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Abstract—The problem of deterministically coding a continu-
ous time signal using an ensemble of spike trains is addressed.
Coding is defined with an eye toward ‘efficiency”, defined as
a trade-off between the number of spikes in the code and
the quality of the code operationalized using the notion of
reconstruction error. It is shown that inverting the coding model
leads to a reconstruction procedure that amounts to a constrained
optimization problem. A class of coding models is considered that
makes the coding procedure biologically plausible while at the
same time making the reconstruction problem tractable. It is
demonstrated that the reconstruction error depends acutely on
the coding model. This tight coupling is then used to describe
a procedure that learns a coding model of improved efficiency.
Experiments on a corpus of voice data validate the strength of
our approach.

I. INTRODUCTION

Brains of most animal species receive sensory stimuli in
the form of spike trains. Take the human visual system,
for example. The spatio-temporal light signal impinging on
the photoreceptor cells of the retina, after several stages of
processing through the horizontal, bipolar, and amacrine cells,
is turned into spike trains at the retinal ganglion cells. The
axons of the ganglion cells, that form the optic nerve then
communicate these spike trains to the brain. Other sensory
modalities have corresponding counterparts.

How a continuous time signal is transformed into spike
trains, how much of the information in the continuous time
signal is present in the spike trains, how the quality of this
information depends on various aspects of the translation
process, etc., are therefore some of the most fundamental
questions in Computational Neuroscience.

These questions of signal coding in animal sensory systems
have been the subject of intense effort in the past, albeit
within a stochastic framework. For example, recent progress
has been based on the paradigm of generalized linear models
[31, [8], [5], a particularly popular subclass of which is the
linear-nonlinear (LN) cascade. Here the sensory stimulus is
turned into a stochastic spike train via an instantaneous firing
rate model. The firing rate of the neuron is computed by first
applying a linear causal filter to the input signal, followed by
a static non-linearity. Spikes are then generated stochastically
from the instantaneous firing rate. Whereas this stochastic
viewpoint has seen wide applicability, there remain examples
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such as visual coding in the H1 neuron of the fly [4] where
the transformation has been shown to be deterministic. In this
paper, several questions revolving around signal coding using
spike trains is formally addressed in a deterministic setting.

The “efficiency” of a coding mechanism depends entirely on
the constraints faced by an organism in its natural environment.
For an organism for which energy is a scarce resource, the
number of spikes (or the spike rate) used to code a continuous
time signal determines efficiency; the sparser the spike train,
the more efficient the code. On the other hand, for animals
whose survival depends on high sensory acuity, the efficiency
of the code depends on how much information the spike
train carries about the sensory signal. By taking a coding-
reconstruction point of view, our approach gets around the
question of efficiency by framing it as a trade-off between
the number of spikes in the code and the quality of the code
operationalized using the notion of reconstruction error.

Reconstruction is formally posed as inverting the coding
model which leads to a novel (coding) model-aware frame-
work. Analysis of the reconstruction demonstrates that the
reconstruction error depends acutely on the coding model. This
coupling then suggests a procedure that learns a coding model
of improved efficiency. The framework proposed is therefore
consistent with the view that animals “tune” their sensory
systems to their natural environment.

The remainder of the paper is structured as follows. Sec-
tion II formally describes the coding transformation. It presents
a model of an artificial neuron and specifies how the neu-
ron generates spikes given an input signal. Section III then
describes how a spike train and the model of the neuron
can be used to obtain a candidate reconstruction for the
input signal. The importance of selecting a suitable kernel
(instantiating the neuron model) is highlighted and, for a
special scenario, the best kernel for optimal reconstruction
is derived. Section IV then described the general coupled
optimization problem of coding and reconstruction. Section V,
presents results of experiments on a band-limited signals, and
Section VI concludes with final remarks.

II. SIGNAL CODING: AN ARTIFICIAL SPIKING NEURON

Characterizing the general class of mappings from contin-
uous time signals to spike trains is difficult owing to the



fact that there is no natural or canonical topology that one
can impose on the space of spike trains. Simple subclasses,
such as the set of all continuous mappings, therefore, can
not be defined with an eye toward universal acceptance. A
way out of this dilemma would be through the introduction
of an intermediate continuous time signal that is transformed
into a spike train via a simple stereotyped mapping—one
where spikes mark threshold crossings. The complexity of the
overall transformation can then be attributed to the mapping
from the continuous time input signal to the continuous time
intermediate signal. It is this approach that is followed here.

It is well known [2] that any time invariant, continuous,
nonlinear operator with fading memory can be approximated
by a finite Volterra series operator (assuming the uniform norm
on the domain and range of functions). The general class of
deterministic transformations from continuous time signals to
spike trains can therefore be modeled as a cascade of a finite
Volterra series operator which transforms the continuous time
input signal into an intermediate continuous time signal, and
a neuronal thresholding operation which marks the thresh-
old crossings of the intermediate signal to generate a spike
train. Here the simplest subclass of these transformations is
considered: the case where the Volterra series operator has a
single causal, bounded-time, linear term. This class is chosen
with the tractability of the reconstruction problem in mind (see
Section III). It is to be noted that the overall transformation
from the input signal to the spike train remains nonlinear due
to the thresholding operation.

To summarize, our interest lies in that subclass of trans-
formations from continuous time signals to spike trains, that
can be modeled as a cascade of a causal, linear, bounded-
time filter, followed by a thresholding operation. This formal
concept finds a natural home in a biologically plausible
implementation of a neuron.

An artificial spiking neuron is a device which continuously
measures a stimulus and marks the moments when the accu-
mulated measure exceeds a certain threshold. The neuron does
this via a convolution filter that is causal. Formally, let &, (¢)
be the causal convolution kernel associated with neuron n, and
t > 0 denote the past. For a time window of size ¢,,:

kn(t)=0 if t>/{,ort<0 (1)

The measurement of the input signal s(¢) by neuron n at time
t is p(t) and is defined as:
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Marking the moments where the measurement p(t) crosses
a threshold 7' is called spiking. A spike ¢ is deemed to have
occurred at time ¢; if p(¢;) = T and is non-decreasing at ¢;

With the addition of after-hyperpolarizing effects of previ-
ous spikes, the combined function

M
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can be considered as a representation of the accumulated
membrane potential of the cell. Here 7, (t — t;) is the after-
hyperpolarizing effect of spike ¢;.

Equivalently, a changing threshold can be used to simulate
the after-hyperpolarization effect. Throughout the measure-
ments and spiking, 7" is now not a constant but a variable
T'(t). After a spike, T' instantaneously rises and then decays
exponentially. If neuron n produces M spikes until time £,
then, threshold T'(¢) for neuron n is expressed as:

M
T(t) = Tonir+y_ Tye 1)

i=1

Tinit >0, T;>1,r>0 (4)

Tinit 18 the baseline threshold and T'; is the instantaneous
increase in the threshold after a spike. 7 is the time constant
which defines the rate at which the threshold decays back to
baseline.

The aforementioned transformation from a continuous time
signal s(t), for t > 0, to a spike train (t1,to,t3,...) can now
be equivalently viewed as a corresponding neuron spiking at
the respective times (that is, p(¢;) = T'(¢;) for all i) when
presented with the signal s(¢) as input.

ITI. SIGNAL RECONSTRUCTION

Given an ensemble of spike trains and characterizations of
the corresponding set of neurons, one can ask whether the
input signal can be recovered. This reconstruction problem is
ideally posed as the inverse of the coding model. Each neuron
model specifies constraints on the reconstructed signal that
have to hold at the corresponding spike times. Anticipating
that the formulation is under-constrained, among the many
signals for which the constraints are valid, the one with the
minimum energy can be chosen as the reconstruction of the
original signal.

That convolutions can alternatively be viewed as inner
products fully reveals the nature of this reconstruction. For
each spike i, shifts K’ (t) = k,(t — t;) can be defined where
k,, 1s the convolution kernel associated with the neuron n and
t; is the time of the generation of spike i.

It follows that
T)dT = / K;( i 5)

titln
K (1)
the last equality arising from the fact that K (7) is O outside
the range [t;,t; + £y].
A minimization problem can then be constructed as follows:

t;

Min ||s||5 s.t. (6)

/K

where T denotes the threshold of neuron n at time t;
computed according to Equation 4. Although, for any moment
in time, the absence of a spike can also be considered

7)dT =0 for all ¢ and n



as a constraint for the minimization problem, adding such
constraints beforehand is impractical due to the reason that
there are infinitely many such constraints. An alternative is
to introduce such constraints in an incremental fashion based
on the additional erroneous spikes that a candidate solution
generates when coded by the same set of neuron kernels.

It follows from the Representer Theorem [6], that the
minimum energy signal can be expressed as the weighted
sum of the shifted kernels K7, (¢). The optimization problem
can therefore be expressed in its dual form as a quadratic
minimization problem with linear constraints:
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Relaxing the constraints with slack variables ¢! one gets:
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Stated informally, given the neuron models, reconstructing a
signal reduces to finding the best set of weights for the shifted
kernels so that the linear combination of the shifted kernels
creates the closest approximation of a signal that satisfies the
threshold constraints.

Several observations are in order:

1) The convex optimization formulation of the reconstruc-
tion described above is valid for a coding model that
contains only first order (linear) Volterra kernels. The
reconstruction problem for higher order kernels does not
naturally lend itself to a convex optimization formula-
tion, although approximate reconstruction is possible.

2) The solution immediately reveals the trade-off between
the length of a kernel [,,, and the sparsity of the spike
code. Consider the schematic description of the solution
to the reconstruction problem presented in Figure 1. If
there is any inter-spike interval of time of duration larger
than [,,, it follows immediately that the reconstruction
drops to O for some intermediate period. Stated differ-
ently, the shorter the length of the kernel, the shorter
the inter-spike interval needs to be in order for the
reconstruction to be good.

3) On the other hand, a signal can be reconstructed only
after [,, time has passed. This follows from the observa-
tion that the kernels of all spikes generated in the future
within [,, time overlap with the present. [,, is therefore
bounded from above by how quickly an organism needs
to be able to reconstruct a signal.
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Fig. 1. Schematic diagram describing the reconstruction problem.

4) Finally, the quality of the reconstruction depends acutely
on the shape of the kernel. This follows immediately
from the fact that the reconstruction is a linear combi-
nation of shifted kernels. For example, a kernel situated
in a lower frequency band than the input signal would
fair very poorly at reconstructing the signal.

IV. OPTIMAL CODING AND RECONSTRUCTION

One is naturally led to ask whether, for a given class of
continuous time signals to be coded, the kernels corresponding
to the neuron models can be optimized to improve the quality
of the reconstruction. This problem bears similarity to the
sparse dictionary learning problem [7]. The kernels in our
case correspond to the dictionary elements and the times of
spikes relate to the sampling of the unknown signal. There
is of course the additional complexity that kernels by design
overlap in the reconstruction.

Under the (highly) simplifying assumption that the recon-
struction does not involve kernel overlaps, even if the spikes
themselves are not separated by the length of the kernel, an
optimal set of kernels can be formally derived, as shown next.
It is unfortunately the overlapping of the kernels that makes
this an extremely challenging problem. This observation has
also been corroborated in our numerical experiments.

For the sake of simplicity, a scenario where a single neuron
kernel is derived, is considered. With repeated independent
applications, the argument can be extended to the multiple
neuron kernels case.

Let us assume that for a single neuron, M =
(toy ..., tistit1,...) is a sequence of real numbers which
represent hypothetical spike times.

Let s be the optimal solution to the reconstruction of the
input signal s. Appealing to the dual formulation in Eq 8, it
is represented as:

5= ZaiKi 9

Note that, as before, for the spike ¢, the yet to be determined
kernel k is shifted to time t; and this shifted version is
represented by K*.

Rather than shifting the kernel to the locations of the spikes,
one can alternatively extract segments of the signal aligned to



the spike times ¢,. To elaborate, for the shift 7, the section of
input signal s which overlaps with K* is represented by v’.

vi(t) =s(t+t;) for 0<t<{ (10)
Given any kernel k the reconstruction error is then given

by:

H;IIIZH(UZ—CLZ]{;)HE (11)

where the a’s are free scalar variables that the above sum is
to be minimized over.
Minimizing the above, the a*’s can be replaced with <k, vi>.

Finally, assuming the bounding constraint (k, k) = 1 and with
further simplifications, one arrives at:

Mazx Z(<vz,k> (v, k)) s.t;
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(12)
(k) =1

This, of course, is the well known principal component
analysis problem and the optimum kernel is the first Eigen
vector of the covariance matrix C built from the signal
segments. Since the times of the spikes are unknown, all times
may be considered to be equally probable in the construction
of the covariance matrix. In conclusion, if it is assumed that
the kernels do not overlap to represent the signal, the optimum
kernel is extracted by selecting the first principal component
of the covariance matrix generated from segments v’ sampled
uniformly from the input signal s.

In spite of the questionable nature of the assumption that
leads to the derivation of the above kernel, it was observed
that the performance of the kernel is not entirely poor. Kernel
derived with this approach is not a random waveform. For
the sections of the input where spikes are sparse, the derived
kernel will be scaled to give the best average representation.
This requires it to be in the same frequency band as the input
signal. And, for other sections, it is not going to be entirely
irrelevant. For example, a kernel with frequency components
outside of the frequency band of the input signal is highly
unlikely to create a good representation. (Those frequency
components need to cancel each other after shifting and scaling
of the kernel at different positions.)

Returning to the general case as described in Eq 8 wherein
overlap of kernels are allowed, the overall optimization prob-
lem reduces to one where the kernels K are also set to
be variable (constrained of course by the fact that K! (t) =
kn(t—t;) for a common kernel &y, (+)). This unfortunately turns
out to be non-convex. However, a procedure such as block
coordinate descent [9] can be applied, the reason being that the
problem is convex both when either the kernels K ’s are held
fixed or when the coefficients aﬁl are held fixed. However, there
is the added complication that changing the kernels K ’s leads
to spike times that change which then changes the constraint
set.

Considering the block coordinate descent step where the
coefficients are held fixed and the kernels are optimized, fur-
ther complications arise. Noting that the kernels are functions
of time, optimizing the kernels at all time points is infeasible.
However, one can choose a finite set of time points over which
to optimize the kernels. This leads to the following block
coordinate descent step.

Let e(t) = s(t) — $(t) be the error between the input signal
s and the reconstruction s for any time t.

e(t) = s(t) = Y _al Ki(t) (13)
For a set M = {tg,--- ,t;,--- ,tn} of time points,
Min Z@ s.t.; (14)
i s(ty) = > ah K (t;) — & <0

,n
& +s(ty) = > _anKi(t;) <0
7,

fj >0
For this step of the optimization problem, the weights a?,
are fixed (from the previous step) and the values of K? (¢;)
are optimized. With a sufficiently large set of time points M,
kernels which reduce the total error can be obtained.

The overall procedure that has shown promise starts with

a random distribution of spikes which don’t cause kernels
to overlap. For the non-overlapping case, kernels can easily
be determined by solving constraint optimization 12. For this
initial set of spikes and kernels, a reconstruction is obtained
by solving optimization 8. This reconstruction becomes a
reference and provides weights a!, for the next iteration of
kernel optimization for which the equation 14 is solved. A
new set of spikes are then generated with the updated kernels
coding the input signal. This cycle is then repeated several
times until a sufficient reconstruction performance achieved.

V. EXPERIMENTS AND RESULTS

In this section, experiments on voice data are presented and
their results are discussed.

Human voice was sampled at 8kHz and separated into a
spectrum of frequency bands which are 100Hz wide. All
tests were performed on the lowest frequency band(100Hz
- 200Hz). Ideally, given enough time, same test can be
performed for higher frequency bands as well.

Tests utilize a greedy algorithm which tries to find a
good set of kernels by searching through random kernels. A
random kernel can be created with the help of the special
case described in section IV. As described in that section,
placing random spikes which won’t cause any overlaps, creates
a special case for which it is possible to find the optimum
kernel which minimizes the reconstruction error. The greedy
approach creates many random kernels and forms a group from
them. The group is modified as the search iterates. A random
kernel is introduced to the group and for all the kernels in the
group, the state of absence of each kernel is tested according



to its reconstruction performance. Briefly, a kernel is replaced
with the new one if the reconstruction performance of the
group improves. This algorithm can be altered by introducing
a kernel optimization routine by implementing the problem
described by the equation 14. Instead of creating a totally
random kernel, a kernel which is already in the group can
be altered by the optimization routine and the performance
of the group can be tested. It is already stated that although
it is possible to partially alter the kernels, it does not always
improved the reconstruction. This is due to the fact that, altered
kernel invalidates the spike positions. Kernel optimization is
a relatively time consuming job, because of that reason, it is
not included in results presented here.

The input signal was divided into sections. Although there
is no hard constraint on the length of a section, longer
sections will create relatively harder optimization problems
with higher number of parameters. For the tests presented in
this paper, the section length was selected to be approximately
0.5 seconds or 4000 samples. Deciding to solve for very short
duration of the input can introduce problems when it comes
to generalizing the selected kernels to the other sections of the
input. There is a trade-off between the representation accuracy
for a section and success in generalizing that representation
to other sections. A similar argument can also be made for
the length of the kernels. Relatively short kernels create more
accurate representations but they are required to be placed high
in numbers. For the test presented in this paper kernels were
chosen to be equal in length(160 samples).

Any reconstruction which is not exact, will create a non-zero
error signal. In order to get a better reconstruction, this error
signal can be threated as a regular signal and a reconstruction
of it can be calculated. A staged structure can be created
by creating an additional step of calculating the error and
trying to represent this error with spikes and kernels. With this
staged structure, the idea of representing a signal with spikes
and kernels will still be in focus. With sufficient abstraction,
this approach of creating a staged or layered structure can
be explained as follows. A group of neurons take the input
signal and create spikes. These spikes and the kernels of the
neurons are then used in order to calculate a reconstruction of
the input signal. Then, the reconstruction error is calculated.
A second group of neurons take this reconstruction error and
generated spikes from it. It is not possible to create a biological
analogy to this staged structure. That is because there isn’t any
explicit evidence of a reconstruction or an error calculation is
observed in nature. Hypothetically, this can be analogues to
a case where a neuron creates spikes from input signal and a
second neuron takes these spikes as auxiliary input along with
the input signal. In order to calculate a difference signal, the
synapse strength connection two neurons should be adaptive
and continuously changing.

More stages can be added if further refinement of the recon-
struction is desired. Figure 2 gives a graphical demonstration
for the 2 stage version of the idea of creating multiple stages.

Adding more stages increases the quality of the reconstruc-
tion but at the same time it decreases the efficiency of the

signal »{input error)-»1nput error
Stage1 Stage? ,
(reconstruction) (reconstruction)#> -»reconstruction

Fig. 2. Expanding and improving the overall reconstruction with multiple
stages of residual representations .
A stage accepts a signal and calculates a reconstruction. The

reconstruction error can also be represented by spikes and
kernels. So, with multiple stages, it is possible to improve
overall reconstruction accuracy.

representation.

Although, currently, there does not exist any known method
of deriving the optimum set of kernels, tests show that some
sets of kernels perform better than others. And, with the help
of a greedy search a more efficient representation can be
achieved.

Regardless of the decided kernel length or the section
length, different set of kernels show different reconstruction
performances. Figure 3 shows the results of greedy algorithm
and random selection of kernels for each stage. A section
from the input signal is selected and the greedy algorithm
tries to find ”good” kernels for each stage by checking their
reconstruction performance for the section selected. Then,
these kernels are tested on other sections of the input signal.
The performance of the selected kernels is not as good as the
case when they are applied to the initially selected section.

20

15f

SNR(dB)

— selected kernels tested on seen data
— selected kernels tested on unseen data
—— random kernel tests
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Fig. 3. Reconstruction Errors at Different Stages
Each ’+’ sign represents a reconstruction test. Plot shows
that as the number of stages increases, signal to noise ratio
improves. Blue signs are for the test on unseen sections of
the input. Red signs represents tests related with the sections
which are chosen as reference for kernel selection. Green
signs represent tests with randomly chosen kernels.

Since, in order to find better kernels, the greedy algorithm
tests random kernels over and over again, it is expected that



more iterations of the algorithm will end up with better ker-
nels. Figure 4 gives an idea about how likely it is to get better
kernels with deeper searches. According to the tests, deep
searches which have more than 50 kernel replacements in the
group did not show significant improvement in reconstruction
performance.
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Fig. 4. The Effect of Search Depth on SNR
Each ’+’ sign represents a reconstruction test. Four different
search depths are compared. A search depth of 5 means that
the greedy search algorithm searched and replaced 5 kernels.
As expected, the more it runs the better kernels it finds. The
relative improvement decreases as the depth of search
increases. There isn’t much difference between a depth 20
search and a depth 40 search.

Tests were repeated 80 times for the section which is chosen
as a base for kernel selection. For these tests the average Signal
to Noise Ratio was slightly above 10dB. SNR for unseen
sections of the input was above 8dB. Perception of the quality
may not be entirely linked to the SNR of the coded signal but
it still gives an idea about the quality of the coded signal.
According a relevant study [1], a speech signal with SNR
greater than 10dB can be tolerated or understandable.

Although, each run of the greedy search algorithm creates
a different sets of kernels, seeing an actual reconstruction of
an input section together with some of the selected kernels
can still give some sensible information about the approach
introduced in this paper. Figure 5 displays the results of a
sample run. For this sample run, 3 neurons were selected
for each stage. At each stage, 3 kernels produced around 40
spikes in total. Although for a single section, the amount of
data needed for such representation seems high, same kernels
can be used for other sections and efficiency for the overall
representation decreases. Key frames or key sections can be
defined throughout the input and generalizing kernels based on
a single section can be relaxed to some extend. Kernels (Figure
6) shaped such that it looks impossible to parametrize them

and create a filter-bank in order to generate similar kernels.
Different from gamma-tone filters, chosen kernels have more
complex forms. With choosing kernels such, a more compact
but approximate representation of a signal is aimed.

~—_ _reconstruction_|
— input

7stage20”

Fig. 5. Reconstruction at Different Stages
Three stages (1, 6 and 20) selected in order to show how the
reconstruction improves. There isn’t much difference between
stage 6 and the stage 20. Sections where the amplitude is
relatively high can reach an adequate representation at early
stages due to the abondance of the spikes. For a different
section of the input this may not be the case.

Fig. 6. Kernels at Different Stages
Three stages (1, 6 and 20) selected in order to show how the
shapes of kernels used. They don’t have any predictable
shape or form.



VI. CONCLUSION

In this paper, a model aware approach of coding a con-
tinuous time signal with an ensemble spike trains has been
proposed. Spikes generated through a model is assumed to be a
representation of a signal. The definition of the model together
with the generated spikes define a coding of the signal. With
the approach presented in this paper, a representation of the
signal can be traced back to the signal itself as a reconstruction
by utilizing both the generated spikes and the definition of
the model which generates the spikes. A definition of the
reconstruction error based on the coding of the reconstruction
makes it possible to assess the relevance of model to the
objective of creating better reconstructions. Through such an
assessment procedure, suitable models for the objective in
question can be searched for. The approach has been tested
on voice data and promising results have been observed.
Successively expanding the representation of the input signal
by including the spike based coding of the reconstruction
error, made it possible to get a monotonic improvement on
the representation accuracy. This paper shows that with a
deterministic model, it is possible to get a reasonably good re-
construction of the input signal. It is pointed out that currently
there does not exist any proposed method of finding kernels
which give the best reconstruction performance with maximum
efficiency. Future research will be on predicting the shapes of
kernels by modifying the spike positions. Experiments, which
are at their early stages, show that it may be possible to
find kernels which consistently produce the spikes at certain
positions. Instead of randomly placing spikes and creating
random kernels, spikes can be placed at certain positions and
kernels can be aimed to represent sections of the input which
are expressed relatively poor. With any modification to kernel
finding process, the proposed idea of representing the signal
with spikes and kernels will still be valid and provide a basis
for future research.
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