distribution
of g is:

10
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1

‘E + Z;f'zlgjg_;

7(g) = f,>+ (@G 7(GY)dG°
S

For details, see Appendix A. Similarly, for the heterogeneous
marker effect covariance matrix model it can be shown (appendix A)
that: 7 (g)x ! , which is the product of m multi-

m 1 iyl (%)
Hj:][l + arl —Sgiz* g/)
variate t distributions with scale matrix E*zﬁ): and degrees of
freedom a + 1 — S; therefore, under this prior, marker effects are

marginally independent and identically distributed. At this point, the
following remark can be made.

Remark 1. Under the assumption of homogeneous marker effect
covariance matrices, a priori the marker effects are marginally
dependent. This happens because when integrating with respect to
the common covariance matrix G°, the term ZT=1 g¢g; and the hyper-
hyperparameter X are factored, resulting in a function that cannot be
written as the product of m functions, each one depending on a
different g;. Moreover, the joint prior density is not standard.

To take into account the belief that allelic frequencies of the same
marker vary across subpopulations and may be correlated, the prior
7 (p*) is built based on a Dirichlet distribution. To do that, the allelic
frequency of the reference allele in marker locus j in subpopulation /
has to be expressed on a complete population basis, that is, p; is
expressing the frequency of the reference allele in locus j in sub-
population [ relative not to subpopulation /, but to the complete
population. Thus, the frequencies of the two alleles at a given marker
locus and a given subpopulation do not add to one, but to some sort of
relative frequency of that subpopulation in that locus denoted as r;. Let
r=(ry, ..., rs), =(ry, ..., rp),l = 1,2,..., S. With this parameterization
Z,S:l p<LVj=12,...,m, with equality if and only if the reference
allele is fixed in all subpopulations. Conversely, allelic frequencies
expressed on a subpopulation basis satisfy the constraint that the sum
of the frequencies of the two alleles at each marker locus equals one
within each subpopulation. Let g;j = 1.2,....m, 1= 12,..., S, be the
frequencies of the non-reference alleles expressed on a complete
population basis, then p;+¢g;=r;. The two parameterizations of allelic
frequencies are related by the one to one mapping p;:pl//r/j.

Consider the case when r is known and ry=...=r;,=r;V [. Then,
elements of vector r=(ry,..., rs) can be seen as subpopulation weights,
that is, they are related to subpopulation sizes. By r being known, it is
meant that it is either actually known or it is specified following some
assumption. A pragmatic decision would be to assign equal subpopulation
weights, an assumption that was also made in other studies (e.g., Gianola
et al., 2010). Once r has been specified, there is an extra restriction over
each p;=(py;,..., ps;). For I =12,..., S the following condition must be
satisfied: p;<r;. Therefore, the support of the distribution of p; given r is
Qf :={pje[RS|0<pl,.5er I, Zler,=l }. Notice that the condition Z,S:ln:l
implies that vectors in Q7 satisfy Zi , ;i <1. Thus, under this approach the
prior used for each p; is one corresponding to a scaled Dirichlet random
vector. If p=(B,, ..., fs)~Dirichlet (@), ~a€RS*!, then the prior assigned
to p; is the distribution of vector (8,7, ..., fsrs) which clearly pertains to
Q. Then, the pdf 7 (p;Ir) is derived using standard results from the theory
of distributions of transformations of random variables (Casella and
Berger, 2002). This derivation is simplified by the fact that the transfor-
mation is linear and therefore the Jacobian is constant. It follows that:

aj—1
S 2 as41-1 _ S Py
z(pIn< [T, {(,—]] }p(sjl)j , where ps,,)=1 - z’:IT"

The second approach is to assume that r is unknown. The density
7 (plr) could be used and a Dirichlet distribution could be assigned to
each r; adding one more level to the hierarchy. However, using
p;+q;=r; and properties of the Dirichlet distribution, the following
strategy allows assigning a prior to allelic frequencies and the weights r
without putting an extra level in the hierarchy. To this end it is
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assumed that r;; varies for each j and each I. A Dirichlet (e, a,)) prior
is posed over P 9 where q is the analog of p; for the non-reference
allele at each locus and a,=(ay. ..., as,), a,=(ay, ..., as,). Consequently,
by properties of the Dirichlet distribution it follows that
rj~Dirichlet ((op+aig, ..., asp+asy)).

2.1.1. Deriving the joint pmf of marker genotypes conditional on
allelic frequencies

Given the kinship structure of a population (i.e., the pedigree) one
can find several generations comprised of genotyped, partially geno-
typed and non-genotyped individuals. Therefore, the approach is to
derive the pmf of the complete matrix W, i.e., the joint pmf of
individuals with phenotypic records. Under this setting, m is the total
number of marker loci to be included in the analysis (it usually
corresponds to the size of the densest marker panel used in the
population).

Across columns, that is, across marker loci, the problem is
simplified by assuming linkage equilibrium, which implies indepen-
dence of genotypes at different loci. Therefore, for an arbitrary
subpopulation, the joint density of its column vectors is simply the
product of their marginal pmf. When considering all subpopulations,
the same assumption implies that marker genotypes at different loci
are independent. The following derivations hold for any of the
previously discussed approaches to model allelic frequencies distribu-
tions. Under the assumption of Hardy-Weinberg equilibrium it follows
that marginally:

1, with probability p]j’?‘z

wijl-|p;~ 0, with probability 2p[j.‘(1 - p[j.‘)

— 1, with probability(l—p;‘)2

Recall that p)‘=p;/r;. Notice that p/ is used instead of p; because it
allows defining a proper pmf in the sense that the sum of the
probabilities of the three possible values of w ; equals one (which does
not happen when using p;;). The pmf z (w; |p,] ) can be also written as:

7wl )=(p) " 2pyf (1=p ) (1=p ),

where I; is the indicator variable of the mutually exclusive events
wj=z, 7 € {~1,0,1}. By the linkage equilibrium assumption it follows

= H'[nz \ (

The rows of matrix W represent individuals with records. Because
of the kinship between them, the genotype of a given individual is not
independent of the genotype of their relatives. Furthermore, this non-
independence has to be considered across subpopulations (e.g., half or
full sibs may pertain to different subpopulations). This approach is
based on the pedigree of the complete population. The “base” animals
or “founders” can be pragmatically defined as the oldest individuals
with phenotypic records and those individuals with phenotypes and
unknown parents. To facilitate computations, it is assumed that these
individuals are unrelated. Hereinafter this set is referred to as the base
population, and individuals in this set are referred to as founders or
base individuals. The remaining individuals in the population are
referred to as non-founders. This pmf could be derived ignoring
pedigree information which is equivalent to mutual independence of
the rows of W, then = (WIP*)= H] 1H1 T |p[] ). However, this
would ignore information contained in the pedlgree and would
unnecessarily make the parametric space of WV larger, which does
not seem to be the best way to proceed.

The ordering of individuals is arbitrary, but a convenient way to do
it here is according to the pedigree in such a way that the founders are
given the first indices. For marker locus j in population / the target is to
find:

that for individual i in population /: z|w’ 28 wilp).

Iy, % 1 1 1 £ 1 1 ! *
7 (W;lp =1 Wijs Wjs s Wy P )=P (Wij=01, Wy=an, ..., Wy =y D))
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with w;,€{-1,0,1},1 < i < n;. This joint pmf can be written as:

1 * 1 1 *
”(W |P11 )=m (W} nij |le, “oos Woy—-1)j> Py )z (Wi, ... W(n171)_,'|17[j )

ol ol ! * | ! i *
=8 Wy Wijs oo Weag=1yjo Py ) Wy W1 -0 W)y 1)
! I *
><7T(W1js oo Win=2)j |I7,j )
! ! * [, %
=z (W, n,,|W1,', w0 Way=1)j> Dy )"'ﬂ(Wl,-lp,j )
nj=2

I * 1) %
W—i-1)j> Py )} (wyj |PU )-

1 1
= [T tx0oibwie-.s

i=0
When considering all the m marker loci we have:

nj-2
x(Wp)= [T (xiwl, oo whimi, )Y 2 0B,

i=0

where each one of the pmf z(w),_.w{,..., wi_,_1. p/*) is the product:
H;" 1”(W<nl ,),,lwu,.. . w(,ll_i_])_,-, P 5, 0 <i<m-2 and z(w{|p*)= H'J" 1”(lelp1/

Now, a conditional independence argument is used to simplify
=(W'p/"). Given the genotypes of the parents of individual i, its
genotype is independent of the genotype of collateral relatives and
other ancestors. It is possible that the parents of individual i in
population / pertain to subpopulations /* and /. Thus, at this point
the complete population is considered. In addition, notice that given
the parental genotypes, the genotype of an individual does not depend
on the allelic frequencies because this conditional pmf is determined
using basic segregation rules (see Appendix A). From these arguments
it follows that for individual i, z (w;lwi, ..., w1, P*)=xr (w;lwg;, wp,), where
ws; and wp, are the genotypes of the parents of individual i. The pmf of
non-founder genotypes at marker locus j conditioned on their parental
genotypes is presented in Appendix A. Therefore, = (W|P*) can be
written as z (W|P*)=x (Wyr |Wr) 7 (Wr|P*) where W is the submatrix of W
formed by considering the rows corresponding to founders and Wy is
the submatrix of W comprised of the rows corresponding to non-
founders. Let f be the total number of founders. Under the assumption
that these individuals are unrelated, the pmf of their genotypes given
allelic frequencies is:

7 (We|P¥)= Hn(W|P*) HHn(w,,lP) HHHn( i)
Jj=1i=1 j=11=1 i=1

7

gty

3

\I:(a

fi
H PN A=p )i ((A=pH"

2 nBlﬁ ES * nAl?i * nAAj
P oy A=) (A=)

-
o

i
Il

3

o [

S
AB: BB AB: AAj | AB; n B 4
w s PPan M g seon an T l I I I sy (] ¥y
2M i (1 P,j) =2 Dt a plj) ’
j=1 1=1

J 1
replacing
pl;k =pylry V¥

H m S 1 Bj
7 (WelP, =2 T ITz, =y (ry
i

I=1,2. .8, Yj=1,2,..., m:-

4
- ) "where f; is the number of

founders in the /" subpopulation; thus, f= Zil fis nlBBf , n[AB" and n,AAf
are the counts of founders with genotypes BB, AB and AA at marker
locus j in subpopulation / respectively, n,%=2nlBBf+nlABj is the total count
of B alleles at marker locus j in founders from subpopulation /,
n/=2n+n " is the total count of A alleles at marker locus j in
founders from subpopulation / and nf= Z;,”zl ZIS; lnl“?f is the total
number of heterozygous loci in the base population. In terms of the
[ BB ABj Adj ; .
random variables w,], o, and n can be written as:
BB; B; BB | AAj 2
n= B b =T L == == B o)
For non-founders:

A
Ly, n
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7 (War [We)= H H z(Wijlws,j wp, )=

j=1i'=f+1

ny

1 1 1
[T 70wy wh,p

i'=fj+1

S
j=1I=1

where wsli, ; and Wz[),-r ; are the genotypes for marker ; of the parents of
individual i’ from subpopulation /. Hence:
ny

m S f m S
aWIPH= [TTT T =0t TTTT TT #Ovishws woy)

j=11=1 i=1 j=1 I=1 i'=f;+1

"

=~

S
H 7 (wjlp) H T Wilws, woy,)

=1 i=1 i'=f;+1

j=1

3

o [

ny
Bj i

pi (1=pj yi! [T =ovfiiwsy. woi)

1 =_f[+l

=1

H (Wi IWsy W)

i=fi+1

>z (WP, ry=2"" HH zflp,j, " (ry -

j=1I=1 /

PU)/

Remark 2. Under the assumptions presented at the beginning of this
section, given base genotypes, the process defining the inheritance of
alleles is completely determined by the pedigree information. The
pedigree allows tracing the set of possible values that genotypes can
take from a given individual back to the base population. It implies that
allelic frequencies have to be known only in the base population
because the distribution of genotypes in the set of non-founders is
completely determined by the pedigree. Stated another way, given the
pedigree, only the founder genotypes carry information about allelic
frequencies.

The next step is to formally define the support (set of values of W
with non-null probability) of the pmf = (W|P*) and its cardinality (i.e.,
the number of elements contained in this set). If we had a population of
n unrelated individuals genotyped for m biallelic loci, then the total
number of possible values of W would be 3"". However, given the
kinship between individuals, the number of possible values of W is
smaller than 3. Let G be the support of = (W|P*), then number of
possible values that W can take is |G|, namely the cardinality of the set
G . To find |G|, the pedigree of the population is used because along with
the genotypes of founders, it defines how many individuals could
potentially have one, two or three genotypes for each marker locus. For
example, a progeny from parents with genotypes AA and AA has
genotype AA with probability one, while a progeny from parents AA and
AB could have genotypes AA or AB with probabilities equal to V2. Let ¥
be the set of founders, then |F]=f, thus there are 3/ possible values for
the submatrix of W corresponding to founders under the assumption
that they are unrelated. Hereinafter, each one of these possible values is
defined as a “base genotypic configuration”. Notice that each one of
these fm genotypic configurations induces a different set of possible
genotypes in the rest of the population. Under base genotypic config-
uration &, 1 <k < 3", for each marker locus the remaining n — f
individuals are grouped into three mutually exclusive sets:
015- ={i| (S x Dy}¥|=1,1 <j <m, 1 <k <3}, 02’; ={i (S x DjfI=21 < j<m, 1 < k<3,
0% ={i:|(Sy x Dy}¥I=3,1 <j <m, 1 < k <37}, where |{S; x D;}¥| is the car-
dinality of the set of possible genotypes at marker locus j resulting from
the mating of the parents of individual ; under base genotypic config-
uration &,{S; X D;}*. Consequently, IO,fI is the number of individuals in
the population for which there are !/ possible genotypes at marker
j» 1 <1 <3 given the k™ base genotypic configuration. Hence, at each
marker locus and each base genotypic configuration the following
equality is satisfied: |0f|+|04|+|0§|=n — f. Therefore, at each marker
locus and base genotypic configuration the total number of possible
genotypes in the n — f non-founder individuals is 1‘06‘2‘05‘3‘03kj|, and
under the linkage equilibrium assumption, the total number of possible
genotypes across marker loci given base genotypic configuration k is
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of: ok

[kthe
Accordingly, given the pedigree of the population, the total number
of possible values that matrix W can take is obtained by summing the
mf m m
above expression over k: |G|= Zz:l 22j=1 02@"32/:1‘035“. As a check of the
adequacy of this expression, notice that ignoring pedigree and assum-
ing that all individuals in the population are unrelated is equivalent to
treat them all as founders which implies that f=n, consequently
10§1=101=1051=0, ¥ j = 1.2..om, ¥ k = 1.2,.... 3™, thus |G|= ¥1_, 203°=3"".
Before defining the support of W, the following sets are defined. The
k™ base genotypic configuration is defined as follows:
G ={wyrieF,1 <j<m,1<k<3"}. For each set g’g‘f, that is, for each
genotypic configuration, 1 < k < 3, define: G§, ={w;:i € Of,1 <j <m},
QOZ ={w;:i € 02j,l <j<m}, Qo3 ={w;:i € 031},1 <j<m}.
tioned before, each set QT induces a set Q’(‘)] V] gg2 U Q’(‘)3, thus:
3mf

G =UI{Gkugh ugh ugh,}.

k=1

As men-

Remark 3. When some individuals are not genotyped or partially
genotyped, that is, when a fraction of matrix W is not observed,
7 (WIP*)=f (WO|WN, P¥)z (WN|P*) where = (WN|P*)= Zga z(WIP¥), G° is
the set of possible values of W°. However, as will become clear in
Section 2.2, explicit computation of z (W¥|P*) is not required. In this
case, some of the elements of 7z (WIP*) can be conceptually partitioned
as follows: n,B":n,ff+n,ﬁC n,Af:n,fj+n,f]j, nf=n+n{l where subindex I,
indicates that the corresponding count comes from genotyped
individuals in the /" subpopulation and subindex /y indicates that the
corresponding count comes from non-genotyped individuals.

2.2. Full conditionals, homoscedastic residuals, homogeneous and
heterogeneous marker effect covariance matrix models

Henceforth, it is assumed that vector g and columns of matrix
W are ordered by marker unless otherwise indicated. The full
conditionals are denoted as x(slElse). Firstly, g|Else~MVN

-1 -1
[(1,,1®(G°)] + W—ZV) Lwy, (Im®(G°)*] + @) ] . If W, denotes the

submatrix of W corresponding to marker k, W, is of dimension n x S
and has the form Wi=(w}, - wy), wg=(0 - 0);ys0i = 1.2,...,n, the
only non-null entry of vector wy, is the random variable corresponding
to the genotype of the i individual for the k" marker wy and it is
located at position [,/ =1,2,..., S, where [ is the subpopulation to
which individual i pertains. Other full conditionals are

m , v+n —Wg)' (y —Wg 2
GO|Else~IW(a + m, X+ Zj=]gjgj), 52|Else~lG[%, %]. To

Wi e

arrive at 7 (WV|Else) the following definitions have to be made. The
rows of W for individuals with missing genotypes are partitioned as
WMe, wMi . .W¥k which respectively represent the rows of W for non-
genotyped individuals, and individuals partially genotyped having
missing genotypes for loci subsets M|N,..., MgkN. Accordingly, the
subvector of the data vector corresponding to records from non-
genotyped or partially genotyped individuals can be partitioned as

yN=(yMc yM _yMk')'. The rows of W corresponding to partially
genotyped 1nd1v1duals are partitioned as follows: W¥k=(W Mo : WMiNy,
where superindex Mo denotes the set of loci with observed genotypes,
while superindex M;N denotes the set of marker loci with missing
genotypes. Similarly, when doing computations among these subma-
trices and g, this vector can be arranged as (gM°’:g™N"y  then:

7 (WN|Else)=n (WNyN , W°, g, 62, P¥)

om'*(WlP*)exp(—( 26'WNYN 4 g WN'W g))
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K 1
X expl —h WMk, gMi yMe
E p(zgz (WM, gMe, y ))

where

h (WMk, ng’ yMk )zz(ngwaMkakaongo _ngN’WMkN’yMk)+ngN

/WMkN’ WMkNngN,

aH(WIPH=f+(WIWY, P*)z (WNIP*) and f+(W°IWN, P*) is the part of the
W component of the likelihood depending on W". Notice that this is a
non-standard pmf and that when W° depends only on W" the form of
7 (WV|Else) remains the same because f*+(WoIWN)z (WNIP*)=g*(WIP*).
When r is known

7 (P\Else)=n (PIW°, WN, r)=x (PIW, r)

e asy1—1 S nB’.+a/—1 nAj
o« [Tresas" TT{ps o oo = ppy
j=1 =1

which is the product of m non-standard pdf. Recall that when r is
unknown, there is a slight difference in this expression as was shown in
Section 2.1.

Remark 4. In the absence of missing genotypes, that is, W=W, the
previous expression is not the full conditional density of P, but its
posterior density.

For the heterogeneous marker effect covariance matrix model G is a
block-diagonal matrix comprised by m blocks of dimension S x S as
described in Section 2.1. Under this model z(G)= Hf:]n(G/-). This
prior pdf is the only difference with the previous model; therefore,
the joint posterior is very similar (see Appendix A). Hence, all
full conditionals are the same except for g|Else~MVN

-1 -1
[(G1 + W—Y) Lwy, (G*' + @) ] G'=Block diag (G;')j = 1.2....m

ind
and GlelselfnvIW (a + 1.Z+4g:g)). The full conditionals for models with

heteroscedastic residuals are presented in Appendix A along with joint
posteriors.

2.3. Model comparison via Deviance Information Criterion

The term null model refers to simplified versions of the proposed
models. These null models ignore the factor splitting the complete
population into subpopulations; therefore, each marker has a single
overall effect and allelic frequencies are assumed to be the same across
subpopulations.

Null models are as follows: y=Wyg,+¢, where y is the same as
before, g, is an mx1 unobservable random vector containing allele
substitution effects of each marker, (W),x, is the random observable
design matrix which is of the form (W, :---: Ws)’ when ordering data by
subpopulation, and ¢ is a random vector of residuals. The priors for g,
are simply univariate versions of the priors used for g. Thus,

8y|GP~7 (+IGP), GP = Diag (o}, ....04,), o ”NdIG(g, g), (for the homoge-

2 2

neous marker effect variance model ojl=...=agm=og) and the residual

2

variance ¢? is given an IG(z, 5| prior as before. In addition,

p=(p,» p5»-.., D,) is a vector of overall reference allele frequencies,
Wolp~% (Wylp) is a simplified version of = (W|P*) (shown later), and the

prior for p is pj”NdBeta(a, £Jj=12,...m.

The Deviance Information Criterion (DIC; Spiegelhalter et al.,
2002) combines a measure of goodness of fit based on the posterior
distribution and a penalty for model complexity, and despite some
criticism it has been used in different areas to perform model
comparison (Gelman et al., 2013; Spiegelhalter et al., 2014). It has
the following form:
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DIC==2logf (Datalfz)+2pp,;c

where pp,-=2(logf (Datalég)—EmDa,a [logf (Data|0)]), 0,=E [6y] is the
posterior mean of the unknown parameters. The first component of
DIC is a measure of model adequacy, whereas the second one is the
effective number of parameters which is a penalty for increasing model
complexity (Spiegelhalter et al., 2002). Models with a smaller DIC are
preferred. Recall that for any of our models the likelihood has two
components: f(y, WIWN, g.R,P*)=f (yIW.g,R)f (WIWN, P*) that were
denoted as the y component and the W component. Thus, the general
form of the DIC is:

AN . A AN Ak
DIC==2logf (yIW°, Wy, &, Rp)+2pp;c_,—21logf (WIWy , Pp)+2pp;c_y
:= DIC,+DICy

where ppc_,=2(10gf (Y1W?, Wy, 8. Re)=Ews gk prywo Llogf GIW, g, R)])
and ppe_y=2(f (WIWy , By)=Eyn puy wo Lf (WIIWN, P¥)]). Thus, as the
likelihood, the DIC can be decomposed into a y component DIC, and a
W component DICy.

2.4. Parameter inference via MCMC

In this section, some issues about MCMC algorithms to carry out
inference are briefly discussed. Notice that when W is fully observed,
the fact that there are no missing genotypes implies that posterior
sampling for the (hyper) parameters of the W component of the
likelihood and the (hyper) parameters of the y component can be
performed separately. The full conditionals of g,G,62 g, and ng are
known; therefore, samples from the joint posterior can be obtained
using a Gibbs sampler (Casella and George, 1992) while samples from
the posterior distribution of allelic frequencies can be obtained using a
Metropolis-Hastings algorithm. Specifically, independent Metropolis
algorithms are considered here. For the scenario of r known, the new
samples can be generated in two steps: firstly a Dirichlet vector is
sampled, and secondly its elements are scaled with the appropriate
elements of r. Alternatively, uniform(0,r;) distributions can be used as
proposal, which simplifies computations. With such proposal, given the
current state of the chain denoted as P’, the acceptance probability of

z(PLIW)
(W)

the new sample P} is min{ ,1}. For null models, the posterior

distribution of p, is the product of m Beta( P nBi+a,n4+p) distributions,
j = 1,2...,m. Hence, direct sampling can be implemented if needed and
the functional form of the posterior mean is known. When r is
unknown, the candidate to sample from the posterior of
(pj, qj),j =1,2,...,m, could be a Dirichlet of dimension six.

On the other hand, when matrix W is partially observed a
Metropolis-within-Gibbs strategy (Robert and Casella, 2010) can be
used to sample from the joint posterior. This strategy is useful due to
the fact that nor 7 (WV|Else) neither = (P*Else) are standard distribu-
tions and the existence of the parameter W¥ does not allow to carry out
separate sampling algorithms as before because this is a parameter of
both components of the likelihood. Accordingly, there are two
Metropolis steps in the algorithm to sample from the posterior of the
full models. The first one is used to obtain samples from = (WV|Else). A
good proposal is 7 (WY|W°, P*) because obtaining direct samples from
this distribution via the inverse transform method for discrete random
variables (Robert and Casella, 2010) is straightforward. The functional
form of z(WN|W°, P*) is derived from first principles as explained in
2.3.1. Thus, given the current state of the chain W, the acceptance
probability of a new sample W2 is: mln{—,’:;:ﬁi:g:;z%’%:xz1’22 ,1¢. This
applies to both situations: r known and r unknown. The second
Metropolis step is used to draw samples from z (PlElse) for r known
or z (P, QlEise) for r unknown. The proposals mentioned for the non-
missing genotypes scenario also work here. For the null models, it
turns out thatV j = 1,2,...,m, 7 (p;|Else) is a known distribution, it is a
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Beta(n%+a,n%+p) and consequently only one Metropolis step is needed
because direct sampling from the full conditional distribution of p, is
feasible. Notice that this full conditional distribution is the posterior
distribution of p, when matrix W is completely observed.

2.5. Simulation study

In order to provide an example of the implementation of some of
the proposed models and the computation of some criteria to compare
their performance, two simulated datasets were used. Simulation of
these datasets involved two main steps: Simulation of genotypes (QTL
and SNP), and simulation of QTL effects and noise. The phenotypes
were simulated as the sum of additive genetic effects (sum of QTL allele
content times the allele effect) and noise. Datasets were simulated
using the software QMSim (Sargolzaei and Schenkel, 2013). In both
cases, a historical population was simulated by creating 1000 genera-
tions of random mating using a forward-in-time approach in order to
reach mutation-drift equilibrium and to create linkage disequilibrium
(Sargolzaei and Schenkel, 2013). The historical population size in each
generation was 1000 with 500 males and 500 females. Then, sub-
populations were created from individuals pertaining to the historical
population under different selection pressures and criteria, and differ-
ent mating systems (Table 1).

Phenotypes were simulated with different number of QTL control-
ling the trait and different heritabilities. Furthermore, the population
structure also differed because the criteria to simulate the subpopula-
tions were different for each trait. Briefly, dataset 1 involved three
subpopulations with different number of generations were migration
was allowed and the heritability of the trait was high. Dataset 2
comprised two subpopulations with only two generations, no migration
and the heritability of the trait was low (Table 1). For further details
concerning the simulation see appendix B.

Given that this paper is focused on proposing and explaining a set
of across population genome-wide prediction models and not with their
large scale implementation, the number of simulated SNP and sample
size were low in order to avoid computational issues (Table 1).
Phenotype 1 illustrates the situation in which the number of markers
is equal to the number of QTL affecting the trait, while for phenotype 2
the number of markers is larger than the number of QTL controlling
the trait. These contrasting simulation schemes, different selection
pressures and criteria, mating designs and number of generations were

Table 1
Parameters and selection criteria to simulate phenotypes.

Parameter Phenotype 1 Phenotype 2
Heritabilities 0.70, 0.62, 0.54 0.20, 0.15
Phenotypic variances 100, 79, 65 100, 94
Number of QTL 600 40

Number of SNP 600 200

Number of Chromosomes 10 2

Base population structure®

Number of generations,
mating system and
selection criteria”

1: 28 M, 180F, Phen/L
2: 20 M, 90F, Phen/H
3: 50 M, 500F, Rnd
1:3,0.8,0.4, As1/Phen,
Phen/L

2:6,0.7,0.1, As2/Phen,
Phen/H

3:3, 0.7, 0.2, Rnd,

Rnd

1: 5 M, 25F, Rnd

2: 20 M, 50F, Phen/
H

1: 2,1, 0.9, Rnd,
Rnd

2:2,0.9, 0.3, Rnd,
Phen/H

2 For each line, the first number indicates the subpopulation, items separated by a
comma respectively show: number of males, number of females, criterion used to select
them (Phen = phenotype, Rnd = random, L = lowest values, H = highest values).

b For each line, the first number indicates the subpopulation, items separated by a
comma respectively show: Number of generations, proportion of selected females per
generation, proportion of selected males per generation, mating design (Rnd=random,
Asl=assortative by similarity, As2= assortative by dissimilarity, Phen = phenotype), and
selection criterion (same abbreviations as in numeral 2).
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used to mimic real life situations where different subpopulations have
different backgrounds. These simulated datasets were used to carry out
analyses using the following models: Homogeneous and heterogeneous
marker effect covariance matrices with homoscedastic residuals and
their null versions. Only models with homoscedastic residuals were
used to analyze these datasets because simulations did not consider
heteroscedastic residuals.

The analyses performed involved implementation of MCMC algo-
rithms explained in Section 2.4, the computation of DIC and the
computation of the following quantities measuring predictive perfor-
mance and accuracy: the squared correlation between predicted
breeding values and phenotypes in the testing populations, hereinafter
called predictive ability, and squared correlations between true and
predicted breeding values computed in the testing populations (accu-
racy). Because true breeding values were available for the complete
populations, squared correlations between true and predicted breeding
values in the training populations were also computed.

For dataset 1, the training population was comprised of generations
0-2 of subpopulation 1, 0-5 from subpopulation 2 and generation 0 of
subpopulation 3, while the testing population included generation 3 of
subpopulation one, generation 6 of subpopulation 2 and generation 1
of subpopulation 3. For dataset 2, the training population was
composed of generations 0 and 1 of subpopulations 1 and 2 and the
testing dataset contained generation 2 of subpopulations 1 and 2.

In dataset 2, the full genotypes of three individuals (one founder
from each subpopulation and a non-founder from subpopulation 1)
were not included in the analysis in order to simulate the case of
missing genotypes.

1

It was assumed that r= é 5| In an initial analysis, a scaled

Dirichlet distribution was used as proposal to draw samples from
7 (P|Else), but the behavior of the chains was not satisfactory because
the acceptance rate was too low (results not shown). Consequently the

product of S independent uniform O,é distributions was used as

proposal. For each dataset, 20.000 iterations were run; the first 10.000
were considered burn-ins. An in-house R script (R Core Team, 2015)
was created to carry out the analyses which were performed using the
University of Florida’s high performance computing cluster.

3. Results
3.1. Simulated populations

Tables 2 and 3 show features corresponding to characteristics of the
simulated genomes and populations.

In both datasets, none of the markers had a minor allele frequency
lower than 0.05. Thus, all the simulated marker loci were considered in
the analyses.

3.2. DIC, predictive ability and accuracies of predicted breeding
values

For dataset 1, the DIC computed using the “W-component” of the
likelihood for the full models was 4717671 and 6589105 for the null
models. Thus, it provided evidence in favor of the full models when
estimating allelic frequencies in the base population. Table 3 shows
DIC values for dataset 1, Table 4 DIC values for dataset 2 and Table 5
shows predictive abilities and accuracies in both datasets. For Tables
3-5, the following is the meaning of abbreviations for the different
models fitted to datasets 1 and 2: M;s= full model with Multivariate
Gaussian prior and homogeneous marker effect covariance matrices,
M= full model with Multivariate Gaussian prior and heterogeneous
marker effect covariance matrices. Recall that all models assumed
homoscedastic residuals. The remaining models with subindex 1
replaced by 0 correspond to null versions of the corresponding full
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Table 2
Summary of some characteristics of the simulated populations.

Feature Dataset 1 Dataset 2
Population size (males, females, 883, 1565, 2448 67, 103, 170
total)
Average inbreeding per $1:0.0182, S2: 0.0310, $1: 0.0, S2:0.0
subpopulation $3:0.0
Average homozygosity per S1: 0.6240, S2: 0.6359, 51:0.6392,
subpopulation $3:0.6190 $2:0.6283
Phenotype sample mean and SD S1: -19.78 (13.21) S1: -0.5959
(in brackets) per (9.3616)
subpopulation S2: 25.71 (9.60) $2:8.9253
S3:0.26 (9.91) (11.9571)
Table 3
y component and total DIC for dataset 1.
Model y component of DIC Total DIC
Mg 33,702.55 4,751,373.55
M 11,599.05 4,729,270.05
Mog 15,396.32 6,604,501.32
Mg 13,008.42 6,602,113.42
Table 4

y component, W component and total DIC for dataset 2.

Model y component of DIC W component of DIC Total DIC

MG 1314.0 38,367.4 39,681.4

M 1328.8 38,356.4 39,684.2

Moc 1365.6 38,180.3 39,545.9

Mg 1370.1 38,179.0 39,549.1
Table 5

Predictive abilities and accuracies in datasets 1 and 2.

Model Predictive Ability Accuracy in testing Accuracy in
population Training
population
Datasetl  Dataset 2  Datasetl Dataset2 Dataset1 Dataset2
Mg 0.29 0.019 0.27 0.04 0.32 0.17
M 0.76 0.016 0.83 0.03 0.94 0.21
Mo 0.53 0.004 0.50 0.07 0.55 0.24
Mg 0.83 0.013 0.88 0.05 0.88 0.23
models.

Thus, in dataset 1, according to the y component of DIC, for the
models with homogeneous marker effect covariance matrices (var-
iances) the null model performed better, while for models with
heterogeneous covariance matrices (variances) according to this criter-
ion the full model should be preferred over its null version. When
considering the whole likelihood to compute the DIC, the two full
models had smaller DIC. Additionally, the model with the smallest DIC,
and therefore the “best” one under this criterion was model M.

In this dataset the two components of the DIC values and therefore
DIC values were similar for all models. The y components of DIC were
smaller for the full models. Conversely, the W components were smaller
for null models as well as total DIC values.

In dataset 1, according to predictive abilities, the model with the
best performance was model Mg; while model M;; had the worst
performance. The squared Pearson correlations between true and
predicted breeding values in testing dataset 1 suggested that the
performance of these models followed a trend similar to that indicated
by predictive abilities. In training dataset 1, model M5, yielded the
highest accuracy and model M;; had the smallest accuracy.
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Predictive abilities and accuracies in the testing sets were extremely
low for dataset 2. Accuracies in training set were higher than those
obtained in the testing set; however, they were still low. There were not
substantial differences between these squared correlations. Predictive
abilities were higher for the full models, while accuracies in testing and
training sets were higher for the null models.

4. Discussion
4.1. General features of the models

A group of hierarchical Bayesian linear regression models to carry
out simultaneous genome-wide prediction in several subpopulations
accounting for randomness of genotypes was presented. The proposed
models differed in the prior distribution assigned to the marker effects
and on the assumptions made about residual variances (homogeneous
or heterogeneous across subpopulations). The priors for the marker
effects were multivariate (univariate) Gaussian and allowed homoge-
neous or heterogeneous covariance matrices (or variances).

The differences between these models and other regression models
currently used in across population genome-wide prediction are: 1)
subpopulation-specific effects for each marker are considered and their
covariance matrices are modeled explicitly, and 2) genotypes are
treated as random variables with a distribution that depends on allelic
frequencies as well as on pedigree information. The second feature
makes these models different from all other genome-wide prediction
models. The distribution of genotypes combines pedigree and genomic
information that are not used when randomness of W is ignored. It
allows accounting for heterogeneity and correlations of allelic frequen-
cies of the same marker across subpopulations and including indivi-
duals with phenotypes and missing genotypes in various loci without
carrying out a previous imputation. This is possible because the non-
observed part of W, denoted as WV, is treated as a parameter and
therefore imputation is automatically performed. Another advantage is
that the use of a Bayesian approach automatically takes into account
uncertainty about the imputed genotypes.

Although most of the paper has been devoted to the models
allowing subpopulation-specific effects for each marker (the full
models), their univariate versions (the null models) are also contribu-
tions of this study. These also allow including individuals with missing
genotypes in some or all marker loci without need of external
imputation and take into account randomness in genotypes.
Therefore, these models could also be used either in single population
analyses or to conduct across population genome-wide prediction
pooling the data as has been done in previous studies (de Roos et al.,
2009; Lund et al., 2011; van den Berg et al., 2015; Wientjes et al.,
2015) and was also done here.

Doing a joint analysis has the advantage that the number of
phenotypes increases, but in our full models the number of location
parameters is also incremented because each marker is allowed to have
subpopulation-specific effects; moreover, the number of covariance
parameters also increases. The gain in accuracy is achieved when
factors such as different QTL effects across subpopulations, differences
in linkage phase between QTL and markers, and differences in allelic
frequencies and LD patterns make marker effects change substantially
from one subpopulation to another. Consequently, the performance of
these models may have considerable variation from one dataset to
another.

The diagonal blocks of G were assumed to be non-structured. A way
reduce dimensionality of the parameter space is to assume certain
structure of G. For example, it can be assumed that all covariances and
variances are the same, thus, only two parameters per block have to be
estimated.

The conditional independence property used to derive z(WP¥)
implies that allelic frequencies are estimated in the set of oldest
individuals with phenotypes. Here, this set of individuals was referred
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to as the base population and individuals pertaining to it were referred
to as founders. This was done for pragmatic purposes. However,
truncating the pedigree by ignoring individuals without phenotypic
records created a group of individuals that may not be the actual base
population which is defined as that comprised by ancestors with
unknown parents (Henderson, 1974; Kennedy et al, 1988).
Conversely, in other cases phenotypic records from this population
may be available; thus, estimates of allelic frequencies in the true base
population can be obtained. Here, it was further assumed that founders
were unrelated which is likely to be false in many situations. However,
this assumption has been made in conventional models used to do
genetic analysis (Henderson, 1974; Kennedy et al., 1988) because
pedigrees are not always completely known. Consequently, what is
called the base population is not always the true one. Nevertheless, this
assumption seems to be reasonable after so many years of successful
artificial selection in animals and plants based on predicted breeding
values obtained from these models (Hill, 2014; Gianola and Rosa,
2015).

As discussed in Section 2.1.1, the pmf = (W|P*) could be derived
ignoring pedigree information. Then, this pmf could be found as the
product of all = (w,-j Iij‘ ) or the product of binomial distributions for gene
content (i.e., the number of copies of the reference allele at each locus)
across loci and individuals with each binomial distribution depending
on the corresponding allelic frequencies. Notice that this requires
reparametrizing the mapping of genotypes, that is, instead of having
{—1,0,1} as possible values of an entry of W, values would be {0,1,2}. In
this case, all individuals in the population would be used to estimate
allelic frequencies instead of using information from a base population.
If pedigree information is available, it can be easily incorporated into
the derivation of = (WIP*) as was shown here and the resulting pmf is
not very difficult to evaluate. Furthermore, as mentioned before, direct
sampling from this pmf can be done via the inverse transform method
for discrete random variables. Notwithstanding, in scenarios where
pedigree information is very scarce or not reliable, adding the
assumption of independence among individual genotypes and using
binomial distributions for the gene content of each individual at each
marker locus is an option to model the distribution of matrix W which
would induce a joint pmf similar to those presented in Gianola et al.,
(2010) and Martinez et al. (2015).

If some individuals with phenotypes have only one known parent,
the pmf of their genotypes conditioned on this parent and allelic
frequencies can be defined in a similar way as was done in Table 1 for
the case of a fully known pedigree (see Appendix C). In this situation,
Remark 1 does not hold and the functional form of z (WIP*) changes
which implies that z (WIEise) changes as well.

Regarding assumptions about the distribution of allelic frequencies,
our models allow for correlations between them. To do that, priors
based on a Dirichlet distribution were used. Using these priors require
allelic frequencies to be expressed on a complete population basis. This
setting brings parameter r into the picture. The algebra associated with
this parameter is clear and straightforward, but its interpretation may
be fuzzy. From an algebraic standpoint, these parameters are upper
boundaries posed over allelic frequencies to force them to be in the
support of the prior distribution, thus they can be seen as analytic
instruments. Nevertheless, their meaning from the population genetics
standpoint is not very clear. Perhaps, the easier interpretation when
assuming r;=...=r,=r, is that r; is the relative frequency or weight of
the [ subpopulation. However, making claims about the biological
interpretation of this set of parameters is beyond the scope of this
study.

From a statistical viewpoint, two approaches were proposed. The
first one assumed that » was known (truly known or set to some ad hoc
value) and ry;=...=r,=r;. In the examples used here all subpopulations
were given the same weight, that is, r=1/S, V [ = 1,2...,S, a pragmatic
decision that has been used in other studies, e.g., Gianola et al. (2010).
In this scenario, for all j, p; is modeled as a scaled Dirichlet vector

16

Journal of Theoretical Biology 417 (2017) 8—19

which allows non-null covariances between its elements. The second
approach assumed that r was unknown and {r;} varied across marker
loci. For each locus the prior was a Dirichlet over allelic frequencies of
both alleles in all subpopulations and it permitted obtaining posterior
samples of allelic frequencies and r. Under the assumption of
independence of allelic frequencies, independent priors could be
assigned to each marker (e.g., Uniform(0,;)) and the validity of this
assumption could be tested using criteria as Bayes factors or DIC. If
data are pooled and structure is ignored (as done in the null models)
the full conditional pdf = (p,lEise) is known and therefore direct
sampling can be implemented when matrix W is not completely
observed. On the other hand, when it is completely observed the
posterior of p, is known and there is no need of sampling to obtain
point estimators. The reason for the full conditional of p, being a
known distribution but not its posterior in the presence of missing
genotypes is that WV is an extra parameter in the model and obtaining
the marginal posterior of p, implies marginalization of z(WV, p,IW°)
over WY which induces a non-standard pmf.

The derivation of the pmf z(WIP*) and z(Wlp,) not only allow
inferences concerning the marker allelic frequencies in the base
population, but also allow predictions for non-genotyped or partially
genotyped animals without performing a previous imputation. This is
likely to increase accuracy of genome-wide predictions because it
allows incorporating more phenotypic records. Imputed missing geno-
types can be obtained using posterior means or medians of W¥V.
However, these outputs have to be viewed as a byproduct because
these models were not intended to perform imputation. The imputation
of missing genotypes is an underlying process in the prediction of
genotypic values of individuals with missing genotypes.
Notwithstanding, because samples from the posterior of WV are
available and computation of imputed genotypes is simple, there could
be interest in using this output of the model and in such case the
accuracy of the imputation would also be of interest. Hence, although
imputation was not a main objective of our models, it is worth making a
brief comment on it. Though an assessment of imputation accuracy is a
matter for further research, two statements can be made about the
imputation process in our models. Firstly, one advantage of the models
developed here is that they automatically take into account the
uncertainty of imputation (as a consequence of using a Bayesian
approach). Conversely, in the standard approach where genotype
imputation is the first step and then a random linear regression model
is fitted using these imputed values as if they were observations,
uncertainty is not taken into account. Secondly, a disadvantage of our
models is that they do not incorporate LD information when imputing
missing genotypes, a source of information that is used by some of the
current imputation methods (Li et al., 2009). Here, pedigree informa-
tion, phenotypes and allelic frequencies are used for imputation. Thus,
benchmarking of the procedure developed here with current and well-
accepted procedures is material for future studies. Furthermore,
another question that can be addressed in future research is if
improving this imputation as discussed later in Section 4.3 has a
significant impact on the predictive performance of the models.

As mentioned before, the regression models used in genome-wide
prediction treat genotypes as fixed and their effects as random while in
the classical quantitative genetics theory genotypes are treated as
random and allelic substitution effects as fixed. The set of models
developed here are something in between because genotypes are
treated as random variables as in classical quantitative genetics, and
marker effects are considered random as well like in the standard
regression models used in genome-wide prediction. de los Campos
et al. (2015b) presented an excellent discussion on the connections
between the heritability and the so-called genomic heritability obtained
with linear regression models. They show why caution has to be
exercised when interpreting the parameters obtained using genomic
information due to the fact that sometimes the connection between
parameters as the additive genetic variance and the genomic variance
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are not straightforward. Similarly, Gianola et al. (2015) discussed the
fact that connections between genomic correlations and additive
genetic correlations are ambiguous. So far, the Bayesian models
proposed in this paper are intended to predict breeding values,
phenotypes, and to estimate allelic frequencies in a base population
using genomic information and no claim is made about the properties
of covariance parameters obtained from them.

The discussion above is relevant because the regression variables
are not based on genes, but proxies for the causal variants affecting the
phenotypes of interest. However, taking into account these limitations
and the high degree of caution needed when interpreting parameters
obtained from models using molecular markers, some parameters such
as the fraction of additive genetic variance explained by the markers are
of interest and our models could be used to estimate these quantities.

The family of models developed here could be applied or adapted to
different situations. In the simulation, the case of individuals coming
from a common founder population pertaining to subpopulations with
different selection criteria and mating systems was considered. Other
situations in which this set of models could be useful are: 1)
simultaneous evaluation of individuals from different breeds or lines,
2) individuals from the same breed or line performing under different
environmental conditions (e.g., different geographic regions, produc-
tion systems, etc.), 3) a combination of numerals 1 and 2, 4)
simultaneous evaluation of several correlated traits. In this last case,
if all individuals have records for all phenotypes, the design matrix
satisfies W = Is@W,, where W, is the matrix of dimension n X m
containing genotypes of » individuals at m marker loci. In this case
the model is being adapted to handle correlations between the effects of
a given marker locus for different traits in a single population.
Consequently, for a given choice of prior and assumption about
residuals (heteroscedastic or homoscedastic) the model involves the
corresponding hierarchical structure except for the pmf of W condi-
tional on the allelic frequencies and pedigree which is z (W,lp;") instead
of z(WIP*). Recent studies have developed Bayesian multiple-trait
genome-wide regression models and have shown that predictions from
them are more accurate than those coming from genomic univariate
models (Jia and Jannink, 2012). The hierarchical Bayesian multi-
variate genome-wide prediction models proposed by Jia and Jannink
(2012) have similar components to the models presented here such as
the priors for g, but they do not account for randomness of genotypes.
Another step to accommodate our models for multiple-trait prediction
is to allow correlated residuals, that is, a non-diagonal matrix R. In this
case, an inverse Wishart prior can be assigned instead of the inverse
gamma prior used here.

4.2. Simulation results

As stated in Section 2.4, the aim of this limited simulation was to
provide an illustration of the implementation of models and methods
developed in this study. Thus, results are not conclusive and further
research involving analyses based on more elaborate simulations as
well as real datasets to have a better evaluation of the performance of
this family of models is needed. Nevertheless, some insights and
comments derived from the analyses of these two datasets can be
discussed.

The correlation between phenotypes and predicted breeding values
(or its square) is one of the most widely used measurements to compare
genome-wide prediction models, it is associated with the response to
selection and it is easy to compute. On the other hand, as mentioned
previously, the DIC combines measures of model adequacy and
complexity (Spiegelhalter et al., 2002).

For dataset 1, the squared correlation between phenotypes and
predicted breeding values (the predictive ability) did not show an
advantage in predictive capability of models taking into account the
population structure, i.e., the existence of the subpopulations (Table 5).
While measures based on squared correlations did not provide
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conclusive evidence in favor of the full models, the DIC favored the
full models.

As expected, the predictive ability and the other correlations were
much smaller in dataset 2 due to the lower heritability of the trait.
Although all predictive abilities were low, according to this criterion the
performance of the full models was slightly better. Accuracies of
predicted breeding values suggested a tiny superiority of null models.
The two subpopulations simulated in this dataset diverged by just two
generations which could cause only small differences in allelic frequen-
cies, this scenario clearly favors the null models. Accordingly, the DIC
component coming from genotypes was slightly better (smaller) for
null models as opposed to the case of dataset 1. The total DIC gave
evidence in favor of null models. Among predictive ability, accuracy
and DIC, accuracy and DIC favored the null models, but the values
were very close. The performance of the fitted models was more similar
in this dataset than in dataset 1.

In our small simulations, when subpopulations diverged by
several generations, migration was allowed and heritabilities were
high (dataset 1), full models had better performance in terms of DIC.
Conversely, when populations diverged by only a few generations,
there was no migration, and heritabilities were low (dataset 2) null
models tended to perform better according to this criterion.
However, the differences were small. On the other hand, predictive
abilities showed a different pattern. In dataset 1 this criterion was
higher for null models while in dataset 2 it was smaller for null
models. Another feature shown by these simulations was the high
variability in model performance that may exist among populations.
In dataset 1, according to all criteria except the W component of DIC,
the performance of model M, tended to be remarkably poorer while
this was not the case in dataset 2.

Other authors have found modest or null increments in pre-
dictive performance of models allowing heterogeneous marker
effects across subpopulations compared to pooling data and analyz-
ing the complete population as a single one (Olson et al., 2012;
Makgahlela et al., 2013; de los Campos et al., 2015a). All the
aforementioned studies used real data from plants and animals.
Working with three plant populations and using a model very similar
to those proposed here, Lehermeier et al. (2015) found cases in
which the strategy of pooling data and ignoring structure performed
better and other cases where multivariate models yielded better
predictive performance. These authors found that in highly differ-
entiated populations within group and multivariate analyses per-
formed better while the converse occurred in closely related sub-
populations with small sample sizes. Roughly speaking, these results
are in agreement with the results found in this study.

Using predictive ability, Lund et al. (2011) found a higher accuracy
of predicted additive breeding values when pooling the data compared
with individual analyses. Similar results were found by de Roos et al.
(2009) when heritability was low, divergence of populations was small
(small number of generations) and marker density was high (more
persistent phase), and by Wientjes et al. (2015) when the QTL effects
did not change across subpopulations. Pooling data and ignoring the
population structure corresponds to the null models defined in this
study, except that models considered by the authors just cited did not
account for randomness of genotypes. In our simulation, individual
analyses were not considered. Sample size is one the factors affecting
the accuracy of genome-wide predictions (Meuwissen et al., 2001;
Goddard, 2009; Zhong et al., 2009). Presumably it was one of the
leading factors causing the results found by Lund et al. (2011). In
addition, the Holstein breed is highly inbred and there were several
individuals connecting the different populations; this probably made
them similar. On the other hand, the studies of de Roos et al. (2009)
and Wientjes et al. (2015) used simulated data and explored different
scenarios. Both studies found situations in which pooling data was not
advantageous.
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4.3. Refinements and extensions

In this section, some comments regarding possible extensions and
refinements of different aspects of the family of models presented in
the study are briefly discussed.

In the derivation of the joint pmf of W conditional on P* and
pedigree information, row-wise dependence due to kinship was taken
into account by using pedigree information to accommodate relation-
ships among genotypes of related individuals. This task was highly
simplified due to the conditional independence argument that per-
mitted to find a simpler decomposition of the joint pmf and therefore, a
simpler algebraic expression. However, the possible existence of
column-wise dependence due to LD was ignored here in order to make
the problem more tractable from the mathematical point of view. This
is an assumption frequently used in theoretical studies in quantitative
genetics and it is well-accepted at least in studies concerned with first
approximations to a given problem. For example, Gianola et al. (2009)
treated a series of theoretical aspects of some of the Bayesian
regression models used in genome-wide prediction using the assump-
tion of linkage equilibrium which implies the mutual independence of
the columns of W used here (they also developed some results
accounting for LD in the Appendix). Most of the models currently
used in genome-wide prediction are also based on this assumption, few
approximations to deal with consequences of LD have been proposed
(Gianola et al., 2003; Yang and Tempelman, 2012), but these have not
yet been adopted in routine genetic evaluations. Their models do not
consider randomness in the genotypes; thus, a consequence of con-
sidering LD in these models is the need to account for covariances
between marker effects at different loci. Consequently, a refinement of
our family of models in this regard, would be to accommodate LD,
which can be performed at two levels: 1) account for correlations
among columns of W, and 2) use a non-block-diagonal G matrix.

A potential consequence of accounting for non-independence of the
columns of W could be the reduction in the cardinality of G that is
induced by the fact that the number of possible values of a column of W
depends on the values at one or more different columns (as it happened
with rows). Another assumption made here was the absence of
mutations which caused that when conditioning on the genotypes of
the parents of an individual, the probabilities of its genotype taking a
given value were completely defined by the parental genotypes, making
this random variable conditionally independent of allelic frequencies.
Thus, another refinement in z (W|P*) would be to account for mutation.
Therefore, the derivation of z(W|P*) to accommodate dependence
between columns of W and mutation, and the impact of this refinement
on predictive performance and the accuracy of imputed genotypes (if it
is of interest) pose a problem for further research.

If relationships among founders (as defined in this paper) were to
be taken into account, from the theoretical point of view it is not hard
to visualize how to do it. For the sake of simplicity, the case of two
individuals and one locus is considered; consequently, the sub-index
associated with locus is omitted. Let W;, W, be the genotypes of
individuals 1 and 2, and W; the genotypes of the set of relevant
common ancestors. Suppose that 1 is not a parent of 2. Then:

T (Wi, WalP*)= ) (W, WalW, P¥)m (W P¥)
gC
= 2 a(WilWe, P¥)z (WalW, Pz (WlP*),
gC

where GC is the set of possible values that the set of genotypes of
relevant common ancestors can take according to the pedigree (as
explained in Section 2.1.1) and the second equality follows from the
conditional independence of the genotypes of individuals 1 and 2 given
the common ancestors and allelic frequencies. By relevant common
ancestors it is meant that the genotypes of these ancestors provide
information about the genotypes of 1 and 2 when conditioning on the
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full set of common ancestors, i.e., if O is the whole set of common
ancestors then D = CuC® (the super-index ¢ means complement with
respect to D) and z (W, WalWp, P¥*)=n(W;, WoIW, P¥). Notice that
unless individuals 1 and 2 are full sibs, their conditional pmf given
the relevant common ancestors depends on P*. Of course, it makes
7z (WIP*) a more complex expression and reduces the cardinality of G.
See Appendix D for a toy example of z (W;, W,I1W;, P*) when 1 and 2 are
half sibs. Although the problem is tractable from the theoretical
standpoint, it may be difficult to compute these values especially with
complex pedigrees where the set of common ancestors may be large
such as those found in animal and plant populations. The example in
Appendix D shows that even in a simple case, computation of
7z (Wi, WIP*) is involved.

5. Conclusions

The main contribution of this paper is the theoretical development
of a set of models for across population genome-wide prediction
incorporating marker genotypes not only as explanatory variables of
regression models, but also as realizations of random variables
providing information about allelic frequencies and missing genotypes.
Although models were intended for across population analysis, they
can also be applied in single population studies and adapted for
multiple-trait prediction.

Theoretical and computational issues along with possible applica-
tions as well as some extensions and refinements of these models pose
several problems for future research. Our models treat both genotypes
and marker allelic substitution effects as random; therefore, they
combine features from classical quantitative genetics theory and
traditional genome-wide prediction models.

Some features of the models developed in this study make them
promising for genome-wide prediction. Among these, the ability to
include phenotypes from individuals with missing genotypes at some or
all loci without the need of previous imputation and accounting for
uncertainty about imputed genotypes as well as heterogeneity of allelic
frequencies across subpopulations are perhaps the most appealing.
Further research to assess their performance and also to compare them
with other models used in genome-wide prediction is needed.
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