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ABSTRACT

Mutual information (MI) based image-registration methods
that use histograms are known to suffer from the so-called
binning problem, caused by the absence of a principled tech-
nique for choosing the “optimal” number of bins to calculate
the joint or marginal distributions. In this paper, we show
that foregoing the notion of an image as a set of discrete pixel
locations, and adopting a continuous representation is theso-
lution to this problem. A new technique to calculate joint
image histograms is proposed, which makes use of such a
continuous representation. We report results on affine regis-
tration of a pair of 2D medical images under high noise, and
demonstrate the smoothness of various information-theoretic
similarity measures such as joint entropy or MI w.r.t. the
transformation, when our proposed technique (referred to as
the“robust histogram” ) is adopted to compute the required
probability distributions.

1. INTRODUCTION

Mutual-information (MI) has become a popular similarity mea-
sure for medical image registration, ever since the pioneering
work of Viola et al [1]. A comprehensive survey of exisiting
MI based image registration techniques has been presented
by Pluim et al in [2]. Density-estimation techniques (both
marginal and joint) lie at the core of all these methods. So
far, histograms have been the most popular strategy for den-
sity estimation in this context, owing to their simplicity and
efficiency. It has been empirically seen that MI performs bet-
ter if the number of histogram bins is “small” in the marginal
as well as the joint histograms, due to the accompanied noise
reduction. However, there is no principled method to choose
the “correct” number of bins, especially for images of dif-
ferent sizes. Traditionally, images are represented as a set
of discretized locations called pixels, which are locally flat
in terms of intensity. In this paper, we demonstrate that the
binning problem can be solved by computing histograms that
consider a continuous representation for an image, regarding
it as a continuum of points. We empirically show how these
“robust” histograms yield an increasingly better approxima-
tion to the joint density, as the number of chosen intensity
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levels increases, in contrast to standard histograms, where the
distribution is known to become ever sparser and noisier.

2. THEORY: ROBUST HISTOGRAMS FOR JOINT
AND MARGINAL DISTRIBUTIONS

Consider an imageI of sizeN by N with intensity values
quantized intoP bins. In standard image histograms, each
pixel is regarded as “flat” and contributes to exactly one bin.
If the number of bins is too large, one would obtain a distribu-
tion in which most bins are empty, and in which the rest have
nearly equal values. There exists no principled way to predict
the exact number of bins as a function of the image size. Most
MI-based methods using histograms adopt a smaller number
of bins, for greater noise resistance [3]. Although this im-
proves the results, it can cause over-smoothing and fails in
cases where a large number of bins is actually essential for
correct registration. For instance, such a situation can arise in
the case of registration of MR data to CT, where very small
changes in CT values could correspond to large changes in
MR values, or in the case of non-rigid image registration.
Some studies suggest using a combination of three different
MI values computed using three different numbers of bins [4],
which would partly remedy the problem. However that may
not generalize to all data-sets, and would require manual se-
lection of the three (or more) bin-width values.

In our approach, we consider a spatially continuous repre-
sentation of an image. In the experiments described here, we
have employed a locally linear representation of the intensity
function, though this could be trivially replaced by any other
method. Although we consider image intensity to be a con-
tinuous entity, we estimate the probability distribution only
at a fixed number (Q) of equi-spaced intensity levels. Later
on in the paper, we show that asQ increases, we obtain an
increasingly accurate estimate of the distribution, quiteun-
like standard histograms. As such, our approach does not
involve direct calculation of the marginal histograms of an
image. Rather, we first compute the joint probability between
a pair of images and use that to estimate the marginal prob-
abilities. This is described in more detail in the following
sections.



2.1. Calculating the Joint Distribution

We calculate the joint distribution of a given pair of images
(namedI1 andI2), whose intensity is quantized intoP bins,
as follows. (In all symbols used here, the subscript1 indicates
the first image, and the subscript2 indicates the second im-
age). Consider that the joint distribution is to be evaluated at
exactlyQ2 intensity levels,Q in each image. For each image
grid point, we estimate the intensity values of its four neigh-
bors lying at a horizontal or vertical distance of0.5 pixels.
We divide the square defined by these neighbors into a pair
of triangles (see Figure (1)). The intensity values within the
triangle can be considered to be a linear function of the coor-
dinates of its vertices, given by the equationz = ax+ by + c.
Herez denotes intensity, and the coefficientsa, b andc are ob-
tained by solving three simultaneous equations. To calculate
the joint distribution of two images, we sequentially consider
the Q2 different intensity pairs, denoted as(α1, α2). Each
pair of corresponding triangles from the two images is tested
to see whether it contains a point(x, y) which has intensity
valueα1 in I1 andα2 in I2. Such a point(x, y) then con-
tributes a vote to the entry(α1, α2) in the joint distribution.
See Figure (1).
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Fig. 1. Iso-intensity lines in an image triangle

Due to the assumed local linearity of the intensity func-
tion, the iso-intensity curves within the triangle are straight
lines. Any point(x, y) such thatI1(x, y) = α1 andI2(x, y) =
α2 can be considered to be the intersection of the iso-intensity
lines at levelα1 in I1 and at levelα2 in I2, given by the equa-
tions a1x + b1y + c1 = α1 anda2x + b2y + c2 = α2 re-
spectively. Solving these equations simultaneously yields the
values ofx andy. If the point(x, y) thus calculated lieswithin
the triangle under consideration, then and only then do we add
its vote to the joint probability of(α1, α2). This entire pro-
cess is repeated for each such(α1, α2) within every pair of
corresponding triangles in the two images, to yield the joint
distribution. Note that as the number of intensity levelsQ is
increased, one would expect to obtain a more and more accu-
rate estimate of the joint distribution, due to our adoptionof
a continuous representation for the image, completely unlike
the case with standard histograms. The contrast between the
two approaches is shown clearly in the surface plots in Fig-
ure (3) forP (andQ) equal to32, 64 and128. The images
used were a retinogram and its noisy in-plane rotated version
[see Figure(2)]. The difference is due to the fact that in robust

histograms, a pixel (or triangle) contributes votes tomultiple
intensity levels.

Now consider a case in which the joint distribution is to
be evaluated at exactlyQ intensity levels in each image, with
Q < P . In such a case, the robust histogram will yield a
poor estimate of the distribution due to scarcity of votes. This
is because robust histograms collect votes onlyat Q levels
(andQ < P ), whereas standard histograms collect votes for
a range of levels. To remedy this problem, the images should
be requantized so as to now contain exactlyQ intensity levels.
Upon requantization, the robust histogram will now acquire
many more votes than the standard histogram. This is be-
cause the former performs sub-pixel interpolation and there-
fore counts level curve intersections that occurin between the
grid points [see Figure (1)], apart from the grid-points them-
selves. Standard histograms will count the grid-pointsalone.

Fig. 2. A retinogram and its noisy, rotated version

(a) 64 bins, std. hist. (b) 64 bins, robust hist.(c) 128 bins, std. hist.

(d) 128 bins, robust
hist.

(e) 256 bins, std. hist.(f) 256 bins, robust
hist.

Fig. 3. Joint Probability plots, with standard histogramming
and our method for 64, 128 and 256 bins in each image.

2.2. Calculating the Marginals

Since each vote in the joint histogram stems from an intersec-
tion of the corresponding level curves from the two images,
the marginal probabilities can be obtained by tracing out such
iso-intensity contours atQ intensity levels in the individual
images and calculating their length. This process, however,
would be time-consuming. Therefore we abandon this strat-
egy, and instead calculate the marginals by row- and column-
wise addition of the joint probabilities (which is analogous to
integration). This process also ensures consistency between
the joints and the marginals.

2.3. Effect of Noise

It is evident that noise in the pair of images will alter their
probability distribution obtained by this method (as by any



Metric Average Error
- Robust Hist. Std. Hist.

JE 0.5◦ 4.8◦

MI 0.5◦ 3.6◦

NMI 0.5◦ 3.6◦

Table 1. Error using JE, MI and NMI

other). However the change due to noise would be far less
significant in our case, as compared to standard histogram-
ming. This is because ordinary binning erratically switches
the votes from one bin to another. Our method avoids this,
because of the continuous image representation, and therefore
is inherently much more noise-resistant. Our experimentalre-
sults support this.

3. EXPERIMENTS AND RESULTS

We applied our method of histogram calculation for the pur-
pose of pairwise affine multimodality registration. The joint
and marginal distributions were calculated using the method
just described and were then used to compute MI and Normal-
ized Mutual Information (NMI). All or some of these values
were used as energy functions in the search for the optimal
transformation.

3.1. Smoothness of MI w.r.t Transformation

The first experiment was performed on an MR-PD slice and
an MR-T2 slice from a brain volume dataset that was obtained
from [5]. Both slices were initially registered. The T2 image
was rotated in-plane by−20◦. Gaussian noise of zero mean
and a variance of 1 (using the ‘imnoise’ function of MAT-
LAB) was added onto it (see Figure (4)). Now, we sought
to iteratively move the PD image so that it aligned with the
T2 image, while maximizing the MI, or minimizing the JE
between the two images. The search for the optimal trans-
formation was done in a brute-force manner within a range
of −30◦ to +10◦, and the results were compared to JE and
MI as computed using the standard histogram. The number
of bins in both cases was chosen to be 128, assuming 256
intensity levels in the original images. From Figure (6), we
clearly observe the smoothness of both MI and JE when cal-
culated by our method. Smooth energy functions can come in
handy when abandoning brute-force search for the more effi-
cient gradient-based search methods. Over50 trials between
the same pair of images, the average angle error for MI with
robust histograms was0.5◦, as against3.6◦ with standard his-
togramming (see Table(1)). Note that we treated the image
that was initially rotated through20◦ as the fixed image, and
the other one as the floating image. This helped avoid the
interpolation artifacts reported by Pluim in [6], namely the
“dip at the ground truth” effect of MI calculated using stan-
dard histograms, due to interpolation issues. Also, note that a

Metric Predicted Transformation
MI NMI

θ s t θ s t

Robust Hist. −18 −0.3 −0.3 −18 −0.3 −0.3
Std. Hist. −17 0.6 0.6 −17 0.6 0.6

Table 2. Predicted parameters, ground truth isθ = −20, s =
−0.3, t = −0.1

brute-force search was employed only in order to ensure that
the results of either method were not affected by optimization
issues such as local minima. Our method is in no way tied to
only a brute-force search.

Fig. 4. (a) An MR-PD image, (b) An MR-T2 image (formerly
aligned with the PD image) now rotated by−20◦, (c) A noisy
version of (b), (d) The difference between (c) and (b)

Fig. 5. (a) Anatomical slice of the brain, (b) Deformed ver-
sion of (a), (c) A noisy version of (b), (d) The difference be-
tween (c) and (b)

3.2. Affine Image Registration

We also tested the robust histogram for affine image regis-
tration, involving non-uniform scaling and a single rotation.
We used an axial anatomical slice of the brain from the VHD
Male Dataset (slice 1080), as shown in Figure (5). The orig-
inal slice was synthetically warped by a single rotation of
θ = −20◦ and non-uniform scaling factorss = −0.3 and
t = −0.1. Gaussian noise of variance0.25 and mean0 was
added onto it. The details of the affine transformation matrix
are given in [7]. In our experiments, the value ofφ was set
to 0 for simplicity. A multi-resolution brute-force search was
performed to estimate the parameters that maximized MI or
NMI between the two images. The range of search was−30◦

to +10◦ for θ and−0.6 to 0.6 for s andt. The predicted pa-
rameters are shown in Table (2). Clearly, the robust histogram
outperformed the standard one when using both MI and NMI.

In yet another experiment, we also included a translation
of 2 and3 pixels in theX andY directions respectively, be-
sides a−20◦ rotation, and a scaling ofs = −0.3, t = −0.3.
The images used were a pre-registered MR-PD and MR-T2
slice as obtained from [5]. All transformations were applied
to the T2 slice and zero mean Gaussian noise of variance0.25
was added to it. The PD slice was transformed between the
rangeθ = [−24◦,−12◦], s = [−0.5, 0.5], t = [−0.5, 0.5],



Results with MI
θ s t tx ty

Robust Hist. −20 −0.3 −0.3 3 3
Std. Hist. −18 −0.5 0.4 0 0

Results with NMI
θ s t tx ty

Robust Hist. −18 −0.3 −0.3 3 3
Std. Hist. −11 −0.1 −0.1 3 3

Table 3. Predicted parameters, ground truth isθ = −20, s =
−0.3, t = −0.3, tx = 2, ty = 3

tx = [−3, 3], ty = [−3, 3] to search for optimal alignment.
The results summarized in Table (3) clearly show that the ro-
bust histograms performed far better.
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Fig. 6. Trajectories of JE and MI w.r.t. rotation (128 bins):
(a) JE, robust hist., (b) JE, std. hist., (c) MI, robust hist., (d)
MI, std. hist.

4. DISCUSSION

We have presented a new histogramming technique using a
continuous representation of an image. This technique has
shown good results for affine image registration under high
image noise, regardless of the chosen number of intensity lev-
els Q. As Q increases, we would expect a more and more
accurate estimate of the joint probability distribution.

Notice that our technique will avoid the“small sample
size problem” in the estimation of local MI over small-sized
image windows. Though this can be accomplished by Parzen
windows as well, our technique requiresno parameter tun-
ing, unlike the latter, and is more efficient in terms of time
complexity. Some techniques such as [8] use a MAP estimate
with a uniform prior histogram for sparse data, but these re-
quire careful task-dependent selection of an optimal number
of samples and coefficients to weigh the likelihood and prior.
Others such as [9] which use a combination of floating and
prior joint probabilities also require careful parameter tuning.
We also wish to point out an important difference between
our method and Partial Volume Interpolation (PVI) proposed
by Maes et al [10]. The latter assigns (partial) votes to only
those intensity values that occur at the corners of a pixel, if

image intensites are assigned to non-grid positions when im-
ages are being successively warped during registration. As
such it does not assign any votes to intensities that lie in be-
tween grid locations, and hence is not a method to solve the
binning problem.

Our method is easily extensible to the pairwise registra-
tion of volume datasets, where each voxel could be split into
two tetrahedra. Joint probabilities can be computed by find-
ing the lengths of the intersection of iso-intensity planesin
the corresponding tetrahedra of the two images, which turns
out to be straight line segments. However, it should be noted
that our method is not extensible to groupwise image regis-
tration in 2D because it requires the concurrency of three or
more (iso-intensity) lines, one from each image. This is an
over-constrained condition both in 2D as well as in 3D.

A striking feature of our technique is that it favours sam-
pling in regions of high gradient. This is because the inten-
sity levels at which the joints are computed, are chosen at
equally spread-out intervals, and the regions with high gra-
dient values accomodate many more intensity levels than the
flatter regions of equal size. This issue of non-uniform sam-
pling (dictated by gradient magnitude, a measure of feature
saliency) demands deeper theoretical investigation. Besides
studying these issues, we also plan to use our technique in a
non-rigid setting. Here, superior performance could well be
expected with a greater value ofQ, as smallerQ values could
reduce the accuracy of computation of small local deforma-
tions due to oversmoothing.
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