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Abstract We have previously formulated an abstract dy-
namical system for networks of spiking neurons and derived
a formal result that identifies the criterion for its dynamics,
without inputs, to be “sensitive to initial conditions”. Since
formal results are applicable only to the extent to which
their assumptions are valid, we begin this article by demon-
strating that the assumptions are indeed reasonable for a
wide range of networks, particularly those that lack over-
arching structure. A notable aspect of the criterion is the
finding that sensitivity does not necessarily arise from ran-
domness of connectivity or of connection strengths, in net-
works. The criterion guides us to cases that decouple these
aspects: we present two instructive examples of networks,
one with random connectivity and connection strengths, yet
whose dynamics is insensitive, and another with structured
connectivity and connection strengths, yet whose dynamics
is sensitive. We then argue based on the criterion and the
gross electrophysiology of the cortex that the dynamics of
cortical networks ought to be almost surely sensitive under
conditions typically found there. We supplement this with
two examples of networks modeling cortical columns with
widely differing qualitative dynamics, yet with both exhibit-
ing sensitive dependence. Next, we use the criterion to con-
struct a network that undergoes bifurcation from sensitive
dynamics to insensitive dynamics when the value of a con-
trol parameter is varied. Finally, we extend the formal result
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to networks driven by stationary input spike trains, deriving
a superior criterion than previously reported.
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1. Introduction

It is well-documented that neurons in the cortex generate
highly irregular spike trains that are generally not repro-
ducible under repeated presentations of identical stimuli to
the experimental subject (Tomko and Crapper, 1974; Burns
and Webb, 1976; Tolhurst et al., 1983; Snowden et al., 1992;
Britten et al., 1993). This has led to the widely held belief
that the relevant information regarding a stimulus is con-
tained in the time varying discharge rate of a cortical neuron
and not in the particular spike train generated by it. There can
however, be several mutually non-exclusive reasons for this
phenomenon. First, the variability in the spike train generated
by a neuron may simply be a reflection of the trial-to-trial
variability in the input received by it from other neurons in
the brain, a possibility that can not be ruled out even under
the strictest of experimental regimen.

Second, the cortical neuron may be a highly noisy device,
generating variable spike trains despite receiving identical
inputs at its synapses. The extent to which this is the case
has not entirely been resolved. On the one hand, current in-
jection experiments mimicking post-synaptic potentials in a
neuron have demonstrated that the spike generating mech-
anism of a neuron has low intrinsic noise, capable of pro-
ducing spike trains that are reproducible to within a msec
(Mainen and Sejnowski, 1995; Nowak et al., 1997). It has
also been shown that spikes, once generated at the soma,
rarely fail to arrive at the synapses on the axonal arbors of
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a neuron (Cox et al., 2000). On the other hand, it has been
demonstrated that synaptic transmission in neurons is highly
unreliable with failure rates approaching 80% (Raastad et al.,
1992; Rosenmund et al., 1993; Hessler et al., 1993). It is un-
clear whether this transmission failure is determined solely
by thermal noise or is largely a deterministic process driven
by, among other elements, the history of the pre- and post-
synaptic neuron’s spike activity.

Finally, the dynamics of cortical networks may be sen-
sitive to initial conditions, where tiny fluctuations in spike
timing caused by even the smallest amount of thermal noise
result in successively larger fluctuations in the timing of sub-
sequent spikes. It is this third possibility that is the subject
of investigation of this article.

Sensitive dependence on initial conditions is not only an
issue that is vital to the understanding of the dynamics of
cortical networks, but is also a feature that can place signifi-
cant constraints on the computational nature of such systems.
First, if the dynamics of cortical networks is indeed sensitive
to initial conditions, one can rule out the possibility that infor-
mation is represented in the precise spatio-temporal pattern
of spikes generated by the system, because such a represen-
tation could not be robust. We would then be required to
refashion our search for the appropriate equivalence class
of spike patterns that could robustly represent information.
Second, and of particular relevance to experimental neuro-
science, sensitive dependence on initial conditions can have a
major impact on the topology of any potential attractors that
might exist in the phase-space of cortical networks. Dynam-
ical signatures that distinguish between attractors are likely
to be more subtle if the attractors are chaotic as opposed to
periodic/quasi-periodic. Insight into the topological charac-
teristics of the attractors could therefore provide a principled
basis for evaluating the efficacy of such widely used signa-
tures as the average spike rate of neurons.

That sensitive dependence may play a role in the dynam-
ics of cortical networks has long been suspected, both on
experimental (Freeman and Skarda, 1985) as well as the-
oretical grounds (van Vreeswijk and Sompolinsky, 1996).
Distinguishing chaotic dynamics experimentally from noisy
periodic/quasi-periodic dynamics in a high dimensional dy-
namical system such as the cortex, is however known to
be a notoriously difficult task (Grassberger and Procaccia,
1983; Osborne and Provenzale, 1989; Cazelles and Ferriere,
1992). Moreover, the theoretical result of (van Vreeswijk and
Sompolinsky, 1996, 1998) is based on a highly simplified
model of the neuron (namely, a binary stochastic unit) and
network, and therefore, the extent to which the result applies
to networks of neurons in the cortex remains unclear.

The vast majority of neurons in the brain communicate
with one another using spikes. This core characteristic is
often abstracted away in formal analyses of the dynamics of
networks of neurons, where the inputs to and outputs from the

neurons are modeled using continuous quantities represent-
ing variously, the firing rate or the instantaneous probability
of spiking of a neuron (Amit and Brunel, 1997; Brunel and
Hakim, 1999; Brunel, 2000; Latham et al., 2000; Seung et al.,
2000). While these analyses have yielded important insights
into global aspects of the dynamics of networks of neurons,
the noted abstraction makes this approach unsuitable for the
study of local characteristics of the particular spike trajecto-
ries that are generated by such systems. A second class of
analyses, based on temporal positions of spikes in a Spike-
response model (Gerstner and van Hemmen, 1992) of the
neuron, does not suffer from this drawback. However, due
to the lack of a full fledged representation of any arbitrary
spike trajectory that could be generated by a network, the re-
sults in this case have been limited to phase-locked periodic
solutions (Gerstner et al., 1996; Chow, 1998).

We have previously formulated an abstract dynamical sys-
tem for networks of neurons where the spiking nature of the
neuron assumes center-stage, and which has the capability
of representing any spike trajectory generated by a network
(Banerjee, 2001a). The system is based on a limited set of
realistic assumptions and hence accommodates a wide range
of neuronal models. We briefly review the abstract dynamical
system in Section 2.1.

The strictly spike-based representation of the dynamics
of a network of neurons lends itself to a precise determi-
nation of whether or not a spike trajectory generated by a
given network is sensitive to initial conditions. Section 2.2
presents a formal description of this analysis. Briefly, the de-
termination is based on a perturbation analysis of the spike
trajectory. If the spikes on the spike trajectory at a given point
in time, are perturbed, this will cause subsequent spikes on
the trajectory to also be perturbed. Stated informally, the dy-
namics of the network is sensitive (respectively, insensitive)
to initial conditions if these subsequent perturbations tend to
grow progressively larger (respectively, smaller) with time.
The first stage of the analysis shows how the perturbation in
a newly generated spike can be computed as a function of
the perturbations on those spikes that contributed to its gen-
eration. The second stage then cascades the perturbations on
successively generated spikes to reveal the functional rela-
tionship between an initial set of perturbations on spikes, and
a final set of perturbations on spikes generated in a distant
future. Given any particular network of neurons and a corre-
sponding spike trajectory, one can determine whether or not
that trajectory is sensitive to initial conditions based on an
inspection of this relationship.

This result, although an advance, is not particularly use-
ful since we are seldom faced with the task of determining
whether or not a spike trajectory generated by a particu-
lar network of neurons is sensitive. Our interest lies, in-
stead, in the identification of those characteristics of generic
networks of neurons that determine the sensitivity of their
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spike trajectories. In order to address this more general ques-
tion, we must first model appropriate aspects of the class of
spike trajectories that are generated by such networks. In
the final stage of the analysis presented in Section 2.2, the
above noted cascade is modeled as a particular stationary
stochastic process. Underlying the proof of the criterion for
the dynamics of a network without inputs to be sensitive
to initial conditions, as well as the criterion for it to be in-
sensitive to initial conditions, in Banerjee (2001b), is this
model.

Clearly, the result in Banerjee (2001b) is applicable only
to the extent to which the stationary process succeeds in
emulating the corresponding aspects of the real spike trajec-
tories that are generated by networks of neurons. This issue
is addressed in Section 2.3. First, the assumptions underlying
the stationary stochastic process that models the cascade are
described in detail. It is then demonstrated that these theoret-
ical assumptions are indeed reasonable for a wide range of
networks, particularly those that lack overarching structure.

A notable aspect of the criterion is the finding that sensi-
tivity does not necessarily arise from randomness of connec-
tivity or of connection strengths, in networks. The criterion
guides us to cases that decouple these aspects. In Section 3
we present two instructive examples of networks, one with
random connectivity and connection strengths, yet whose dy-
namics is insensitive to initial conditions, and another with
structured connectivity and connection strengths, yet whose
dynamics is sensitive to initial conditions. We then argue
based on the criterion and features of the gross electrophys-
iology of the cortex that the dynamics of cortical networks,
under normal operating conditions, ought to be almost surely
sensitive to initial conditions. We supplement this with two
additional examples of networks modeling cortical columns
with widely differing qualitative dynamics, yet with both
exhibiting sensitive dependence on initial conditions.

The criterion offers a succinct description of the condi-
tions under which the dynamics of a network of spiking
neurons should be almost surely sensitive, or almost surely
insensitive, to initial conditions. Insight into the criterion
enables us to construct networks whose dynamics is either
sensitive or insensitive depending upon the value of a control
parameter. In Section 4, we present example networks that
undergo bifurcation from sensitive dynamics to insensitive
dynamics as the control parameter is varied.

By considering networks of neurons that do not receive
external inputs, we have been able to isolate the characteristic
features of the intrinsic dynamics of the system from the con-
founding effects of inputs. Cortical networks are however,
continually bombarded by inputs arriving from the thalamus
and other cortical areas. The analysis of systems receiv-
ing external inputs suffers additional technical complica-
tions, such as the concept of sensitive dependence not being
well-defined in all scenarios. In Section 5, we extend the for-

mal result to the special case of networks receiving stationary
input spike trains. We derive a criterion for the dynamics of
such networks to be insensitive to initial conditions, and im-
prove on the criterion reported in Banerjee (2001b) for the
dynamics of such networks to be sensitive to initial condi-
tions. Finally in Section 6, we discuss the ramifications of
these results.

2. Sensitive dependence on initial conditions

We begin this section with a brief review of the abstract dy-
namical system that models recurrent networks of spiking
neurons as formulated in Banerjee (2001a). Following this,
we present the criterion for the dynamics of the system to be
sensitive to initial conditions as derived in Banerjee (2001b),
describing in greater detail the theoretical assumptions that
underlie the formal result. We then investigate these the-
oretical assumptions and demonstrate that they are indeed
reasonable for a wide range of network connectivities and
connection strengths.

2.1. The abstract dynamical system

A neuron, at the highest level of abstraction, is a device that
transforms multiple input sequences of spikes arriving at its
various afferent (incoming) synapses into an output sequence
of spikes on its axon. This transformation is realized by way
of a quantity P, the membrane potential at the soma of the
neuron. Post-synaptic potentials (PSPs) generated by the af-
ferent spikes that have arrived at the various synapses of the
neuron, and after-hyperpolarizing potentials (AHPs) gener-
ated by the efferent (outgoing) spikes that have departed the
soma of the neuron, combine nonlinearly to generate P. The
neuron emits a new spike whenever P, during its rising phase,
crosses the threshold T of the neuron.

The formulation of the abstract dynamical system is based
on the fundamental assumption that the membrane potential,
P, can be derived from a bounded-time past history of all
afferent and efferent spikes of a neuron. Spikes that have
aged past this bound are considered to have negligible effect
on the present value of P. This assumption is valid if the
neuron is a finite precision device with fading memory.1

1 We note models of the neuron in which PSP/AHPs decay exponen-
tially fast to the resting level, such as the standard integrate-and-fire
and spike-response models, belong to this category if one also assumes
that the threshold is noisy, however small that noise might be. In such
models, one can compute the present membrane potential from a record
of the history of spikes from a bounded past. The above model is in
fact, more general than has been described, since P does not necessarily
have to be the membrane potential. It could be any quantity that denotes
the instantaneous distance of the internal state of the neuron from the
state that corresponds to being at threshold and generating a spike.
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Since in any given system of neurons the afferent spikes
into a particular neuron correspond to the efferent spikes of
particular other neurons with appropriate axonal and synap-
tic delays, the state of a system of neurons can be specified by
enumerating the temporal positions of all spikes generated by
the neurons in the system over a bounded past. Such a record
specifies the exact location of all spikes that are still situated
on the axons of neurons, and via the functions P’s specifies
the current membrane potentials at the somas of the neurons.
In effect, one avoids the technical difficulties that arise from
attempting to represent such disparate quantities as mem-
brane potentials and spikes under a common framework,
by adopting a strictly spike based representation. Finally,
since neurons can not generate successive spikes closer than
their respective absolute refractory periods, there can only
be finitely many spikes generated by each neuron during this
bounded past.

Formally, let i = 1, . . . ,S denote the internal neurons
of a system, and i = S + 1, . . . ,R the input neurons. Let
ϒ denote the duration of the bounded past as described
above and ri the absolute refractory period of neuron i.
Then, neuron i will have generated at most ni = �ϒ/ri�
spikes during the past ϒ time period. Let x j

i (1 ≤ j ≤ ni )
represent the time since the generation of a distinct spike
by neuron i during the past ϒ time period. The state
of the system can then be specified by the (

∑R
i=1 ni )-

tuple〈x1
1 , . . . , xn1

1 , . . . , x1
R, . . . , xnR

R 〉 ∈ [0, ϒ]
∑R

i=1 ni . It is
conceivable that there will be times when neuron i will not
have generated ni spikes during the past ϒ time period, ni

being merely an upper bound on the number of such spikes.
At such times the remaining xi

j’s are set to 0. To maintain
uniformity of vocabulary, xi

j’s with non-zero values are con-
sidered to correspond to live spikes and xi

j’s with value set
at zero to dead spikes. Note that dead spikes are merely arti-
facts of our representation and do not physically exist. They
are necessitated by two conflicting demands: the need to for-
mulate a phase-space of fixed dimensionality, and the fact
that neurons can generate variable number of spikes over
any fixed interval of time. To elaborate using an example,
a neuron all of whose spikes are currently dead is merely
one that has not generated any spikes during the past ϒ time
period.

Each internal neuron i (i = 1, . . . ,S) is assigned
a C∞ (i.e., smooth) membrane potential function
Pi (x1

1 , . . . , xn1
1 , . . . , x1

R, . . . , xnR
R ) that maps the present state

description to the instantaneous potential at the soma of neu-
ron i. The particular instantiation of the set of functions
Pi : [0, ϒ]

∑R
i=1 ni → R determines both the electrophysio-

logical properties of the neurons as well as their connectivity
and connection strengths in the network. Figure 1(a) presents
a schematic diagram of a system comprised of three internal
neurons (depicted in black) and two input neurons (depicted

in gray). The present state of the system is specified by the
positions of the spikes (solid lines) in the shaded region at
t = 0, and the state of the system at a future time T is speci-
fied by the positions of the spikes (solid lines) in the shaded
region at t = T.

The dynamics of the system unfolds as follows. At any
given moment in time all non-zero xi

j’s (live spikes) grow
at a constant rate of 1. If the value of an xi

j reaches ϒ , it
is reset to 0 (i.e., the live spike is turned dead). If input
neuron i generates a spike, or if Pi (·) = T and d Pi/dt ≥ 0
for internal neuron i, exactly one of its xi

j’s set at 0 (a dead
spike) is chosen and set to grow at a constant rate of 1 (i.e.,
turned live).

Whereas the (
∑R

i=1 ni )-tuple 〈x1
1 , ..., xn1

1 , ..., x1
R, ...,

xnR
R 〉 ∈ [0, ϒ]

∑R
i=1 ni does specify the state of the system,

this representation is fraught with redundancy. First, for any
given i, j, the two positions xi

j = 0 and xi
j = ϒ ought to

be identified with each other, both denoting dead spikes.
Second, all permutations of 〈x1

i , . . . , xni
i 〉 for any given i

ought to be identified with one another because the order in
which spikes are assigned to the xi

j’s for any given neuron is
inconsequential. These redundancies engender correspond-
ing difficulties in the determination of trajectories in the
phase-space. The first causes a trajectory to be discontinuous
at the death of a spike, i.e., when an xi

j is reset from ϒ

to 0. The second causes a trajectory to not be uniquely
defined at the birth of a spike since any xi

j set at 0 for that
particular neuron can be chosen to grow at a constant rate
of 1.

Since the objective of this article is to investigate the
local neighborhood of trajectories and not the trajectories
themselves, we confine the remainder of the review to certain
notable aspects of the correctly formulated phase-space, and
refer the interested reader to Banerjee (2001a, b) for a more
comprehensive exposition.

It was shown in Banerjee (2001a) that the above
redundancies can be eliminated by applying two
successive transformations to the state description
〈x1

1 , . . . , xn1
1 , . . . x1

R, . . . , xnR
R 〉. The first transformation, de-

scribed informally, maps each xi
j to a complex number on

the unit circle. For each neuron i, the second transformation
then maps the resultant ni complex numbers to the coef-
ficients of the complex polynomial whose roots are iden-
tically those complex numbers. The phase-space resulting
from the transformations (denoted by

∏R
i=1

i
Lni ) was shown

to be a compact manifold with boundaries. It was also shown
that for each membrane potential function Pi(·) there exists
a corresponding C∞ function P̃i :

∏R
j=1

j
Ln j → R on the

transformed phase-space, and that for each i the subset of∏R
j=1

j
Ln j that satisfies P̃i (·) = T and d P̃i (·)/dt ≥ 0, is a

closed subset of a C∞ regular submanifold of codimension
1, which we denote by Pi

I .

Springer



J Comput Neurosci (2006) 20:321–348 325

Fig. 1 (a) Schematic diagram of a system containing five neurons.
Input neurons are depicted in gray and internal neurons in black. Di-
rected edges denote the axons emanating from each neuron. Spikes
are shown in solid lines. Gray boxes demarcate a bounded-time past
history starting at time t . The temporal position of all spikes in the
boxes specify the state of the system at t = 0 and t = T . The dy-
namics of the system may be visualized by translating the gray box
at t = 0 to the left and noting the changes that take place within it.
Perturbations on spikes are shown in dotted lines. Note that spikes

generated by the input neurons are not perturbed. (b) The evolving
perturbation vector �xk (lower section) and the corresponding pertur-
bation matrix Ak

0 (upper section). �xk gains a component according
to Eq.(3) if the next event is a birth of a spike, and loses a component
if the next event is a death of a spike. Ak

0 correspondingly gains or
loses a row. (c) Schematic diagram of a trajectory in the phase-space.
The initial perturbation is constrained to lie transverse to the trajectory
and the final perturbation is projected onto a transverse plane to the
trajectory

The dichotomy between dead and live spikes described
earlier introduces a corresponding structure on i

Lni . We de-

note by i
L

j
ni

the subspace of i
Lni that satisfies σi ≥ j , where

σ i denotes the number of dead spikes in the state descrip-

tion of neuron i. In other words, i
L

j
ni

denotes the subset of

states of i
Lni that have at least j dead spikes. It was shown in

Banerjee (2001a) that for each j , i
L

j
ni

is a C∞ regular sub-

manifold of i
Lni . Since, as noted earlier, dead spikes are

merely artifacts of our representation, i
Lni is assigned the

topology generated by the family of all relatively open sub-

sets of i
L

j
ni
,∀ j ≥ 0.

The velocity field that generates the flow described ear-
lier, can now be defined on the phase-space to complete the

formulation of the abstract dynamical system. As shown in
Banerjee (2001a), for systems without input neurons, a field
V1 can be defined on the entire phase-space excepting the
hypersurfaces Pi

I’s, for when no neuron is on the verge of
spiking and no spike is on the verge of death, and a field V2

can be defined on the Pi
I’s for when one or more internal

neurons are on the verge of spiking. Although no unique
velocity field can be stipulated for systems with input neu-
rons because the spike activity of the input neurons is not
known a priori and is not determined by the state of the
system, should an input trajectory be given, velocity fields
for when one or more input neurons are also on the verge
of spiking could be defined by appropriately modifying V1

and V2.
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Since our objective is to investigate the local properties
of trajectories through a perturbation analysis, the phase-
space is additionally endowed with a Riemannian metric.
The metric is chosen such that all flows corresponding to

V1 on
∏R

i=1(i
L

σi

ni
\i

L
σi +1
ni

) (for all values of σi ’s) are mea-
sure preserving. We refer the interested reader to Banerjee,
(2001b) for a detailed description of the Riemannian metric.
It is sufficient for the purpose of this article to note that the
metric likens the phase-space to the initial formulation at the
local level, while preserving the global consistency afforded
by the transformed representation.2

The advantage of imposing this particular metric lies
in the fact that V1 is now a constant velocity field. As
a result, the analysis of the local properties of a trajec-
tory �x (t) in the phase-space reduces to the analysis
of a countably infinite sequence of discrete events each
denoting the birth and/or death of one or more spikes.
We shall hereafter refer to states in terms of their lo-
cal representation 〈x1

1 , . . . , xn1−σ1
1 , . . . , x1

R, . . . , xnR−σR
R 〉.

When it is necessary to define a local neighborhood on
∏R

i=1
i
L

σi

ni
that also intersects with

∏R
i=1

i
L

σ−1
i

ni
, as in the

case of the analysis of the birth of a spike, we shall use
〈x1

1 , . . . , xn1−(σ1−1)
1 , . . . , x1

R, . . . , xnR−(σR−1)
R 〉 and set x1

i = 0
for all i = 1, . . . ,R, by convention. Finally, an infinitesimal
perturbation on xi

j will be denoted by �x j
i .

Before concluding this section, we note that even though
the abstract dynamical system just described does have
the capacity to model changing synaptic weights through
changes in the functions Pi’s, we do not consider such
effects here. The non-stationary analysis necessary to in-
corporate synaptic weight update rules is beyond the
scope of this article. However, we have conducted simu-
lation experiments with the spike time dependent synap-
tic plasticity (STDP) rule (Markram et al., 1997; Bi and
Poo, 1998; Froemke and Dan, 2002) and have found
that the results do not dispute the conclusions of this
article.

2.2. The criterion for sensitive dependence on initial
conditions

We are now in a position to frame the question of sensi-
tive dependence on initial conditions of trajectories in the
phase-space of the abstract dynamical system. Consider the
network of three internal neurons and two input neurons de-
picted in Fig. 1(a), initialized at the state described by the
shaded region at t = 0. As we progress in time, a new spike is
generated by the second internal neuron. If the spikes of the
internal neurons in the shaded region at t = 0 were perturbed

2 (i
L

σi

ni
\i

L
σi +1
ni

) is mapped onto (0, ϒ)ni −σi with its canonical basis
deemed orthonormal.

in time (dotted lines3), this would result in a perturbation on
the new spike. This scenario would in turn repeat to produce
further perturbations on future spikes generated by the inter-
nal neurons. Any initial set of perturbations would therefore
propagate from spike to spike to produce a set of perturba-
tions at any arbitrary future time t = T. Stated informally,
the trajectory is sensitive (respectively, insensitive) to initial
conditions if the successive perturbations tend to grow larger
(respectively, smaller) as we progress in time.

We restrict the analysis in this section to systems that do
not receive inputs, that is, to systems that do not contain input
neurons. Systems containing input neurons are considered in
Section 5. The analysis proceeds in stages. First, the impact
of a birth of a spike and that of a death of a spike are each
considered in isolation. These results are then used to deduce
the cumulative impact of the sequence of births and deaths
of spikes that comprise a trajectory.

Let
〈
�x2

1 , . . . ,�xn1−(σ1−1)
1 , . . . , �x2

S , . . . ,�xnS−(σS−1)
S

〉

be a perturbation on a trajectory (where the map-
ping to local coordinates is set such that x1

i = 0 for
all i = 1, . . . ,S and x j

i �= 0 for all i = 1, . . . ,S and
j = 2, . . . , ni − (σi − 1)) just prior to the birth of a spike
(assigned without loss of generality to x1

1 ) at neuron 1.
Let the corresponding perturbation just past the birth be
〈�y1

1 ,�y2
1 , . . . ,�yn1−(σ1−1)

1 , . . . ,�y2
S , . . . ,�ynS−(σS−1)

S 〉.
Consider the component �y1

1 on the new spike. Let
〈0, a2

1, ..., an1−(σ1−1)
1 , ..., 0, a2

S , ..., anS−(σS−1)
S 〉 be the point

on the trajectory such that

P1
(
0, a2

1, . . . , an1−(σ1−1)
1 , . . . , 0, a2

S , . . . , anS−(σS−1)
S

) = T .

(1)

�y1
1 may then be computed by noting that on the perturbed

trajectory

P1
(
0, a2

1 +�x2
1 − �y1

1 , . . . , an1−(σ1−1)
1 + �xn1−(σ1−1)

1

−�y1
1 , . . . , 0, a2

S + �x2
S − �y1

1 , . . . , anS−(σS−1)
S

+�xnS−(σS−1)
S − �y1

1

) = T . (2)

The negative sign preceding �y1
1 relates to the fact that a

positive �y1
1 corresponds to the new spike being generated

earlier. A truncated Taylor expansion of (2) in conjunction
with (1) then yields (3) below. All other components carry
over as (4) below.

�y1
1 =

S∑

i=1

ni −(σi −1)∑

j=2

(1
α

j
i × �x j

i

)
where

3 We consider the effect of a perturbation in the internal state of the sys-
tem. Spikes generated by the input neurons are therefore not perturbed.
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1α
j
i = ∂ P1

∂x j
i

/( S∑

i=1

ni −(σi −1)∑

j=2

∂ P1

∂x j
i

)

. (3)

�y j
i = �x j

i for i = 1, . . . ,S,

j = 2, . . . , ni − (σi − 1). (4)

Since the ∂P1/∂x j
i ’s are evaluated at the instant of the gen-

eration of the new spike, i.e., when P1 = T and dP1/dt ≥ 0,
the denominator

∑
i, j (∂P1/∂x j

i ) = d P1/dt ≥ 0. In general,

we shall denote (∂ Pl/∂x j
i )/

∑
i, j (∂ Pl/∂x j

i ) by lα
j
i . Then,

∀l
∑

i, j
lα

j
i = 1. Stated informally, the perturbation in a

newly generated spike at neuron l can be represented as
a weighted sum of the perturbations of those spikes in the
state description that contribute to the generation of this new
spike. The weight assigned to �x j

i is proportional to the
value of ∂Pl/∂x j

i at the instant of the generation of the new
spike. The proportionality constant is set so that the weights
sum to one.

Next, let 〈�x1
1 , . . . ,�xn1−σ1

1 , . . . ,�x1
S , . . . ,�xnS−σS

S 〉 be
a perturbation on a trajectory (where the mapping to local
coordinates is set such that x j

i �= 0 for all i = 1, . . . ,S and
j = 1, . . . , ni − σi ) just prior to the death of a spike (as-
signed without loss of generality to x1

1 ) at neuron 1. Let
〈�y1

1 , . . . ,�yn1−σ1
1 , . . . ,�y1

S , . . . ,�ynS−σS
S 〉 be the corre-

sponding perturbation just past the death. Then,

�y1
1 = 0, and (5)

�y j
i = �x j

i for all i = 1, ...,S, j = 1, ..., ni − σi except

i = j = 1. (6)

The cumulative impact of the sequence of births and
deaths of spikes that comprise a trajectory can now be com-
puted as follows. Consider the section of the trajectory shown
in Fig. 1(c) that corresponds to the evolution of the state of
a network for a given interval of time. Let column vector
�x0 denote a perturbation on the trajectory at time t = 0
just prior to the first event (birth/death of a spike), and col-
umn vector �xk denote the corresponding perturbation just
past the kth event (birth/death of a spike). As depicted in
the lower section of Fig. 1(b), the perturbation vector gains
and loses components with successive events, as specified by
the equations derived above. Let Ak

0 denote the matrix that
embodies the propagation of the perturbation from event to
event, such that �xk = Ak

0 ∗ �x0. Then, as depicted in the
upper section of Fig. 1(b), the perturbation matrix Ak

0 can be
computed recursively as follows.

1. A0
0 = I (the (n × n) identity matrix, where n is the number

of live spikes in the state at t = 0).

2. If the kth event corresponds to the birth of a spike at neuron
l, then Ak

0 is generated from Ak−1
0 by identifying those

rows ri
j in Ak−1

0 that correspond to spikes that contributed
to the birth of the given spike (i.e., for each neuron i pre-
synaptic to neuron l those spikes x j

i that satisfy ∂Pl/∂ xi
j �=

0, as well as those spikes x j
l of neuron l itself that satisfy

∂Pl/∂x j
l �= 0), and introducing the new row

∑
i, j

lα
j
i r j

i at

an appropriate location into Ak−1
0 .

3. If the kth event corresponds to the death of a spike, then
Ak

0 is generated from Ak−1
0 by identifying that row r j

i in
Ak−1

0 that corresponds to the given spike, and deleting it
from Ak−1

0 .

In effect, at any given stage, row r j
i in Ak

0 represents
the component of the perturbation, �x j

i , of the correspond-
ing spike xi

j in the state description, as a function of the
perturbation �x0 on the initial set of spikes. The func-
tion is given by �x j

i = r j
i · �x0, where · denotes the dot

product.
Finally, we note that sensitive dependence on initial condi-

tions is defined in terms of the divergence or convergence, not
of states, but of trajectories. Hence, as depicted in Fig. 1(c),
not only should the initial perturbation be constrained to lie
on a plane transverse to the trajectory, but also, the rigid
translational component of the final perturbation should be
discarded to reveal the deviation transverse to the trajectory.
Since the velocity of any point in the phase-space is of unit
magnitude along each non-zero xi

j, any transverse plane to
the trajectory satisfies

∑
i, j �x j

i = 0.
Consider first an initial state description that has n live

spikes. Let �x′
0 be any arbitrary (n − 1)-dimensional pertur-

bation vector. Then, �x0 = C ∗ �x′
0 for the n× (n − 1) ma-

trix C described in (7), yields an n-dimensional perturbation
vector �x0 that lies on the transverse plane (i.e., satisfies
∑

i, j �x j
i = 0). In fact, any n × (n − 1) matrix C of rank

(n − 1), all of whose columns sum to 0, would suffice so
long as the change in basis is accounted for. The C in (7) is
based on the canonical basis.

Next, consider a final state description that has m live
spikes. �xk is then an m-dimensional perturbation vector.
Let �x′

k = B ∗ �xk for the (m − 1) × m matrix B described
in (7). The operation corresponds to the deletion of the mean
from each component in �xk followed by the discarding
of a component, to yield �x′

k. The (m − 1)-dimensional
perturbation vector �x′

k then lies on the transverse plane,
based on the canonical basis.

For any given trajectory �x (t) in the phase-space, �x′
k =

B ∗ Ak
0 ∗ C ∗ �x′

0 for arbitrary value of k specifies the rela-
tion between an initial and a final perturbation, both of which
lie on transverse sections of �x (t). Assuming that Ak

0 is an
(m × n) matrix, the matrix of interest is then B ∗ Ak

0 ∗ C ,
where B and C are the (m − 1) × m and n × (n − 1)
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matrices4:

B =










1 − 1
m − 1

m . . . − 1
m − 1

m

− 1
m 1 − 1

m . . . − 1
m − 1

m

...
...

. . .
...

...

− 1
m − 1

m . . . 1 − 1
m − 1

m










, and

C =












1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

−1 −1 . . . −1












. (7)

If limk→∞ ‖B ∗ Ak
0 ∗ C‖ = ∞ (respectively, 0), then the

trajectory is sensitive (respectively, insensitive) to initial con-
ditions.5 Given any particular network of neurons and a
corresponding spike trajectory, one can therefore determine
whether or not that spike trajectory is sensitive to initial
conditions based on the above analysis.

This result, while not particularly useful in its own right,
provides insight into how one may approach the broader
question of which aspects of general networks of neurons
play a crucial role in determining the sensitivity of their spike
trajectories. The result demonstrates that it is the evolving
matrix Ak

0, and not the spike trajectory as such, that lies at
the heart of the matter. What is necessary to address the
more general question is therefore an appropriate generative
model for Ak

0. The upcoming discussion further elaborates
on this distinction, following which the generative model for
Ak

0 is described.
The previous analysis envisions an investigator who has

access to the dynamics of a particular system of neurons,
from which she draws the data necessary to construct the
evolving perturbation matrix Ak

0. At the birth of each new
spike, she identifies those rows r j

i ’s in the matrix that corre-
spond to spikes that contributed to the generation of the new
spike, and acquires their corresponding lαi

j’s from the sys-
tem. She then generates the new row

∑
i, j

l
α

j
i r j

i and inserts
it into the matrix. At the death of each spike, she identifies
the row ri

j in the matrix that corresponds to that spike, and
deletes it from the matrix.

4 Note that the dimensionality of B and C are determined by the dimen-
sionality of Ak

0. Moreover, the values of the elements of B depend on
the dimensionality of B. We shall continue to refer to these matrices as
B and C although m and n might change depending on the context of
their use.
5 By virtue of the nature of these limiting values, all norms yield iden-
tical results. We use the Frobenius norm (‖A‖F =

√
Trace(AT ∗ A)) in

the analysis and simulations.

Consider in contrast, a scenario where the investigator
lacks access to the dynamics of the system of neurons, but
is granted exactly the data necessary to construct the evolv-
ing perturbation matrix Ak

0. Here, at each step she is notified
either of the birth or the death of a spike in the system. In
the case of the birth of a spike, she is cited those rows in
the matrix that were involved in the generation of the new
spike, and is provided their corresponding lα

j
i ’s. In the case

of the death of a spike, she is simply cited the correspond-
ing row in the matrix. Clearly, this is sufficient information
for her to construct the evolving perturbation matrix Ak

0 and
draw conclusions regarding the sensitivity of the underly-
ing trajectory. The investigator can, however, infer little else
regarding the system of neurons and its dynamics. She can
not even determine the number of neurons in the system,
let alone their connectivity. In essence, the local neighbor-
hood information that she receives regarding the trajectory
could have been generated by the dynamics of any number
of underlying systems of neurons. This observation can be
stated formally as follows.

To every trajectory �x (t) in a given phase-space, there
corresponds a unique sequence of births (with contributing
spikes and corresponding lα

j
i ’s) and deaths of spikes that em-

bodies its local neighborhood. Any two trajectories �x (t) and
�y(t) that have identical such sequences are indistinguish-
able in their local neighborhoods, regardless of whether the
trajectories lay in different sections of the same phase-space
or in entirely different phase-spaces corresponding to dis-
tinct networks of neurons. Since the question of sensitivity
depends on the nature of this sequence and not on the tra-
jectory per se, the analysis can be based on such sequences
rather than on trajectories.

The issue here is that there is no a priori guarantee that
‖B ∗ Ak

0 ∗ C‖ will converge for any arbitrary countably in-
finite sequence of births (with contributing spikes and corre-
sponding lα

j
i ’s) and deaths of spikes. However, for the class

of local neighborhoods of trajectories whose corresponding
sequences can be modeled by a stationary stochastic process,
‖B ∗ Ak

0 ∗ C‖ is guaranteed to converge to one of 0, 1, or ∞
for almost all (with respect to the stationary measure) trajec-
tories owing to the subadditive ergodic theorem of Kingman
(1973).

For the generative model, we shall therefore con-
sider the stationary process specified by the “directly
given” dynamical system (�,F , µ, T ), defined as follows
(see (Gray, 1988)). Briefly, each outcome in the sam-
ple space � shall instantiate an entire sequence of births
(with contributing spikes and corresponding lα

j
i ’s) and

deaths of spikes, beginning with an initial number of live
spikes. By assigning probabilities (according to the sta-
tionary measure µ) to sets of such outcomes (i.e., mem-
bers of F) we shall turn the generation of Ak

0 (steps 1,
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2, and 3 presented earlier) into a stationary stochastic
process.

Formally, an outcome ω ∈ � shall be an initial number
of live spikes followed by a sequence of births (with con-
tributing spikes and corresponding ∂Pl/∂x j

i ’s) and deaths of
spikes. Furthermore, we shall restrict � to those outcomes
that have a bounded number (for appropriate choices of a
lower and upper bound) of live spikes at all times. F , the
σ -algebra of subsets of �, shall be defined as the σ -algebra
generated by the set of the following “basic events”: each of
the finitely many choices for an initial number of live spikes,
each of the finitely many choices for the death of a spike
at any given stage, and each of the finitely many choices
for spikes to contribute to the generation of a new spike at
any given stage, with each choice associated with a corre-
sponding Borel σ -algebra for the ways that ∂Pl/∂x j

i ’s can
be assigned to those spikes. µ shall be a stationary probabil-
ity measure, and T : � → � shall be the measure preserving
(i.e., µ(T −1(F)) = µ(F) for all F ∈ F) left shift transform.6

The sequence of random variables, log ‖B ∗ Ak
0(ω) ∗

C‖ for k = 0, 1, . . ., is then subadditive because ‖B ∗
Ak

0 ∗ C‖ = ‖B ∗ Ak
i ∗ C ∗ B ∗ Ai

0 ∗ C‖ ≤ ‖B ∗ Ak
i ∗ C‖ ×

‖B ∗ Ai
0 ∗ C‖. Here, Ai

0 denotes the perturbation matrix for
the segment, of the sequence specified by ω, beginning just
prior to the first event and ending just past the ith event.
Likewise, Ak

i denotes the perturbation matrix for the seg-
ment, of the sequence specified by ω, beginning just past the
ith event and ending just past the kth event. Let (1) denote
the matrix all of whose elements are 1. The equality above
follows from the fact that C ∗ B = I − 1

s (1) where C ∗ B is

an (s × s) matrix, and that ∀l
∑

i, j
lα

j
i = 1. Consequently,

based on the subadditive ergodic theorem,

Pr

(

lim
k

sup
∥
∥B ∗ Ak

0 ∗ C
∥
∥ = lim

k
inf

∥
∥B ∗ Ak

0 ∗ C
∥
∥
)

= 1

(8)

where Pr (·) denotes probability measure. We shall exploit
(8) in the proof of the theorem in Section 5.

We assume hereafter that the trajectory under con-
sideration lies in a non-trivial attractor (i.e., not the
quiescent state) of a network of neurons that supports

6 To be more specific, if outcome ω0 = n0 D(a1)D(a2)B(b1ρ1...bpρp)
D(a3)..., then T (ω0) = ω1, where ω1 = (n0 − 1)D(a2)B(b1ρ1...bpρp)
D(a3).... In this representation of the outcomes, the leading positive
integer n0 is the initial number of live spikes in ω0. D(a1) for a1 ∈ [1, n0]
denotes the death of the spike indexed by the positive integer a1, and
likewise for D(a2) and D(a3) for a2 ∈ [1, n0 − 1] and a3 ∈ [1, n0 − 1].
B(b1ρ1...bpρp) for bi ∈ [1, n0 − 2] and ρi ∈ R denotes the birth of a
spike with contributing spikes and their corresponding contributions
specified by the positive integers bi’s (as with the ai’s) and the real
numbers ρi ’s (the ∂Pl/∂x j

i ’s).

such a stationary measure. The following theorem was
proved in Banerjee (2001b) with an additional set of as-
sumptions regarding the stationary process. We consider
these assumptions next. We do not repeat the proof here
since we shall extend the theorem along similar lines in
Section 5.

Theorem 1 (Sensitivity without input). Let �x (t) be a tra-
jectory that is not drawn into the trivial fixed point of qui-
escence in a system that does not contain input neurons. Let
E(

∑
i, j (

lα
j
i )2) = 1 + δ < ∞, where the expected value E(·)

is taken over the set of all births of spikes in �x (t). Then, if
δ > 2

Mlow
(respectively, δ < 2

Mhigh
), �x (t) is, with probability

1, sensitive (respectively, insensitive) to initial conditions.
Mlow and Mhigh denote the minimum and the maximum num-
ber of live spikes in �x (t) across all time.

2.3. The assumptions underlying the theorem and their
validation

We demonstrated in the previous section that it is the nature
of the sequence of births (with contributing spikes and corre-
sponding lα

j
i ’s) and deaths of spikes which embodies the lo-

cal neighborhood of a trajectory, that determines whether or
not the trajectory is sensitive to initial conditions. We subse-
quently described a generative model (�,F , µ, T ) for such
sequences and highlighted the fact that at a bare minimum,
µ must be stationary in order for the notion of sensitivity
to be well-defined almost everywhere. In this section, we
further specify µ; the proof of the sensitivity theorem from
the previous section is based on sequences generated by the
following parameterized stationary process, with parameters
Mlow, Mhigh,D1, Plow, Phigh,D2, and D3 reflecting the global
aspects of the trajectory in the phase-space under consider-
ation, as described below. How well the stationary process
models the local neighborhoods of real spike trajectories is
considered following this description. We show through nu-
merical simulations of networks of spiking neurons that the
assumptions underlying the process are indeed reasonable
for a wide variety of network architectures and connection
strengths.

The process is begun by choosing an integer n from a fixed
distributionD1 over the range [Mlow, Mhigh], and constructing
the (n × n) identity matrix A0

0 = I . Parameters Mlow, Mhigh,
and D1 denote the minimum, the maximum, and the station-
ary distribution, of the number of live spikes in the trajectory
under consideration across all time. At each step, the choice
between the birth of a spike and the death of a spike is made
from a stationary stochastic process, depending solely on
the history of the number of live spikes in the system such
that the stationary distribution of the resultant number of live
spikes in the trajectory matches D1. The choice is therefore
independent of the elements of Ak−1

0 .
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Consider the state of the process just past the (k − 1)th
event. Let vector Ek−1 be the expected value of the mean of
the population of rows in Ak−1

0 , i.e.,

Ek−1 = E

(
1

m

m∑

i=1

vi

)

, (9)

where E(·) denotes the expected value, m the number of
rows in Ak−1

0 , and vi ’s the rows in Ak−1
0 . Furthermore, let

Vk−1 and Ck−1 be the scalar valued variance and covariance
of the population of rows in Ak−1

0 , defined as

Vk−1 = E

(
1

m

m∑

i=1

(vi − Ek−1) · (vi − Ek−1)

)

, and (10)

Ck−1 = E



 1

m(m − 1)

m,m∑

i=1, j=1,i �= j

(vi − Ek−1) · (v j − Ek−1)



 .

(11)

In the case of the birth of a spike, Ak
0 is generated from

Ak−1
0 as follows. First, a p ∈ [Plow, Phigh] is chosen from

a stationary process, the choice depending on the history
of the number of live spikes in the system as well as the
previous values of p, such that the stationary distribution of
p matches D2. The choice is therefore independent of the
elements of Ak−1

0 . Parameters Plow, Phigh, and D2 denote
the minimum, the maximum, and the stationary distribution,
of the number of spikes that can contribute to the gener-
ation of a spike in the trajectory across all time. Second,
a random vector 〈Y1, . . . , Yp〉 is chosen from a fixed ex-
changeable distribution D3, i.e., a distribution that satisfies
Pr (Y1, . . . , Yp) = Pr (Yσ (1), . . . , Yσ (p)) for any permutation
σ 7.D3 denotes the distribution of the ∂ Pl/∂x j

i ’s for the trajec-
tory under consideration. Third, rows v1, . . . , vp are chosen
from Ak−1

0 , through a random sampling with replacement
that is unbiased in the sense that the expected value, the
variance, and the covariance of the samples match the pop-
ulation counterparts in Ak−1

0 , i.e., for each sample vi for
i = 1, ..., p,

E(vi ) = Ek−1, (12a)

V (vi ) = E((vi − Ek−1) · (vi − Ek−1)) = Vk−1, and (12b)

C(vi , v j ) j �=i = E((vi − Ek−1) · (v j − Ek−1)) j �=i = Ck−1,

(12c)

7 Pr (·) here denotes probability density. The proof in Banerjee (2001b)
assumes i.i.d random variables Y1, . . . , Yp . However, the proof holds
for the more general case of exchangeable random variables without
modification.

where v j ranges over all the rows in Ak−1
0 except the sample.

Finally, the row vnew = ∑p
i=1 yivi , where yi = Yi/

∑p
i=1 Yi ,

is inserted into Ak−1
0 to generate Ak

0 . The random variables
yi’s correspond to the lα

j
i ’s at the birth of a spike. Note that

the sampling with replacement makes it possible for any
particular row to be chosen multiple times to contribute to
the sum vnew. Physically, this would correspond to a scenario
where a pre-synaptic neuron makes multiple synapses on
a post-synaptic neuron, causing each pre-synaptic spike to
contribute multiple PSPs towards the birth of a post-synaptic
spike.

In the case of the death of a spike, Ak
0 is generated from

Ak−1
0 as follows. A row vdel is chosen from Ak−1

0 , through a
random sampling that is unbiased in the sense that the ex-
pected value, the variance, and the covariance of the sample
match the population counterparts in Ak−1

0 , i.e.,

E(vdel) = Ek−1, (13a)

V (vdel) = E((vdel − Ek−1) · (vdel − Ek−1)) = Vk−1, and

(13b)

C(vdel, v j ) j �=del = E((vdel − Ek−1) · (v j − Ek−1)) j �=del

= Ck−1, (13c)

where v j ranges over all the rows in Ak−1
0 except the sample.

vdel is then deleted from Ak−1
0 to generate Ak

0.
The assumptions underlying the process are therefore:

1 The choice between the birth and the death of a spike is
independent of the elements of Ak−1

0 .
2 In the case of the birth of a spike, p is chosen indepen-

dent of the elements of Ak−1
0 . Furthermore, 〈y1, . . . , yp〉

is chosen independent of the rows v1, . . . , vp which are
unbiased random samples with replacement of the rows
in Ak−1

0 .
3 In the case of the death of a spike, vdel is an unbiased

random sample of the rows in Ak−1
0 .

The crucial question to consider is whether these are rea-
sonable assumptions to make for real trajectories that lie in
non-trivial attractors (i.e., not the quiescent state) of networks
of neurons. In other words, are the sequences of births (with
contributing spikes and corresponding lα

j
i ’s) and deaths of

spikes generated by the attractor dynamics of networks of
neurons modeled well, probabilistically speaking, by the out-
comes of the stationary stochastic process?

We first note that the choice between the birth and the
death of a spike at any given moment depends on the state of
a system, i.e., on the location in the phase-space of the ab-
stract dynamical system that models that particular network
of neurons. Since this location information is not contained
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in the description of the local neighborhood of the trajectory
as characterized by the elements of Ak−1

0 , it is reasonable to
assume that the choice between birth and death is indepen-
dent of the elements of Ak−1

0 . In the case of the birth of a
spike, one can similarly argue that the choice of p, which
corresponds to the number of spikes that contribute to the
generation of the new spike, is likewise independent of the
elements of Ak−1

0 .
The remaining assumptions, that in the case of the

birth of a spike 〈y1, . . . , yp〉 is chosen independent of the
v1, . . . , vp’s which are in turn unbiased samples, and that
in the case of the death of a spike vdel is an unbiased
sample, are more complex and can not simply be argued
for. To test the validity of these assumptions, we recorded
the necessary data from simulations of a wide variety of
network architectures and connection strengths. We report
the results from these experiments in the remainder of this
section.

All simulations were based on a model of the neu-
ron akin to the Spike-response model (Gerstner and
van Hemmen, 1992) in that the potential function
P(x1

1 , . . . , xn1
1 , . . . , x1

R, . . . , xnR
R ) of a neuron was modeled as

∑
i, j i P(x j

i ), that is, the sum of the excitatory and inhibitory
PSPs induced by the arrival of spikes at the various synapses
of the neuron, and the AHPs induced by the spikes that had
departed the soma of the neuron. The benefit of this model
lay in the ease with which the ∂ Pl/∂x j

i ’s for the various
xi

j’s could be computed.8 The time bound ϒ defined earlier
in this article was set at 500 msec. PSPs were modeled us-
ing the parameterized function (see (MacGregor and Lewis,
1977))

P(t) = Q

d
√

t
e−βd2/t e−t/τ , (14)

where Q denotes the connection strength, d denotes the dis-
tance (in dimensionless units) of the synapse from the soma,
and β and τ control the rate of rise and fall of the PSP. AHPs
were modeled using the function

P(t) = Re−t/γ , (15)

where R denotes the instantaneous fall in potential after a
spike and γ controls its rate of recovery. Although the in-
stantaneous fall of the AHP does not conform with the as-
sumption of smoothness of P, the issue is of no significance
since all functions were discretized in time for the purpose
of simulation. As a result, the maximum gradient of the AHP
was bounded from above and depended on the choice of the
time step. The time step was chosen to be small enough so

8 The ∂ Pl/∂x j
i for each xi

j could be computed independent of the value
of the other xi

j’s.

that spikes were not generated during the falling phase of the
AHP.

Synaptic and axonal delays were combined and cho-
sen from the realistic range [0.4, 0.9] msec. Four types
of synapses, excitatory AMPA and NMDA and inhibitory
GABAA and GABAB, were modeled. For AMPA synapses,
β was set at 1.0, and τ was set at 20 msec when on excitatory
and 10 msec when on inhibitory neurons. NMDA synapses
were modeled with the simplifying assumption that they
were free of Mg2+ blocking. In other words, the post-synaptic
voltage dependence of NMDA synapses was not modeled. β
for the NMDA synapses was set at 5.0 and τ at 80 msec. The
resultant PSPs (for the same value of Q) were approximately
a third smaller and had longer rise and fall times than those
generated at the AMPA synapses. For GABAA synapses, β

was set at 1.1, and τ was set at 20 msec when on excitatory
and 10 msec when on inhibitory neurons. The resultant PSPs
had slightly longer rise times than those generated at the
AMPA synapses. Finally, for GABAB synapses β was set at
50.0 and τ at 100 msec. The parameter d that determined
the distance of the synapse from the soma was chosen from
the realistic range [1.0, 2.0]. Excitatory AMPA and NMDA
synapses were considered to be co-located, whereas each in-
hibitory synapse was chosen to be either GABAA or GABAB.
This choice was either made randomly or in a regular fashion
(i.e., no GABAB synapses) depending upon the architecture
considered (see below). All AHPs were modeled to be iden-
tical, with R set at − 1000.0 and γ at 1.2 msec. The threshold
for all neurons was set at 1.0. The connection strengths, Q’s,
were either chosen randomly from the range [1.0, 10.0] or
were set to fixed values depending upon the architecture con-
sidered. The Q’s for GABAA synapses on excitatory neurons
were then increased to six times the magnitude. We found
that this setting successfully thwarted runaway excitation in
all the networks. Finally, the Q’s at all synapses were scaled
uniformly so that the average spike rate of the neurons in
the network lay in a realistic range (i.e., did not exceed
20 Hz).

All experiments were conducted on networks composed
of 1000 neurons. The networks did not contain any input
neurons, and therefore all activity recorded corresponded to
dynamics in non-quiescent attractors. Three broad categories
of network architectures, with multiple sub-categories within
each category, were investigated. The first was that of random
networks, with 80% of the neurons chosen randomly to be
excitatory and the rest inhibitory. Each neuron received in-
puts from 100 neurons chosen randomly. Two sub-categories
were investigated—connection strengths, axonal and synap-
tic delays, as well as the distance of the synapses from the
somas, were either chosen randomly from the ranges noted
above or were set to constant values (delay of 0.8 msec, d
= 1.5 for excitatory synapses and d = 1.2 for inhibitory
synapses) across the entire network.
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The second category was that of clustered networks com-
posed of 800 excitatory and 200 inhibitory neurons. Here, the
neurons were grouped evenly into clusters with the connec-
tivity within each cluster being all-to-all, and that between
clusters being sparse. Several cluster sizes, ranging from 20
to 100, were investigated. As in the previous case, connec-
tion strengths, axonal and synaptic delays, as well as the
distance of the synapses from the somas, were either chosen
randomly from the ranges noted above or were set to constant
values (delay of 0.8 msec, d = 1.5 for excitatory synapses
and d = 1.2 for inhibitory synapses) across the entire
network.

The third category was that of structured ring networks
composed of 800 excitatory and 200 inhibitory neurons.
Here, the excitatory and inhibitory neurons were interleaved
evenly and placed around a ring. Each neuron received
inputs from a sector of 100 contiguous neurons, the sec-
tor being centered on that neuron. Once again, connection
strengths, axonal and synaptic delays, as well as the distance
of the synapses from the somas, were either chosen ran-
domly from the ranges noted above or were set to constant
values (delay of 0.8 msec, d = 1.5 for excitatory synapses
and d = 1.0 for inhibitory synapses) across the entire
network.

Finally, multiple instantiations of each category/sub-
category of network architectures were generated and their
dynamics investigated. In each case, the network was probed
for the existence of attractors besides the ever-present qui-
escent state attractor, by initializing it at various locations
in the phase-space and recording the ensuing dynamics. In
all cases where the initial state lay in the domain of attrac-
tion of the quiescent state, the dynamics of the network was
found to converge rapidly to that state. In cases where the
network generated sustained recurrent activity at moderate
spike rates9, suggesting dynamics in a non-trivial attractor
situated in a realistic regime, we recorded the spike trajectory
and gathered all information regarding the evolving pertur-
bation matrix Ak

0.
At each birth of a spike, we recorded the rows, ri

j’s,
in Ak−1

0 that contributed to the generation of the new row,
and their corresponding lα

j
i ’s. We concurrently recorded the

population mean, variance, and covariance of the rows in
Ak−1

0 (Eqs. (9)–(11)). At each death of a spike, we noted the
discarded row ri

j and concurrently recorded the population
mean, variance and covariance of the rows in Ak−1

0 . In order
to assess how biased the sampling was at the birth of each
spike, rather than evaluate each contributing row individually
with respect to the noted population statistics, we first com-
puted the sample mean, variance, and covariance of the set of

9 We found that this could be achieved in all the networks by simply
scaling all Q’s, as noted earlier.

contributing rows, and then evaluated these sample statistics
with respect to the population statistics, across the sequence
of successive births of spikes. This approach allowed us to
assess the bias in the sampling, while evading the prospect of
intractability that comparison to each individual contributing
sample entailed. In order to assess how biased the sampling
was at the death of each spike, we evaluated the discarded
row with respect to the noted population statistics, across the
sequence of successive deaths of spikes.

We generated joint probability histograms from the col-
lected data for the sample statistic plotted against the cor-
responding population statistic. In all cases and for all the
noted statistics, the probabilities were found to accumulate
near the diagonal, implying that the assumption of unbi-
ased sampling was indeed reasonable. We also found that for
networks that lacked overarching structure, such as the ran-
dom networks and the clustered networks with small cluster
sizes, the probabilities were more closely concentrated on
the diagonal. Subfigures (a) and (b) in Figs. 2–4 present,
respectively, the joint distribution of the sample and pop-
ulation means for a fixed coordinate position of the ri

j’s
(i.e., component pri

j of ri
j, for a fixed coordinate position

p) and the joint distribution of the sample and population
variances, at the birth of spikes, for representative instances
of the random, clustered, and ring networks, respectively.
These examples were chosen to reflect the entire range of
results obtained, from the best (the network in Fig. 2 that
had all its parameters chosen randomly) to the worst (the
network in Fig. 4 that had all its parameters set to constant
values). The distributions for all the other statistics were
similar.

In order to assess the dependence between the lα
j
i ’s and

the corresponding rows ri
j’s at the birth of spikes, we first

decomposed each row ri
j into its components, pri

j’s, and
then analyzed the dependence between the lα

j
i ’s and the

pr j
i ’s, for fixed values of p. Note that pr j

i represents the
sensitivity of the spike xi

j with respect to the pth spike in
the initial state description. We generated the joint distri-
bution Pr (lα

j
i , pr j

i ) and compared it to the corresponding
product of the marginals Pr (lα

j
i ) ∗ Pr (pr j

i ), for fixed val-
ues of p. Subfigures (c) and (d) in Figs. 2–4 present plots
of − log(Pr (lα

j
i , pr j

i )) and − log(Pr (lα
j
i ) ∗ Pr (pr j

i )), for
fixed coordinate positions p’s, from the noted instances of
the random, clustered, and ring networks, respectively. The
similarity of the plots attest to the near independence of the
variables.

To further quantify the dependence between the lα
j
i ’s

and the components of the corresponding ri
j’s, we com-

puted the mutual information between the two. Since the
mutual information is the Kullback-Leibler divergence be-
tween Pr (lα

j
i , pr j

i ) and Pr (lα
j
i ) ∗ Pr (pr j

i ), low values of
mutual information would imply that the assumption of
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Fig. 2 Characteristic features of the data involved in the generation
of Ak

0, distilled from the spike trajectory recorded from the instantia-
tion of the random network. The probability histograms generated from
the data are presented as contour plots. Darker contour lines represent
higher values. (a) and (b): Distribution of the mean of a fixed coordinate
position (subfigure (a)), and distribution of the variance (subfigure (b)),
of the sample of rows, r j

i ’s, drawn from Ak
0 at the birth of each spike

plotted against the corresponding mean and variance of all the rows in

Ak
0. In both graphs, 15 contour lines span the range of probability values

evenly. The lightest contour line therefore, denotes a value more than
an order of magnitude smaller than the darkest contour line. (c) and
(d): − log(Pr (lα

j
i , pr j

i )) (subfigure (c)) and − log(Pr (lα
j
i ) ∗ Pr (pr j

i ))
(subfigure(d)) for a fixed coordinate position p of the rows, r j

i ’s, drawn
from Ak

0 at the birth of each spike plotted against their corresponding
lα

j
i ’s. In both graphs, 9 contour lines span the range [10−2, 10−8] evenly

in logarithmic scale

independence is reasonable. We found this to be the case
in all our experiments. The values of the mutual information
ranged from 0.0256 to 0.0503 bits for the random networks,
from 0.0398 to 0.0782 bits for the clustered networks, and
from 0.0590 to 0.1223 bits for the ring networks. By com-
parison, the entropy of the joint distributions (with the same
discretization of the axes) ranged from 3.4626 to 7.5051 bits
for the random networks, from 5.8434 to 9.6497 bits for the
clustered networks, and from 3.8970 to 6.2328 bits for the
ring networks.10

Based on all the above results, we can conclude that
the assumptions underlying the stationary stochastic pro-

10 The entropy values do not make strict sense because they tend to
infinity as the discretization is made finer. They were computed at the
same discretization level as with the mutual information, and have been
noted for mere comparison purposes.

cess (which in turn is the basis for the sensitivity theorem
in Section 2.2) are indeed reasonable for a wide variety of
network architectures and connection strengths.

3. Network architecture and sensitive dependence

An inspection of the formal criterion in the sensitivity the-
orem presented in Section 2.2 reveals that whether or not a
trajectory in the phase-space of the abstract dynamical sys-
tem (and hence, the spatio-temporal sequence of spikes gen-
erated by the corresponding network of neurons) is sensitive
to initial conditions depends on the stationary distribution
of the

∑
i, j (

lα
j
i )2’s. The role that the connectivity and con-

nection strengths of a network play in the determination of
the sensitivity of the underlying spike trajectories is entirely
indirect and through this quantity. In this section we present
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Fig. 3 Characteristic features of the data involved in the generation of
Ak

0, distilled from the spike trajectory recorded from the instantiation
of the clustered network. The probability histograms generated from
the data are presented as contour plots. Darker contour lines represent
higher values. (a) and (b): Distribution of the mean of a fixed coordinate
position (subfigure (a)), and distribution of the variance (subfigure (b)),
of the sample of rows, r j

i ’s, drawn from Ak
0 at the birth of each spike

plotted against the corresponding mean and variance of all the rows in

Ak
0. In both graphs, 15 contour lines span the range of probability values

evenly. The lightest contour line therefore, denotes a value more than
an order of magnitude smaller than the darkest contour line. (c) and
(d): − log(Pr (lα

j
i , pr j

i )) (subfigure (c)) and − log(Pr (lα
j
i ) ∗ Pr (pr j

i ))
(subfigure(d)) for a fixed coordinate position p of the rows, r j

i ’s, drawn
from Ak

0 at the birth of each spike plotted against their corresponding
lα

j
i ’s. In both graphs, 9 contour lines span the range [10−2, 10−8] evenly

in logarithmic scale

simulation results from instructive examples of networks that
corroborate this observation.

Since the lα
j
i ’s at the birth of a spike are constrained

to satisfy
∑

i, j
lα

j
i = 1, simple algebra demonstrates that

∑
i, j (

lα
j
i )2 < 1 if all the lα

j
i ’s are strictly positive. In addi-

tion, the value of
∑

i, j (
lα

j
i )2 rises as the subset of the lα

j
i ’s

that are negative grows larger. If a spike is generated dur-
ing the rising (respectively, falling) phase of the PSP/AHP
of a contributing spike, then the lα

j
i associated with that

contributing spike is positive (respectively, negative). Since
excitatory PSPs have short rising phases followed by pro-
longed falling phases, they are more likely to contribute
negative lα

j
i ’s. Conversely, since inhibitory PSPs have short

falling phases followed by prolonged rising phases, they are
more likely to contribute positive lα

j
i ’s. Finally, since AHPs

have instantaneous falling phases, their lα
j
i ’s are strictly pos-

itive. These observations suggest that networks whose dy-
namics are dominated by inhibitory (respectively, excitatory)
PSPs are less (respectively, more) likely to exhibit sensitive
dependence on initial conditions, because at the instant of
the generation of each new spike in the system a substantial
portion of the lα

j
i ’s are presumably positive (respectively,

negative).
In particular, if all the neurons in a network are inhibitory,

and in addition, all inhibitory PSPs have instantaneous
falling phases followed by slow rises to the resting level
as in the case of the standard integrate-and-fire model
with synaptic inputs modeled as delta currents, one would
be assured that

∑
i, j (

lα
j
i )2 < 1 at every birth of a spike.

The theorem would then predict that the dynamics of the
network ought to be almost surely insensitive regardless of
the connectivity and the connection strengths in the network.
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Fig. 4 Characteristic features of the data involved in the generation
of Ak

0, distilled from the spike trajectory recorded from the instantia-
tion of the highly structured ring network. The probability histograms
generated from the data are presented as contour plots. Darker con-
tour lines represent higher values. (a) and (b): Distribution of the
mean of a fixed coordinate position (subfigure (a)), and distribution
of the variance (subfigure (b)), of the sample of rows, r j

i ’s, drawn
from Ak

0 at the birth of each spike plotted against the corresponding
mean and variance of all the rows in Ak

0. In both graphs, 15 contour

lines span the range of probability values evenly. The lightest con-
tour line therefore, denotes a value more than an order of magnitude
smaller than the darkest contour line. (c) and (d): − log(Pr (lα

j
i , pr j

i ))
(subfigure (c)) and − log(Pr (lα

j
i ) ∗ Pr (pr j

i )) (subfigure(d)) for a fixed
coordinate position p of the rows, r j

i ’s, drawn from Ak
0 at the birth of

each spike plotted against their corresponding lα
j
i ’s. In both graphs,

9 contour lines span the range [10−2, 10−8] evenly in logarithmic
scale

In order to ascertain whether this prediction holds, we
analyzed the dynamics of multiple instantiations of in-
hibitory networks with the previously described random,
clustered, and structured ring architectures, and with con-
nection strengths, axonal and synaptic delays, as well as
the distance of the synapses from the somas either chosen
randomly from the realistic ranges noted earlier or set to
constant values across the entire network. In each case, we
found that the trajectory was indeed insensitive to initial con-
ditions. We present here the results from the most instructive
case, that of a random inhibitory network with all its param-
eters chosen randomly, since it demonstrates that sensitivity
does not necessarily arise from randomness of connectivity
or connection strengths.

Figure 5 displays the results from the random inhibitory
network. The system was composed of 1000 neurons with
each neuron receiving synapses from 100 randomly cho-
sen neurons. Axonal/synaptic delays were chosen randomly
from a uniform distribution over [0.4, 0.9] msec. The in-
hibitory PSPs were modeled using

P(t) = −Qe−td/τ for t ≥ 0 ,and, 0 otherwise. (16)

Q, the strength of a synapse, was chosen randomly from
a uniform distribution over [1.0, 6.0], d, the distance of a
synapse from the soma, was chosen randomly from a uniform
distribution over [1.0, 2.0], and τ was set at 20 msec. AHPs
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Fig. 5 Dynamics of the random
inhibitory network. Panels (top)
Spike raster plot of the first 250
neurons in the population for the
first 2 of the 6 sec of simulation
shown in the second panel.
(second) Total number of
inhibitory spikes in a window of
ϒ = 100 msec for the 6 sec of
simulation. (third)

∑
i, j (

lα
j
i )2

for successively generated
spikes during this period. The
abscissa corresponds to
successive spike generations and
not time. There were 59379
spikes generated during the 6
sec period, and the mean
E(

∑
i, j (

lα
j
i )2) was found to be

0.2649. (bottom) l2-norm of the
rows added to Ak

0 for each such
spike (gray) and ‖B ∗ Ak

0 ∗ C‖F

normalized by the number of
rows in (B ∗ Ak

0 ∗ C) (black).
The abscissa, once again,
corresponds to successive spikes
and not time. Ak

0 was reset to the
identity matrix every 10000
spikes to reduce numerical error.
Note that ‖B ∗ Ak

0 ∗ C‖F

decayed toward 0 repeatedly,
demonstrating that the trajectory
was insensitive to initial
conditions

were modeled using −1000.0e−t/1.2, and the time bound ϒ

was set at 100 msec. Since the system lacked excitatory drive,
the threshold of all the neurons was set at a constant nega-
tive value so that the network generated sustained recurrent
activity. In the example shown in Fig. 5 this value was set at
−24.0, causing the neurons in the network to spike at a rate
of approximately 10 Hz.

The top panel in Fig. 5 displays the spike rasters of the
first 250 of the population of 1000 neurons, for a duration of
2 sec. A visual inspection of the plot shows no discernible
pattern to the spiking of the neurons, because, even if the
trajectory were periodic, the period would likely be very
large. The second panel displays the total number of live
spikes at each time step for a period of 6 sec (the first 2 sec
of which is reported in the top panel). Since ϒ was set at
100 msec and there were approximately 1000 live spikes
in the state description at each step, we can deduce that the
neurons in the system spiked at approximately 10 Hz.

The third panel displays a raster plot in logarithmic scale
of the value of

∑
i, j (

lα
j
i )2 for each of the 59379 spikes

that were generated during the 6 sec time period. Note that
the value of

∑
i, j (

lα
j
i )2 is strictly less than 1. The value of

E(
∑

i, j (
lα

j
i )2) was found to be 0.2649. The bottom panel

displays various aspects of the perturbation matrix Ak
0 for

the spike trajectory, computed on-line during the simulation.
Since the elements of Ak

0 dropped to very small values as time
progressed, Ak

0 was reset to I (the identity matrix) after every
10000 spike generations to reduce numerical error. Displayed
in gray is a raster plot (in logarithmic scale) of the l2-norm of
the successive rows introduced into Ak

0 for the corresponding
spikes generated in the system. It can be seen from the
recursive definition of Ak

0 in Section 2.2 that the elements
of any row in Ak

0 sum to 1. Therefore, the norm asymptotes
eventually.11Displayed in black is ‖B ∗ Ak

0 ∗ C‖F , normal-
ized by the number of rows in (B ∗ Ak

0 ∗ C) to distinguish
from the confounding effect of the size of the matrix.
Note that ‖B ∗ Ak

0 ∗ C‖F decays toward 0 repeatedly,
demonstrating that the trajectory was indeed insensitive to
initial conditions.

11 The l2-norm of any row in Ak
0 is bounded from below due to the

noted constraint. The lower bound is reached when all elements of
the row take the same value, 1/n, where n is the number of columns
in Ak

0.
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Fig. 6 Dynamics of the highly
structured ring network. Panels
(top) Spike raster plot of the first
250 neurons in the population
for the first 2 of the 6 sec of
simulation shown in the second
panel. (second) Total number of
excitatory (thick line) and
inhibitory (thin line) spikes in a
window of ϒ = 500 msec for
the 6 sec of simulation. (third)∑

i, j (
lα

j
i )2 for successively

generated spikes during this
period. The abscissa
corresponds to successive spike
generations and not time. There
were 78310 spikes generated
during the 6 sec period, and the
mean E(

∑
i, j (

lα
j
i )2) was found

to be 45.1933. (bottom) l2-norm
of the rows added to Ak

0 for each
such spike (gray) and
‖B ∗ Ak

0 ∗ C‖F normalized by
the number of rows in
(B ∗ Ak

0 ∗ C) (black). The
abscissa, once again,
corresponds to successive spikes
and not time. Ak

0 was reset to the
identity matrix every 10000
spikes to reduce numerical error.
Note that ‖B ∗ Ak

0 ∗ C‖F grew
repeatedly, demonstrating that
the trajectory was sensitive to
initial conditions

On the flip side, the theorem suggests that insensitive
dynamics does not necessarily follow from structured con-
nectivity and connection strengths in networks. To verify this
conjecture, we ran detailed simulations of the dynamics of
highly structured networks that the theorem predicted ought
to be almost surely sensitive to initial conditions because
their dynamics were dominated by excitatory PSPs. In all
cases investigated, the trajectories were found to be sensitive
to initial conditions. Figure 6 displays the results from an
instantiation of the highly structured ring network that was
described earlier. The network was composed of 800 excita-
tory and 200 inhibitory neurons that were interleaved evenly
and placed around a ring. Each neuron received synapses
from a sector of 100 contiguous neurons, the sector being
centered on that neuron. As a result, any two neighboring
neurons shared 96 of their 100 inputs. This had the effect of
output spike trains from neighboring neurons being highly
correlated, with sectors of neurons generating synchronized
bursts of spikes. The axonal/synaptic delay for each neuron
was set identically to 0.8 msec. PSPs were modeled using

(14); all excitatory PSPs were set to be identical and mod-
eled as {6.5/(1.5

√
t)}{e−1.0∗1.52/t e−t/20 + e−4.0∗1.52/t e−t/80},

and all inhibitory PSPs were set to be identical and mod-
eled as {−39.0/(1.0

√
t)}e−1.0∗1.02/t e−t/20. All AHPs were

modeled as −1000.0e−t/1.2, and the time bound ϒ was
set at 500 msec. The threshold for the excitatory and the
inhibitory neurons were set at 5.0 and 10.0 respectively,
which led the excitatory (respectively, inhibitory) popula-
tion to spike at a rate of approximately 11 (respectively,
20) Hz.

The top panel in Fig. 6 displays the spike rasters of a
sector of 250 neurons from the population, for a duration of
2 sec. As noted earlier, the system generated synchronized
bursts of spikes. The second panel displays the total number
of live excitatory spikes (thick line) and inhibitory spikes
(thin line) at each time step for a period of 6 sec (the first 2
sec of which is reported in the top panel). Since ϒ was set at
500 msec and there were approximately 4400 live excitatory
and 2000 live inhibitory spikes in the state description at
each step, we can deduce that the excitatory (respectively,
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Fig. 7 Dynamics of the
random bursty cortical network.
Panels (top) Spike raster plot of
the first 250 neurons in the
population for the first 2 of the 6
sec of simulation shown in the
second panel. (second) Total
number of excitatory (thick line)
and inhibitory (thin line) spikes
in a window of ϒ = 500 msec
for the 6 sec of simulation.
(third)

∑
i, j (

lα
j
i )2 for

successively generated spikes
during this period. The abscissa
corresponds to successive spike
generations and not time. There
were 112374 spikes generated
during the 6 sec period, and the
mean E(

∑
i, j (

lα
j
i )2) was found

to be 14.2163. (bottom) l2-norm
of the rows added to Ak

0 for each
such spike (gray) and
‖B ∗ Ak

0 ∗ C‖F normalized by
the number of rows in
(B ∗ Ak

0 ∗ C) (black). The
abscissa, once again,
corresponds to successive spikes
and not time. Ak

0 was reset to the
identity matrix every 10000
spikes to reduce numerical error.
Note that ‖B ∗ Ak

0 ∗ C‖F grew
repeatedly, demonstrating that
the trajectory was sensitive to
initial conditions

inhibitory) neurons in the system spiked at approximately
11 (respectively, 20) Hz.

The third panel displays a raster plot in logarithmic scale
of the value of

∑
i, j (

lα
j
i )2 for each of the 78310 spikes that

were generated during the 6 sec time period. Since some
of the

∑
i, j (

lα
j
i )2’s were rather large, we first generated a

probability histogram from the data to check for a heavy-tail
distribution. We found that the tail of the distribution decayed
faster than a quadratic rate, indicating that E(

∑
i, j (

lα
j
i )2)

was well-defined and less than ∞ .12 E(
∑

i, j (
lα

j
i )2) was then

calculated from the data and was found to be 45.1933. The
bottom panel is exactly as in Fig. 5. Since the elements of Ak

0
grew to very large values as time progressed, Ak

0 was reset
to the identity matrix after every 10000 spike generations to
reduce numerical error. As is clear from the figure, ‖B ∗ Ak

0 ∗
C‖F as well as the l2-norm of the successive rows introduced
into Ak

0 for the corresponding spikes generated in the system,

12 This test was performed on all the trajectories presented in this article.
In each case, we found that the tail of the distribution decayed faster
than a quadratic rate.

grew repeatedly, demonstrating that the trajectory was indeed
sensitive to initial conditions.

The connectivity between neurons within cortical
columns (intra-column as opposed to thalamic afferents),
while having evolved to achieve specific functions, have been
experimentally ascertained to fit random statistical distribu-
tions (Braitenberg and Schüz, 1991; Schüz, 1992). Approxi-
mately 80% of the neurons in cortical networks are excitatory
and the rest inhibitory (Shepherd, 1998). This makes recur-
rent excitation the major theme of such networks, with ex-
citatory PSPs dominating their dynamics. Under conditions
where the neurons in the networks spike at low to moder-
ate rates, fast acting AHPs (such as the one modeled in the
simulations presented thus far) are substantially decayed by
the time the neurons spike next. Consequently, at the birth
of spikes, they contribute very small positive lα

j
i ’s which

have minimal impact on the value of
∑

i, j (
lα

j
i )2. Although

it is well known that slow acting AHPs can have a major
impact on the global nature of the dynamics of networks of
neurons, including the setting of the timescale for interburst
intervals in such systems, their impact on the sensitivity of
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Fig. 8 Dynamics of the
asynchronous cortical network.
Panels (top) Spike raster plot of
the first 250 neurons in the
population for the first 2 of the 6
sec of simulation shown in the
second panel. (second) Total
number of excitatory (thick line)
and inhibitory (thin line) spikes
in a window of ϒ = 500 msec
for the 6 sec of simulation.
(third)

∑
i, j (

lα
j
i )2 for

successively generated spikes
during this period. The abscissa
corresponds to successive spike
generations and not time. There
were 107354 spikes generated
during the 6 sec period, and the
mean E(

∑
i, j (

lα
j
i )2) was found

to be 7.4270. (bottom) l2-norm
of the rows added to Ak

0 for each
such spike (gray) and
‖B ∗ Ak

0 ∗ C‖F normalized by
the number of rows in
(B ∗ Ak

0 ∗ C) (black). The
abscissa, once again,
corresponds to successive spikes
and not time. Ak

0 was reset to the
identity matrix every 10000
spikes to reduce numerical error.
Note that ‖B ∗ Ak

0 ∗ C‖F grew
repeatedly, demonstrating that
the trajectory was sensitive to
initial
conditions

the underlying spike trajectories is again minimal. This is
due to the fact that the ∂ Pl/∂x j

i ’s for slow acting AHPs
are, by definition, small. They too, consequently, contribute
very small positive lα

j
i ’s at the birth of spikes that have

minimal impact on the value of
∑

i, j (
lα

j
i )2. The dominating

effect of the excitatory PSPs in such networks is therefore
likely to make E(

∑
i, j (

lα
j
i )2) large, causing the dynamics

of such systems to be almost surely sensitive to initial con-
ditions. The following simulation results corroborate these
observations.

We simulated several examples of cortical networks
(80% excitatory and 20% inhibitory neurons) with ran-
dom connectivity between neurons. The qualitative dynam-
ics of the systems varied widely depending on the value
of the parameters. However, in each case we found that
the dynamics of the network was sensitive to initial con-
ditions due to the reasons stated above. In Figs. 7 and
8 we present two examples of such networks. Both net-
works had excitatory AMPA and NMDA synapses, and in-
hibitory GABAA and GABAB synapses. The first network
differed from the second in having weaker inhibitory con-

nections and an additional slow acting AHP in excitatory
neurons, that caused the dynamics of the network to be
bursty. AHPs for the excitatory neurons in the first net-
work were modeled as −(1000.0e−t/1.2 + 20.0e−t/40) and
that for the inhibitory neurons as −1000.0e−t/1.2. All AHPs
in the second network were modeled as −1000.0e−t/1.2.
The remaining parameters for the networks were as fol-
lows. Combined axonal/synaptic delays were chosen ran-
domly from [0.4, 0.9] msec. PSPs were modeled using (14).
The parameter d was chosen randomly from the range
[1.0, 1.1] for all inhibitory synapses on excitatory neurons,
and from [1.0, 2.0] for all other synapses. β and τ for the
AMPA, NMDA, GABAA and GABAB synapses on exci-
tatory and inhibitory neurons were set at the values spec-
ified earlier in Section 2.3. In the first network, Q for the
AMPA synapses were chosen randomly from [1.0, 8.0] when
on excitatory, and [1.2, 9.6] when on inhibitory neurons.
Q for the NMDA synapses were chosen randomly from
[1.0, 8.0]. Q for the GABAA synapses were chosen ran-
domly from [3.0, 24.0] when on excitatory, and [2.0, 16.0]
when on inhibitory neurons. Finally, Q for the GABAB

Springer



340 J Comput Neurosci (2006) 20:321–348

synapses were chosen randomly from [1.0, 8.0]. The thresh-
old was set at 3.0 for excitatory and 20.0 for inhibitory
neurons.

Apart from the AHPs, the second network differed from
the first in two respects. First, the threshold for the in-
hibitory neurons was lowered to 6.0. Second, Q for the
AMPA synapses were chosen randomly from [0.9, 9.0]
when on excitatory, and [0.5, 5.0] when on inhibitory neu-
rons. Q for the NMDA synapses were chosen randomly
from [1.0, 10.0] when on excitatory, and [0.25, 2.5] when
on inhibitory neurons. Q for the GABAA synapses were
chosen randomly from [6.0, 60.0] when on excitatory, and
[0.5, 5.0] when on inhibitory neurons. Finally, Q for the
GABAB synapses were chosen randomly from [3.0, 30.0]
when on excitatory, and [0.5, 5.0] when on inhibitory
neurons.

As is clear from the top two panels of the respective fig-
ures, the qualitative dynamics of the two systems were sig-
nificantly different. However, as the bottom panels in both
figures demonstrate, the dynamics was sensitive to initial
conditions in both cases. E(

∑
i, j (

lα
j
i )2) was found to be

14.2163 and 7.4270 for the two systems respectively. It is
of some importance to note here that although the dynam-
ics of the bursty network was sensitive, it nevertheless dis-
played repeated patterns on a coarser time scale. This result
demonstrates that sensitive dependence does not necessarily
require asynchronous Poisson-like spiking behavior on the
part of the neurons. The coarse pattern in the dynamics of the
network was the outcome of the shape of the attractor in the
phase-space.

The electrophysiology of the cortical neuron is substan-
tially more complex than that expressed in the variant of the
Spike-response model used in the above simulations. The
reader may therefore wonder about the extent to which these
results apply to real cortical networks in the brain. Although
this is a legitimate concern, it is our belief that the results do
extend to models of the neuron that are biophysically more
accurate, due to the simplicity of the criterion E(

∑
i, j (

lα
j
i )2).

Whereas the value of E(
∑

i, j (
lα

j
i )2) is likely to differ in real

cortical networks, we do not foresee it dropping below 1
and turning the dynamics almost surely insensitive to initial
conditions.

4. Bifurcation in spike dynamics

In the previous section, we presented instructive examples
of networks that demonstrated that neither is insensitive dy-
namics a necessary consequence of structure, nor is sensitive
dynamics a necessary consequence of the lack of structure,
in the connectivity pattern and the connection strengths of
a network. In this section we present a stronger result, that

the sensitivity of the dynamics of a network can in fact be
modulated independent of its connectivity and connection
strengths. We present networks with fixed architecture and
connection strengths, that undergo bifurcation from sensitive
dynamics to insensitive dynamics as the value of a control
parameter is varied.

We conjectured earlier that a network whose dynamics
is dominated by excitatory PSPs is more likely to exhibit
sensitive dependence since excitatory PSPs tend to con-
tribute more negative lα

j
i ’s that, in turn, raise the value of

E(
∑

i, j (
lα

j
i )2). The conjecture was based on the general pro-

file of excitatory PSPs, i.e., on their having short rising phases
followed by prolonged falling phases. If the duration of the
rising phase of excitatory PSPs were to be made longer, ar-
guments along similar lines would suggest that the value of
E(

∑
i, j (

lα
j
i )2) would decrease, making the dynamics of the

system less sensitive. If E(
∑

i, j (
lα

j
i )2) were to drop below 1,

the dynamics of the network would then become insensitive
to initial conditions.

We simulated two classes of networks composed of 1000
neurons with 80% of the neurons chosen randomly to be exci-
tatory and the rest inhibitory. In both classes, each neuron re-
ceived synapses from 100 randomly chosen neurons, and ax-
onal/synaptic delays were chosen randomly from [0.4, 0.9]
msec. In the first class, all PSPs were modeled using the
function

P(t) = Q

d

(
t

τ

)β

e−t/τ 1

ββ ∗ e−β
, (17)

with τ set at 10 msec. Since P(t) attained its maximum
value at t = βτ , the normalizing term 1/(ββ ∗ e−β ) as-
sured that its maximum value was (Q/d) regardless of the
value assigned to β. {Q, d} were chosen randomly from
{[6.0, 42.0], [1.0, 1.1]} for inhibitory synapses on excitatory
neurons and {[1.0, 7.0], [1.0, 2.0]} for all other synapses.
AHPs were modeled using −1000.0e−t/5. The threshold for
excitatory neurons was set at 3.0 and that for inhibitory neu-
rons at 10.0. The simulations lasted 100 sec (5 × 105 steps
at 0.2 msec per step). In the case of inhibitory synapses,
β was fixed at 0.5, causing inhibitory PSPs to peak at 5.0
msec through the entire simulation. In the case of excitatory
synapses, β was raised from 0.5 to 1.0 in increments of 0.05
every 10 sec. This caused excitatory PSPs to peak at pro-
gressively later times as the simulation progressed. In effect,
β was the control parameter alluded to earlier.

The second class of networks was exactly like the
first, except that instead of holding the peak value of
excitatory PSPs constant, the area under the excitatory
PSPs was held constant through the entire simulation.
Stated formally, excitatory PSPs were modeled using the
function

Springer



J Comput Neurosci (2006) 20:321–348 341

Fig. 9 Dynamics of the network displaying bifurcation as the value
of the parameter β that controls the EPSP’s time to peak, is increased.
Panels (top) Spike raster plot of the first 250 neurons in the population
for 2 sec at the beginning (left), and end (right) of the simulation shown
in the second panel. (second) Total number of excitatory (upper) and
inhibitory (lower) spikes in a window of ϒ = 100 msec for the entire
100 sec of simulation. (third)

∑
i, j (

lα
j
i )2 for successively generated

spikes at each time step (gray), and the mean E(
∑

i, j (
lα

j
i )2) computed

in blocks that ended with Ak
0 being reset (black). The abscissa corre-

sponds to the time step (0.2 msec per step). For the sake of comparison
a line at value 1 is also shown. (bottom) l2-norm of the rows added to
Ak

0 for each such spike (gray) and ‖B ∗ Ak
0 ∗ C‖F normalized by the

number of rows in (B ∗ Ak
0 ∗ C) (black). The abscissa, once again, cor-

responds to time step. Ak
0 was reset to the identity matrix every 20000

spikes and at every 10 sec of simulation when β was changed. Note that
‖B ∗ Ak

0 ∗ C‖F grew repeatedly at the beginning of the simulation and
decayed repeatedly at the end, demonstrating that the trajectory was
sensitive at the beginning and insensitive at the end

P(t) = Q

d

(
t

τ

)β

e−t/τ 1
∫ ϒ

0 (t/τ )βe−t/τ dt
. (18)

The results from the simulations of the two classes were
found to be very similar, and therefore, we only present
results from the first class of networks.

Figure 9 displays the results from an instantiation of the
first class of networks. The top panel displays the spike
rasters of 250 neurons from the population for a duration
of 2 sec, at the beginning of the simulation (left), and at the
end of the simulation (right). As is clear from the figure, one
can not distinguish between the sensitivity of the dynamics
at the beginning and the insensitivity of the dynamics at the
end, through visual inspection. The second panel displays

the total number of live excitatory spikes (upper) and in-
hibitory spikes (lower) at each time step for the entire 100
sec simulation. Since ϒ was set at 100 msec and there were
approximately 560 live excitatory and 200 live inhibitory
spikes in the state description at each step, we can deduce
that the excitatory (respectively, inhibitory) neurons in the
system spiked at approximately 7 (respectively, 10) Hz.

The third panel is like in earlier figures, except that the
raster plot of the

∑
i, j (

lα
j
i )2’s is shown in gray. The mean of

the
∑

i, j (
lα

j
i )2’s was computed for each interval that ended

with either the perturbation matrix being reinitialized (after
every 20000 spikes) or with β being changed (after every
10 sec of simulation). The value of the mean for each such
interval is shown in black. For the sake of comparison, a line
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at value 1 is also shown. The bottom panel is exactly as in
earlier figures. Note that whereas ‖B ∗ Ak

0 ∗ C‖F repeatedly
tended toward infinity at the beginning of the simulation,
it repeatedly decayed toward 0 at the end, confirming that
the trajectory was indeed sensitive at the beginning of the
simulation and insensitive at the end. Moreover, this change
occurred when the value of E(

∑
i, j (

lα
j
i )2) dropped below 1,

as predicted by the theorem.
This result might seem inconsistent with our claim that

the dynamics of cortical networks ought to be almost surely
sensitive to initial conditions, given that the dynamics of the
random network described above did become insensitive as
the value of β was increased. This is however, not the case. In
the above simulation, all inhibitory PSPs peaked at exactly 5
msec. In all simulations that we conducted where inhibitory
PSPs peaked either uniformly at a time later than 5 msec, or
randomly at times dependent on the position of the synapse
on the neuron, we could not replicate the above bifurcation.
In all such cases, E(

∑
i, j (

lα
j
i )2) remained above 1 and the

dynamics remained sensitive for all values of β tested; β was
raised to values as large as 5.0, corresponding to excitatory
PSPs peaking at 50 msec.

5. Systems with stationary inputs

So far we have considered systems without inputs, both
in the simulations as well as in the formal analysis. We
now extend the formal result to the special case of systems
driven by stationary input spike trains. The trajectories un-
der consideration now lie in the phase-space

∏R
i=1

i
Lni , with

i = 1, . . . ,S denoting the internal neurons of the system,
and i = S + 1, . . . ,R the input neurons.

For the generative model of the local neighborhoods of
such trajectories, we employ a variation of the “directly
given” dynamical system (�,F , µ, T ) defined in Section
2.2. An outcome ω ∈ � is now an ordered pair of an initial
number of live internal and live input spikes, followed by a
sequence of births of internal spikes (with contributing inter-
nal and input spikes and corresponding ∂ Pl/∂x j

i ’s), deaths
of internal spikes, births of input spikes, and deaths of input
spikes. In essence, all spikes are now additionally labeled as
internal or input spikes. The specification of the stationary
measure µ also follows along the lines of Section 2.3, with
two additional assumptions:

(i) The ratio of the number of internal spikes to the total
(internal and input) spikes in successive state descrip-
tions forms a stationary distribution with mean ν ∈ R.
Moreover, this ratio stays close to ν at all times.

(ii) Input spikes and internal spikes are statistically indistin-
guishable from each other with regard to being chosen to
contribute to the generation of internal spikes, as is also
the case for the lα

j
i ’s that are associated with them.

The difference between Ak
0(ω) in this stationary stochastic

process and the previous, stems from this process having
input spikes that are not perturbed. The sensitivity of the
system is determined with respect to a perturbation in its
internal state.

The process is begun, as before, by choosing an n ∈
[Mlow, Mhigh] from a fixed distribution, where Mlow and
Mhigh denote the minimum and the maximum number of
total (internal and input) live spikes in the trajectory across
all time. The (n × νn) matrix A0

0 is then generated by taking
the (νn × νn) identity matrix and padding it with (n − νn)
additional rows all of whose elements are zero. The first νn
rows in A0

0 correspond to the internal spikes in the system,
and the remaining (n − νn) rows correspond to the input
spikes. Since input spikes are not perturbed, all elements in
their corresponding rows are set to zeros.

We take an additional step to complete the initialization.
Let C be the (νn × νn) matrix I − 1

νn (1), where I is the
identity matrix, and (1) is the matrix all of whose elements
are 1. The matrix A

0
0 = A0

0 ∗ C is generated, and instead
of applying the remainder of the stochastic process to A0

0,
we apply it to A

0
0. Note that for any given νn-dimensional

perturbation vector �x0, A
0
0 ∗ �x0 yields an n-dimensional

perturbation vector, the first νn elements of which sum to
zero (corresponding to perturbations on internal spikes satis-
fying

∑
i, j �x j

i = 0), and the remaining (n − νn) elements
of which are all zeros (corresponding to perturbations on
input spikes).13Also, note that for the νn non-zero rows, vi ,
in A

0
0,

E

(
1

νn

νn∑

i=1

vi

)

vi �=〈0...0〉
= 〈0, . . . , 0〉. (19)

The rest of the stochastic process is carried out as fol-
lows. At each step, the choice between the birth of an input
spike, the death of an input spike, the birth of an internal
spike, and the death of an internal spike, is made from a sta-
tionary stochastic process like the one described in Section
2.3, modified appropriately to take into account assumption
(i) above. Consider the state of the process just past the
(k − 1)th event. We define E ′

k−1, V ′
k−1, and C ′

k−1 (analogous
to Ek−1, Vk−1, and Ck−1 in (9), (10), and (11)), with these
new quantities computed over the population of the non-zero
rows (i.e., rows that correspond to internal spikes) in A

k−1
0 .

Formally,

13 Strictly speaking, the last column of A
0
0 should be dis-

carded, and �x0 should be a (νn − 1)-dimensional perturba-
tion vector. The noted constraints on the elements of the n-
dimensional perturbation vector A

0
0 ∗ �x0, as well as (19), would still

hold.
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E ′
k−1 = E

(
1

m

m∑

i=1

vi

)

vi �=〈0...0〉
, (20)

V ′
k−1 = E

(
1

m

m∑

i=1

(vi − E ′
k−1) · (vi − E ′

k−1)

)

vi �=〈0...0〉
,

and (21)

C ′
k−1 = E

(
1

m(m − 1)

m,m∑

i=1, j=1,i �= j

(vi − E ′
k−1)

·(v j − E ′
k−1)

)

vi ,v j �=〈0...0〉
, (22)

where m is now the number of non-zero rows in A
k−1
0 , and

the vi ’s, v j ’s are the non-zero rows in A
k−1
0 .

In the case of the birth (respectively, death) of an input
spike, A

k
0 is generated from A

k−1
0 by inserting (respectively,

deleting) a row all of whose elements are zero.
In the case of the birth of an internal spike, Ak

0 is generated
from A

k−1
0 as follows. The random number p ∈ [Plow, Phigh]

and the random vector 〈Y1, . . . , Yp〉 are chosen in the exact
same manner as described in Section 2.3. Rows v1, . . . , vp

are however, chosen from A
k−1
0 through a slightly modified

process. Each row vi , for i = 1, . . . , p, is chosen via a two
step procedure. In the first step, vi is randomly selected,
with probability ν to be a non-zero row, and with proba-
bility (1 − ν) to be a row all of whose elements are zero.
If vi is selected to be a non-zero row, it is then chosen in
the second step from the non-zero rows of A

k−1
0 through

a random sampling with replacement that is unbiased (ac-
cording to an appropriately modified version of (12), reflect-
ing the restriction to non-zero rows, as in (20), (21), and
(22)). Otherwise, vi is set to 〈0, . . . , 0〉. Finally, the derived
random variables y1, . . . , yp, where yi = Yi/

∑p
i=1 Yi , are

computed, and vnew = ∑p
i=1 yivi is inserted at a random lo-

cation into A
k−1
0 to generate A

k
0. Note that of the p rows

chosen from A
k−1
0 , on average only νp rows have non-zero

elements, and the rest are rows all of whose elements are
zero.

In the case of the death of an internal spike, Ak
0 is generated

from A
k−1
0 by choosing a row vdel from the non-zero rows of

A
k−1
0 through a random sampling that is unbiased (according

to an appropriately modified version of (13), reflecting the
restriction to non-zero rows, as in (20), (21), and (22)), and
deleting it from A

k−1
0 .

In what follows, we first relate E ′
k−1, V ′

k−1, and C ′
k−1, to

E ′
k , V ′

k , and C ′
k . We then use that relation to identify the

constraint that causes lim k→∞E(‖B ∗ Ak
0 ∗ C‖2

F ) to either
be ∞ or 0. Finally, we apply (8) to derive almost sure
convergence of ‖B ∗ Ak

0 ∗ C‖F to the appropriate limits.

We begin by noting that the expectation in (20), (21), and
(22) is taken over the stationary distribution on m, the number
of non-zero rows in A

k−1
0 , or equivalently, the number of

live internal spikes just past the (k − 1)th event. For any
fixed value of k − 1, � can be partitioned into the pairwise
disjoint sets m,k−1 F ∈ F for the finitely many choices of m,
where m,k−1 F denotes the set of outcomes in � that have
exactly m live internal spikes just past the (k − 1)th event.
The expectation can then be resolved into

E ′
k−1 =

νMhigh∑

m=νMlow

Pr (m) × m,k−1 E ′
k−1 (23)

(and likewise for V ′
k−1 and C ′

k−1), where m,k−1 E ′
k−1 is the

corresponding quantity computed over m,k−1 F , and Pr (m) is
the probability assigned to m,k−1 F . Note that for m,k−1 E ′

k−1,
whereas the pair of subscripts on the left specifies the sub-
set of � on which m,k−1 E ′

k−1 is computed, the subscript
on the right specifies the event just past which m,k−1 E ′

k−1
is computed; they can be varied independently of each
other.

In the following lemma, we restrict ourselves to the set
of outcomes in any one such m,k−1 F . To ease readability,
we have dropped the reference to m,k−1 F in m,k−1 E ′

k−1,

m,k−1V ′
k−1, and m,k−1C ′

k−1, and refer to them as E ′
k−1, V ′

k−1,
and C ′

k−1, respectively. E ′
k , V ′

k and C ′
k in the lemma refer

to the corresponding quantities computed over the same set
of outcomes, m,k−1 F , just past the kth event, i.e., m,k−1 E ′

k ,

m,k−1V ′
k and m,k−1C ′

k . It follows that

E ′
k =

νMhigh∑

m=νMlow

Pr (m) × m,k−1 E ′
k, (24)

and likewise for V ′
k and C ′

k .

Lemma 1. Let E ′
k−1, V ′

k−1, and C ′
k−1 be the above described

quantities computed over m,k−1 F ∈ F , the set of outcomes
that have exactly m non-zero rows in A

k−1
0 , or equivalently,

the set of outcomes that have exactly m live internal spikes
just past the (k − 1)th event.

1. If the kth event corresponds to the deletion of a non-zero
row (vdel), or to the addition or deletion of a row all of
whose elements are zero, then

E ′
k = E ′

k−1, V ′
k = V ′

k−1, and C ′
k = C ′

k−1.

2. If the kth event corresponds to the addition of a non-zero
row (vnew), then

E ′
k = m + ν

m + 1
E ′

k−1.
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Moreover, if pE(y2
i ) = (1 + δ) < ∞ for some δ ∈ R (δ >

−1 necessarily), then

V ′
k =

(
m2 + mν(1 + δ) − ν2δ

m(m + 1)

)

V ′
k−1 −

(
(m − 1)ν2δ

m(m + 1)

)

C ′
k−1, and

C ′
k =

(
2ν

m(m + 1)

)

V ′
k−1 +

(
(m + 2ν)(m − 1)

m(m + 1)

)

C ′
k−1.

Proof:

1. The result is trivial since vdel is an unbiased sample, and
the addition or deletion of a row all of whose elements
are zero has no impact on the quantities in question.
Before considering 2., we note that for the derived random
variables y1, ..., yp ,

(a) ∀i, pE(yi ) = 1, and
(b) ∀i, j, i �= j, pE(y2

i ) + p(p − 1)E(yi y j ) = 1,

because Y1, . . . , Yp are exchangeable random variables.
Let P(q) = (p

q

)
νq (1 − ν)p−q , i.e., the probability of hav-

ing q non-zero rows out of p draws.
2. E(vnew) = ∑p

q=0 P(q)(E(
∑q

i=1 yivi )), where it is under-
stood that the expected value E(·) is taken over the non-
zero rows in question in A

k−1
0 .

The yi ’s being independent of the vi ’s, and the vi ’s being
unbiased samples,

E(vnew) =
p∑

q=0

P(q)

(

E(yi )E

(
q∑

i=1

vi

))

=
p∑

q=0

P(q)

(
1

p
q E ′

k−1

)

= νE ′
k−1.

Hence E ′
k = m + ν

m + 1
E ′

k−1.

Moreover, since E ′
0 = 〈0, . . . , 0〉 for the initial population

of non-zero rows in A
0
0 regardless of the value of m (see (19)),

we can conclude that for all m, k, E ′
k = 〈0, . . . , 0〉.

Since E ′
k−1 = 〈0, . . . , 0〉 for all values of m, the quantity

(23) is also 〈0, . . . , 0〉 for all k. In the remainder of this proof,
E ′

k−1 shall refer to the original quantity in (23).

V (vnew) = E
(
(vnew − E ′

k−1) · (vnew − E ′
k−1)

)

= E(vnew · vnew)

=
p∑

q=0

P(q)

(

E

((
q∑

i=1

yivi

)

·
(

q∑

i=1

yivi

)))

=
p∑

q=0

P(q)

(

E

(
q∑

i=1

y2
i (vi · vi )

)

+E

(
q,q∑

i=1, j=1,i �= j

yi y j (vi · v j )

))

.

The yi ’s being independent of the vi ’s, and the vi ’s being
unbiased samples,

V (vnew) =
p∑

q=0

P(q)

(

E
(
y2

i

)
E

(
q∑

i=1

vi · vi

)

+E(yi y j )E

(
q,q∑

i=1, j=1,i �= j

vi · v j

))

= 1 + δ

p
(νpV ′

k−1) + −δ

p(p − 1)
ν2 p(p − 1)

(
1

m
V ′

k−1 + m − 1

m
C ′

k−1

)

=
(

(1 + δ)ν − δν2

m

)

V ′
k−1 − δν2 m − 1

m
C ′

k−1.

Note that the extra term in the solution to
E(

∑q,q
i=1, j=1,i �= j vi · v j ) is due to sampling with replacement.

Likewise,

C(vnew, vi ) = E
(
(vnew − E ′

k−1) · (vi − E ′
k−1)

)

= E (vnew · vi )

=
p∑

q=0

P(q)

(

E

((
q∑

j=1

y jv j

)

· vi

))

= ν

(
1

m
V ′

k−1 + m − 1

m
C ′

k−1

)

.

The result then follows from

V ′
k = m

m + 1
V ′

k−1 + 1

m + 1
V (vnew), and

C ′
k = m − 1

m + 1
C ′

k−1 + 2

m + 1
C(vnew, vi ).

�

In the above lemma, we computed m,k−1V ′
k and m,k−1C ′

k

for four different scenarios, assuming hypothetically in each
scenario that the kth event for all outcomes ω ∈ m,k−1 F is
identical, being either the birth of an internal spike, the death
of an internal spike, the birth of an input spike, or the death
of an input spike. With the exception of the scenario corre-
sponding to the birth of an internal spike, there was no change
in value from m,k−1V ′

k−1 to m,k−1V ′
k , and from m,k−1C ′

k−1 to
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m,k−1C ′
k . Although the outcomes in m,k−1 F will differ in their

kth event, it follows from the lemma that any change in value
from m,k−1V ′

k−1 to m,k−1V ′
k and from m,k−1C ′

k−1 to m,k−1C ′
k ,

is determined by the probability assigned to the subset of

m,k−1 F whose kth event is the birth of an internal spike. For
the entire sample space �, it follows from the counterparts to
(23) and (24) for V ′ and C ′, that by appropriately constrain-
ing δ, we can enforce monotonic trends on fixed functions of
V ′

k , C ′
k , as k → ∞. Moreover, such constraints on δ can be

computed by treating the kth event for all outcomes ω ∈ �

as the birth of an internal spike. The following theorem is
based on these observations.

Theorem 2 (Sensitivity with input) Let �x (t) be a trajectory
that is not drawn into the trivial fixed point in a system with
input neurons. Let E(

∑
i, j (

lα
j
i )2) = 1 + δ < ∞ where the

expected value E(·) is taken over the set of all births of
internal spikes in �x (t). Then, if

δ>max

(
2 + O(1/Mlow)

ν
− 2,

1

1 − νO(1/Mlow)

(
1

ν
− 1

))

(respectively, δ < 1
ν

− 2), �x (t) is, with probability 1, sen-
sitive (respectively, insensitive) to initial conditions. Mlow

denotes the minimum number of total (internal and input)
live spikes in �x (t) across all time.

Proof Let m denote the total number of rows (zero as well
as non-zero) in A

k
0. Then, by assumption, m ∈ [Mlow, Mhigh].

We first note that if limk→∞ ‖(I − 1
m (1)) ∗ A

k
0‖ = ∞

(respectively, 0), then limk→∞ ‖B ∗ Ak
0 ∗ C‖ = ∞ (respec-

tively, 0). This follows from the fact that B is I − 1
m (1)

without the last row, and that the rank of both I − 1
m (1) and

B is (m − 1). We also note that of the k events, if kb in-
volve births of internal spikes, then by assumption, k → ∞
implies kb → ∞ almost surely.

Let vi ’s, v j ’s denote the non-zero rows of A
k
0. Then,

abusing notation slightly for the sake of readability so that
the square on the right hand side represents dot product with
itself,

E

(∥
∥
∥
∥

(

I − 1

m
(1)

)

∗ A
k
0

∥
∥
∥
∥

2

F

)

= E

(
νm∑

i=1

(

vi −
(

νm∑

j=1

v j/m

))2

+
m∑

i=νm+1

(
νm∑

j=1

v j/m

)2)

= ν
(
(m − 1)V ′

k − (νm − 1)C ′
k

)
.

Therefore, since C ′
k ≤ V ′

k ,

E

(∥
∥
∥
∥

(

I − 1

m
(1)

)

∗ A
k
0

∥
∥
∥
∥

2

F

)

≤ νm(V ′
k − νC ′

k).

Also, if C ′
k > 0,

E

(∥
∥
∥
∥

(

I − 1

m
(1)

)

∗ A
k
0

∥
∥
∥
∥

2

F

)

≥ ν(m − 1)(V ′
k − νC ′

k).

Else, if C ′
k ≤ 0,

E

(∥
∥
∥
∥

(

I − 1

m
(1)

)

∗ A
k
0

∥
∥
∥
∥

2

F

)

≥ ν(m − 1)V ′
k .

Now, consider the right hand sides of the above inequali-
ties. From Lemma 1 and the earlier observations,

V ′
k − νC ′

k = (m − ν)(m + 2ν + δν)

m(m + 1)
V ′

k−1

− (m − 1)(m + 2ν + δν)

m(m + 1)
νC ′

k−1

= (m − 1)(m + 2ν + δν)

m(m + 1)
(V ′

k−1 − νC ′
k−1)

+ (1 − ν)(m + 2ν + δν)

m(m + 1)
V ′

k−1.

Since the last term of the final equation on the right hand
side is always greater than 0,

V ′
k − νC ′

k ≥ (m − 1)(m + 2ν + δν)

m(m + 1)
(V ′

k−1 − νC ′
k−1).

If δ >
2 + 2/(m − 1)

ν
− 2 then

(m − 1)(m + 2ν + δν)

m(m + 1)

> 1.

If C ′
k ≤ 0 then from Lemma 1 and the earlier observations,

V ′
k ≥

(
m2 + mν(1 + δ) − ν2δ

m(m + 1)

)

V ′
k−1.

If δ >
1

1 − ν/m

(
1

ν
− 1

)

then
m2 + mν(1 + δ) − ν2δ

m(m + 1)

< 1.

Conversely, from Lemma 1 and the earlier observations,

V ′
k − νC ′

k = m(m + 2ν + δν)

m(m + 1)
(V ′

k−1 − νC ′
k−1)

+−ν(m + 2ν + δν)

m(m + 1)
(V ′

k−1 − C ′
k−1).
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Since the last term of the equation on the right hand side
is always lesser than 0,

V ′
k − νC ′

k ≤ m(m + 2ν + δν)

m(m + 1)
(V ′

k−1 − νC ′
k−1).

If δ <
1

ν
− 2 then

m(m + 2ν + δν)

m(m + 1)
< 1.

By monotonicity, and the fact that k → ∞ implies kb →
∞ almost surely, if

δ > max

(
2 + O(1/Mlow)

ν
− 2,

1

1 − νO(1/Mlow)

(
1

ν
− 1

))

(

respectively, δ <
1

ν
− 2

)

,

then limk→∞ E(‖(I − 1
m (1)) ∗ A

k
0‖2

F ) = ∞ (respectively, 0),
and as a consequence, limk→∞ E(‖B ∗ Ak

0 ∗ C‖2
F ) = ∞ (re-

spectively, 0).
Finally, we apply (8) to show almost sure convergence

to the appropriate limits. Consider first the case where
limk→∞ E(‖B ∗ Ak

0 ∗ C‖2
F ) = 0. Since ‖B ∗ Ak

0 ∗ C‖2
F ≥ 0

for all k, by Fatou’s lemma, E(limk inf ‖B ∗ Ak
0 ∗ C‖2

F ) ≤
limk inf E(‖B ∗ Ak

0 ∗ C‖2
F ). Consequently, noting that ‖B ∗

Ak
0 ∗ C‖2

F ≥ 0, we get E(limk inf ‖B ∗ Ak
0 ∗ C‖2

F ) = 0, and
the two together implies Pr (limk inf ‖B ∗ Ak

0 ∗ C‖2
F > 0) =

0. Applying (8) and noting once again that both ‖B ∗ Ak
0 ∗

C‖2
F ≥ 0 and ‖B ∗ Ak

0 ∗ C‖F ≥ 0, we get Pr (limk→∞ ‖B ∗
Ak

0 ∗ C‖F = 0) = Pr (limk→∞ ‖B ∗ Ak
0 ∗ C‖2

F = 0) = 1.
For the case where limk→∞ E(‖B ∗ Ak

0 ∗ C‖2
F ) = ∞, we

show that for all finite c > 0, Pr (limk sup ‖B ∗ Ak
0 ∗ C‖F <

c) = Pr (limk sup ‖B ∗ Ak
0 ∗ C‖2

F < c2) = 0. We demon-
strate this by showing that for any given c > 0 and n0 > 0,
there exists an n > n0 such that Pr (∩∞

k=n‖B ∗ Ak
0 ∗ C‖2

F <

c2) = 0.
Since limk→∞ E(‖B ∗ Ak

0 ∗ C‖2
F ) = ∞, given any c > 0

and n0 > 0, there exists an n > n0 such that E(‖B ∗ An
0 ∗

C‖2
F ) > c2. Hence, Pr (‖B ∗ An

0 ∗ C‖2
F < c2) < 1. Now

consider just the set of outcomes, ω, that satisfy ‖B ∗
An

0(ω) ∗ C‖2
F < c2. Since the stationary process has been

constructed such that the choices made at each event are in-
dependent of the elements of Ak

0, arguments along similar
lines show that there exists an n′ > n such that Pr (‖B ∗
An′

0 ∗ C‖2
F < c2

∣
∣ ‖B ∗ An

0 ∗ C‖2
F < c2) < 1. By repeatedly

applying this argument, we get Pr (∩∞
k=n‖B ∗ Ak

0 ∗ C‖2
F <

c2) = 0. Finally, applying (8), we get Pr (limk→∞ ‖B ∗ Ak
0 ∗

C‖2
F > c2) = 1 for all finite c > 0. �

We must point out that the bounds generated in this
theorem, when restricted to the case without inputs, are
weaker than those in the theorem in Section 2.2, as is clear

from setting ν = 1. For the reasonable value of ν = 0.5,
noting that Mlow is a very large number, the criterion re-
duces to the dynamics being almost surely insensitive when
δ < 0 and almost surely sensitive when δ > 2. These values
are not significantly different from those deduced for sys-
tems without inputs. Based on the experimental values of
E(

∑
i, j (

lα
j
i )2) derived in the previous sections, we reckon

that the dynamics of cortical networks when driven by sta-
tistically similar input, such as that arriving from other cor-
tical networks, ought to be almost surely sensitive to initial
conditions.

6. Conclusions

Systems neuroscience has made significant strides in deci-
phering the principles governing the operation of those parts
of the nervous system that are close to the sensory periph-
ery of an organism (Jacobs and Werblin, 1998; Meister and
Berry, 1999; Reinagel and Reid, 2000), to name but a few.
In contrast, our understanding of the workings of those re-
gions of the brain that are farther removed from the sensory
and motor periphery, is rather lacking. Since multiple areas
in the brain project onto such regions, the precise input to
these regions is practically impossible to isolate and con-
trol. Furthermore, such inputs are received in the form of
spike trains. Without a definite understanding of how, and
what, information is coded in these spike trains, one can
draw few conclusions regarding the nature of the informa-
tion processing occurring in these regions. Given our limited
comprehension of the nature of the inputs to and outputs
from such regions of the brain, developing an in-depth for-
mal understanding of the dynamical properties of networks
of spiking neurons is a necessary first step towards decipher-
ing the precise computational operations performed by those
regions.

One of the core characteristics of any physical system,
networks of neurons or otherwise, is whether or not its dy-
namics is sensitive to initial conditions, and if so, what causes
it to be such. In this article, we have systematically explored
this issue for systems of spiking neurons, by first identifying
the formal assumptions underlying the sensitivity theorem in
Banerjee (2001b), and subsequently demonstrating that the
assumptions hold reasonably well for a wide variety of net-
work architectures, particularly those that lack overarching
structure.

A notable aspect of the criterion for sensitivity is the find-
ing that it is not strongly linked to the pattern of connectivity
and connection strengths of a network. In this article, we have
provided ample evidence of this fact. A qualitative appraisal
of the criterion guided the construction of networks with
random architectures yet with dynamics that were insensi-
tive to initial conditions, as well as networks with highly
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structured architectures yet with dynamics that were sen-
sitive to initial conditions. The networks thus constructed
provide additional insights into sensitivity. For example, we
found that asynchronous activity does not necessarily imply
sensitive dynamics, as is apparent from an inspection of the
spike raster plots from Figs. 5 and 8. Whereas the dynamics
of the network in Fig. 5 is insensitive, the dynamics of the net-
work in Fig. 8 is sensitive. We also found that synchronized
activity does not necessarily imply insensitive dynamics. An
examination of the spike raster plot from Fig. 7 demonstrates
this. Moreover, synchronized activity may result from a va-
riety of factors. Whereas the networks in Figs. 6 and 7 both
exhibit synchronized activity, their root causes are different.
The synchronized activity in Fig. 6 is the outcome of shared
connectivity, whereas that in Fig. 7 is the result of slow in-
hibition. The clearest evidence of the fact that sensitivity of
the dynamics of a network can be modulated independent
of its connectivity and connection strengths was provided
in our final example. The dynamics of the network under-
went bifurcation as the rise time of excitatory PSPs was
varied.

In all our simulations, including those not reported in this
article, we have found that sensitive dependence on initial
conditions is a robust feature of networks whose dynamics
is dominated by excitatory PSPs, so long as the network
operates in a regime where its constituent neurons spike at
low to moderate rates. Since cortical networks satisfy both
criteria, we have argued that their dynamics ought to be al-
most surely sensitive to initial conditions. We have presented
two examples of model cortical networks with widely differ-
ing qualitative dynamics, yet with both displaying sensitive
dependence on initial conditions.

Networks of neurons in the brain do not operate in iso-
lation. They are incessantly bombarded by inputs arriv-
ing from the external environment as well as from other
regions of the brain. We have extended the formal re-
sult in Banerjee (2001b) to the particular case of systems
driven by stationary inputs, thus modeling a more realistic
scenario.

The nature of the criterion for sensitivity indicates why it
is important that spikes not be abstracted away in the analysis
of the dynamics of systems of neurons. In any analysis that
models spike trains using continuous valued rates or instan-
taneous probabilities of generating spikes, there can be no
quantity corresponding to E(

∑
i, j (

lα
j
i )2). This is because not

only does E(
∑

i, j (
lα

j
i )2) depend upon the precise conditions

prevalent in the neurons at the instant of the generation of
spikes, it is also evaluated over the birth of all spikes in a tra-
jectory. However, as the theorem states, E(

∑
i, j (

lα
j
i )2) solely

determines whether a trajectory is sensitive or insensitive to
initial conditions. One is therefore led to conclude that there
exist salient aspects of the dynamics of networks of spiking

neurons that are, in principle, indiscernible in analyses that
abstract away spike trains.

There remain many important questions to be addressed.
Since sensitivity of dynamics would make any attractors in a
given region of the phase-space chaotic, finding appropriate
signatures that can distinguish between such attractors be-
comes a pressing issue. Although it is, in principle, possible
for two or more attractors to have the same average spike-
rates for the constituent neurons of a network, this has not
yet been demonstrated in example model cortical networks.
Finally, there is the issue of synaptic changes. How synaptic
modification rules such as Hebbian long-term potentiation
and depression (LTP/LTD), and spike-time dependent plas-
ticity (STDP), affect the nature of the dynamics of systems
of spiking neurons has only begun to be investigated.

Acknowledgment We are grateful to the anonymous referees for their
critical reading of the manuscript. Their constructive comments have
significantly improved this article.

References

Amit DJ, Brunel N (1997) Model of global spontaneous activity
and local structured activity during delay periods in the cerebral
cortex. Cerebral Cortex 7: 237–252.

Banerjee A (2001) On the phase-space dynamics of systems of spiking
neurons: I. model and experiments. Neural Computation 13:
161–193.

Banerjee A (2001) On the phase-space dynamics of systems of spiking
neurons: II. formal analysis. Neural Computation 13: 195–225.

Bi G-q, Poo M-m (1998) Synaptic modifications in cultured hippocam-
pal neurons: dependence on spike timing, synaptic strength,
and postsynaptic cell type. Journal of Neuroscience 18: 10464–
10472.
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Schüz A (1992) Randomness and constraints in the cortical neuropil,
In Information Processing in the Cortex Aertsen, V, Braitenberg
V (Eds.), Springer-Verlag, Berlin Heidelberg New York, pp. 3–21.

Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory
of eye position in a recurrent network of conductance-based
model neurons. Neuron 26: 259–271.

Shepherd GM (1998) The Synaptic Organization of the Brain, Oxford
University Press, New York.

Snowden RJ, Treue S, Andersen RA (1992) The response of neurons
in areas V1 and MT of the alert rhesus monkey to moving random
dot patterns. Experimental Brain Research 88: 389–400.

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability
of signals in single neurons in cat and monkey visual cortex.
Vision Research 23: 775–785.

Tomko G, Crapper D (1974) Neuronal variability: non-stationary
responses to identical visual stimuli. Brain Research 79: 405–
418.

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274:
1724–1726.

van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state
in a model of cortical circuits. Neural Computation 10: 1321–
1372.

Springer


