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ABSTRACT levels increases, in contrast to standard histograms,exher

Mutual information (MI) based image-registration methodsd|str|but|on is known to become ever sparser and noisier.

that use histograms are known to suffer from the so-called
binning problem, caused by the absence of a principled tech-
nigue for choosing the “optimal” number of bins to calculate
the joint or marginal distributions. In this paper, we show
that foregoing the notion of an image as a set of discretd pixe
locations, and adopting a continuous representation isdhe  ~gnsider an imagé of size N by N with intensity values
lution to this problem. A new technique to calculate joint g antized intoP bins. In standard image histograms, each
image histograms is proposed, which makes use of such g, is regarded as “flat” and contributes to exactly one bin
continuous representation. We report results on affine&segi ¢ the number of bins is too large, one would obtain a distribu
tration of a pair of 2D medical images under high noise, andiq, jn which most bins are empty, and in which the rest have
dgmoqstrate the smoothness pf_ various information-thieore nearly equal values. There exists no principled way to ptedi
similarity measures such as joint entropy or Ml w.r.t. theq eyact number of bins as a function of the image size. Most

transformation, when our proposed technique (referredto ay_pased methods using histograms adopt a smaller number
the*robust histogram™ ) is adopted to compute the required ¢ pins for greater noise resistance [3]. Although this im-

2. THEORY: ROBUST HISTOGRAMS FOR JOINT
AND MARGINAL DISTRIBUTIONS

probability distributions. proves the results, it can cause over-smoothing and fails in
cases where a large number of bins is actually essential for
1. INTRODUCTION correct registration. For instance, such a situation cese an

the case of registration of MR data to CT, where very small
Mutual-information (MI) has become a popular similarityare changes in CT values could correspond to large changes in
sure for medical image registration, ever since the pidnger MR values, or in the case of non-rigid image registration.
work of Viola et al [1]. A comprehensive survey of exisiting Some studies suggest using a combination of three different
MI based image registration techniques has been present&tl values computed using three different numbers of bins [4]
by Pluim et al in [2]. Density-estimation techniques (bothwhich would partly remedy the problem. However that may
marginal and joint) lie at the core of all these methods. Smot generalize to all data-sets, and would require manual se
far, histograms have been the most popular strategy for defection of the three (or more) bin-width values.

sity estimation in this context, owing to their simplicitpc . . .
In our approach, we consider a spatially continuous repre-

efficiency. It has been empirically seen that MI performs betsentation of an image. In the experiments described here, we

ter if the number of histogram bins is “small” in the marginal . ) .
L . - have employed a locally linear representation of the iritgns
as well as the joint histograms, due to the accompanied noige . X T
. . o unction, though this could be trivially replaced by anyeth
reduction. However, there is no principled method to choose

the “correct’ number of bins, especially for images of dif- method. Although we consider image intensity to be a con-

ferent sizes. Traditionally, images are represented ag a Sténuous entity, we estimate the probability distributionlyo

of discretized locations called pixels, which are localbt fl at a fixed number) of equi spac_ed intensity levels. _Later
. ; . . on in the paper, we show that gsincreases, we obtain an
in terms of intensity. In this paper, we demonstrate that the . : NS :

|{1creasmgly accurate estimate of the distribution, quite

binning problem can be solved by computing histograms th )
consider a continuous representation for an image, rewrdij'ke standard h|stogra_ms. As such, our approach does not
involve direct calculation of the marginal histograms of an

it as a continuum of points. We empirically show how these . 2 -

“robust” histograms yield an increasingly better approaim image. Rather, we first compute theJ_omt probability _betmvee

. . . . .. a pair of images and use that to estimate the marginal prob-

tion to the joint density, as the number of chosen intensity’," . A . : L .
abilities. This is described in more detail in the following
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2.1. Calculating the Joint Distribution histograms, a pixel (or triangle) contributes votesridtiple
intensity levels.

Now consider a case in which the joint distribution is to
be evaluated at exactty intensity levels in each image, with
@ < P. In such a case, the robust histogram will yield a
poor estimate of the distribution due to scarcity of votdsisT
is because robust histograms collect votes atly) levels
(and@ < P), whereas standard histograms collect votes for
arange of levels. To remedy this problem, the images should
be requantized so as to now contain exa¢tiytensity levels.

We divide the square defined by these neighbors into a pafjpon requantization, the robust histogram will now acquire

?T tnalngles (see Flggdre (%j))t. '{)he ||r.1ten3|;[(y vatllues \;V;th”"B t many more votes than the standard histogram. This is be-
riangie can be considered to be alinear function 0T the-Cook. , ;se the former performs sub-pixel interpolation andether
dinates of its vertices, given by the equatios: ax + by + c.

H denotes intens: dth Hicients and b fore counts level curve intersections that odeubetween the
¢ _ereg beno Ies_ln ?r?sny, an it €coe 'C'ett_ an C_I"flre (;m' | grid points [see Figure (1)], apart from the grid-pointsithe
ained by solving three simuttaneous equations. 10 caleUldge | as standard histograms will count the grid-poahtee.
the joint distribution of two images, we sequentially caolesi

the Q2 different intensity pairs, denoted 481, az). Each
pair of corresponding triangles from the two images is téste
to see whether it contains a poifit, y) which has intensity
valuew; in I; andas in Ir. Such a poin{z,y) then con-
tributes a vote to the entrfry, o) in the joint distribution.
See Figure (1).

We calculate the joint distribution of a given pair of images
(namedl; andl;), whose intensity is quantized in#® bins,

as follows. (In all symbols used here, the subscripidicates
the first image, and the subscripindicates the second im-
age). Consider that the joint distribution is to be evaldate
exactly@? intensity levels() in each image. For each image
grid point, we estimate the intensity values of its four teig
bors lying at a horizontal or vertical distance @b pixels.

Fig. 2. A retinogram and its noisy, rotated version
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Fig. 1. Iso-intensity lines in an image triangle

Due to the assumed local linearity of the intensity func- ﬁq) 128 bins, robust(e) 256 bins, std. hiStﬁ? 256 bins,  robust
tion, the iso-intensity curves within the triangle are gtha st st
lines. Any point(z, y) suchthaf; (z,y) = oy andlz(x,y) =  Fig. 3. Joint Probability plots, with standard histogramming
a can be considered to be the intersection of the iso-inensitand our method for 64, 128 and 256 bins in each image.
lines at leveky; in I; and at levek in I, given by the equa-
tionsaiz + b1y + ¢4 = a3 andasx + boy + co = as re-
spectively. Solving these equations simultaneously gi¢ié  since each vote in the joint histogram stems from an intersec
values ofr andy. Ifthe point(z, y) thus calculated liesithin - tjon of the corresponding level curves from the two images,
the triangle under consideration, then and only then do wie adhe marginal probabilities can be obtained by tracing oahsu
its vote to the joint probability ofay, o). This entire pro-  jso-intensity contours af intensity levels in the individual
cess is repeated for each sugh, az) within every pair of images and calculating their length. This process, however
corresponding triangles in the two images, to yield thetjoin\yoy|d be time-consuming. Therefore we abandon this strat-
distribution. Note that as the number of intensity lev@l$s egy, and instead calculate the marginals by row- and column-
increased, one would expect to obtain a more and more accijise addition of the joint probabilities (which is analogdo

rate estimate of the joint distribution, due to our adopén jntegration). This process also ensures consistency betwe
a continuous representation for the image, completelkenli the joints and the marginals.

the case with standard histograms. The contrast between the

two approaches is shown clearly in the surface plots in Fig-2 3 Effect of Noi

ure (3) for P (andQ) equal to32, 64 and128. The images =~ ectoroise

used were a retinogram and its noisy in-plane rotated wersidt is evident that noise in the pair of images will alter their
[see Figure(2)]. The difference is due to the fact that irugtb  probability distribution obtained by this method (as by any

2.2. Calculating the Marginals



Metric Average Error Metric Predicted Transformation
- Robust Hist.| Std. Hist. Ml NMI
JE 0.5° 4.8° 0 s t 0 s t
M 0.5° 3.6° Robust Hist.| —18 | —0.3 | —0.3 | —18 | =0.3 | —0.3
NMI 0.5° 3.6° Std. Hist. | —17 | 06 | 0.6 | —17| 0.6 | 0.6
Table 1. Error using JE, Ml and NMI Table 2. Predicted parameters, ground truttf is: —20, s =
—0.3,t=—0.1

other). However the change due to noise would be far less

significant in our case, as compared to standard histogramrute-force search was employed only in order to ensure that
ming. This is because ordinary binning erratically switche the results of either method were not affected by optimirati
the votes from one bin to another. Our method avoids thisissues such as local minima. Our method is in no way tied to
because of the continuous image representation, anddhneref only a brute-force search.

is inherently much more noise-resistant. Our experimeatal

sults support this.
3. EXPERIMENTS AND RESULTS 4 B

_ _ _ Fig. 4. (a) An MR-PD image, (b) An MR-T2 image (formerly
We applied our method of histogram calculation for the pur-gjigned with the PD image) now rotated b20°, (c) A noisy

pose of pairwise affine multimodality registration. Thenfoi version of (b), (d) The difference between (c) and (b)
and marginal distributions were calculated using the netho

just described and were then used to compute Ml and Normal-
ized Mutual Information (NMI). All or some of these values

were used as energy functions in the search for the optimal
transformation.

Fig. 5. (a) Anatomical slice of the brain, (b) Deformed ver-
sion of (a), (c) A noisy version of (b), (d) The difference be-
tween (c) and (b)

The first experiment was performed on an MR-PD slice and

an MR-T2 slice f_rom a brair_1 \_/(_)Iume dz_;\taset that was o_btaineg'z' Affine Image Registration

from [5]. Both slices were initially registered. The T2 ingag

was rotated in-plane by20°. Gaussian noise of zero mean We also tested the robust histogram for affine image regis-
and a variance of 1 (using the ‘imnoise’ function of MAT- tration, involving non-uniform scaling and a single rooati
LAB) was added onto it (see Figure (4)). Now, we soughtWe used an axial anatomical slice of the brain from the VHD
to iteratively move the PD image so that it aligned with theMale Dataset (slice 1080), as shown in Figure (5). The orig-
T2 image, while maximizing the MI, or minimizing the JE inal slice was synthetically warped by a single rotation of
between the two images. The search for the optimal trang = —20° and non-uniform scaling factoss = —0.3 and
formation was done in a brute-force manner within a rangé = —0.1. Gaussian noise of varian6e25 and mear was

of —30° to +10°, and the results were compared to JE ancadded onto it. The details of the affine transformation matri
MI as computed using the standard histogram. The numbere given in [7]. In our experiments, the value®ivas set

of bins in both cases was chosen to be 128, assuming 2%6 0 for simplicity. A multi-resolution brute-force search was
intensity levels in the original images. From Figure (6), weperformed to estimate the parameters that maximized Ml or
clearly observe the smoothness of both Ml and JE when caNMI between the two images. The range of search wag°
culated by our method. Smooth energy functions can come ito +10° for § and—0.6 to 0.6 for s and¢. The predicted pa-
handy when abandoning brute-force search for the more effirameters are shown in Table (2). Clearly, the robust histmgr
cient gradient-based search methods. Godrials between outperformed the standard one when using both Ml and NMI.
the same pair of images, the average angle error for Ml with  In yet another experiment, we also included a translation
robust histograms was5°, as against.6° with standard his- of 2 and3 pixels in theX andY directions respectively, be-
togramming (see Table(1)). Note that we treated the imagsides a—20° rotation, and a scaling of = —0.3,¢t = —0.3.

that was initially rotated throug®0° as the fixed image, and The images used were a pre-registered MR-PD and MR-T2
the other one as the floating image. This helped avoid thslice as obtained from [5]. All transformations were apglie
interpolation artifacts reported by Pluim in [6], namelyeth tothe T2 slice and zero mean Gaussian noise of variau2ée
“dip at the ground truth” effect of Ml calculated using stan- was added to it. The PD slice was transformed between the
dard histograms, due to interpolation issues. Also, nategh rangef = [—24°,—12°], s = [-0.5,0.5], t = [-0.5,0.5],

3.1. Smoothness of Ml w.r.t Transformation



Results with Ml
0 s t |te ]ty
Robust Hist.| —20 | —0.3 | —0.3 | 3 3
Std. Hist. | —18 | —=05| 04 | 0 | O
Results with NMI
0 s t [te [ty
Robust Hist.| —18 | —0.3 | —0.3 | 3 3
Std. Hist. —-11 | -01 | —-01| 3 3

Table 3. Predicted parameters, ground trutldis- —20, s =

~0.3,t =—0.3,t, = 2,t, =3

t, = [-3,3], ty, = [-3,3] to search for optimal alignment.
The results summarized in Table (3) clearly show that the r

bust histograms performed far better.

(@

(b) (©

0_

image intensites are assigned to non-grid positions when im
ages are being successively warped during registration. As
such it does not assign any votes to intensities that lie in be
tween grid locations, and hence is not a method to solve the
binning problem.

Our method is easily extensible to the pairwise registra-
tion of volume datasets, where each voxel could be split into
two tetrahedra. Joint probabilities can be computed by find-
ing the lengths of the intersection of iso-intensity plaires
the corresponding tetrahedra of the two images, which turns
out to be straight line segments. However, it should be noted
that our method is not extensible to groupwise image regis-
tration in 2D because it requires the concurrency of three or
more (iso-intensity) lines, one from each image. This is an

over-constrained condition both in 2D as well as in 3D.

A striking feature of our technique is that it favours sam-
pling in regions of high gradient. This is because the inten-
sity levels at which the joints are computed, are chosen at
equally spread-out intervals, and the regions with high gra
dient values accomodate many more intensity levels than the
flatter regions of equal size. This issue of non-uniform sam-
pling (dictated by gradient magnitude, a measure of feature
saliency) demands deeper theoretical investigation. dgesi
studying these issues, we also plan to use our technique in a
non-rigid setting. Here, superior performance could well b
expected with a greater value @f as smaller) values could
reduce the accuracy of computation of small local deforma-

(d)
Fig. 6. Trajectories of JE and Ml w.r.t. rotation (128 bins): [1]

(a) JE, robust hist., (b) JE, std. hist., (c) M, robust hi&t)
MI, std. hist. [2]

4. DISCUSSION 3
We have presented a new histogramming technique using a
continuous representation of an image. This technique has
shown good results for affine image registration under highis]
image noise, regardless of the chosen number of intensity le
els@Q. As @ increases, we would expect a more and more
accurate estimate of the joint probability distribution. (3]

Notice that our technique will avoid thismall sample

size problem” in the estimation of local Ml over small-sized
image windows. Though this can be accomplished by Parzerg;
windows as well, our technique requires parameter tun-
ing, unlike the latter, and is more efficient in terms of time
complexity. Some techniques such as [8] use a MAP estimate’]
with a uniform prior histogram for sparse data, but these re-
quire careful task-dependent selection of an optimal numbe (8]
of samples and coefficients to weigh the likelihood and prior
Others such as [9] which use a combination of floating and[g]
prior joint probabilities also require careful parameterihg.
We also wish to point out an important difference between
our method and Partial Volume Interpolation (PVI) proposed10]
by Maes et al [10]. The latter assigns (partial) votes to only
those intensity values that occur at the corners of a pikel, i

tions due to oversmoothing.
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