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Abstract—We consider the problem of feedback control when
the controller is constructed solely of deterministic spiking
neurons. Although spiking neurons and networks have been the
subject of several previous studies, analysis has primarily been
restricted to a firing rate model. In contrast, we construct a
deterministic spiking neuron controller whose control output
is one or multiple sparse spike trains. We model the problem
formally as a hybrid dynamical system comprised of a closed
loop between a plant and a spiking neuron network controller.
The construction differs from classical controllers owing to the
fact that the control feedback to the plant is generated by
convolving the spike trains with a fixed kernel, resulting in a
highly constrained and stereotyped control signal. We derive
a novel synaptic weight update rule via which the spiking
neuron controller learns to hold process variables at desired set
points. We demonstrate the efficacy of the rule by applying it
to the classical problem of the cart-pole (inverted pendulum).
Experiments demonstrate that the proposed controller has a
larger region of stability as compared to the traditional PID
controller and its trajectories differ from those of the PID
controller.

I. INTRODUCTION

While there is considerable debate in the scientific commu-
nity regarding the cognitive capacity of various animal species,
there is general agreement that animals are exquisite control
systems. Whether it be the flight of a dragonfly or the walking
of a biped (such as a human), engineered systems pale in
comparison to the versatility and robustness displayed by their
animal counterparts. Even more intriguing is the fact that in
many instances the particular skill, locomotion for instance,
is learned. Our goal in this paper is to address this question
of learning to control in the context of biologically motivated
constraints—specifically, the fact that the constituent neurons
of animal brains communicate with one another using action
potentials (also known as spikes).

In the vast majority of biological systems, the control
signal received by the muscles are in the form of spike
trains generated by motor neurons. The controller itself is a
network of spiking neurons that resides upstream from the
motor neurons. The controller receives inputs, which in the
case of a feedback controller are process variables that are to
be maintained at fixed or dynamically varying set points. The
process variable input into the controller is in turn computed
elsewhere and incorporates the combined output of one or
more sensory systems.

To bring the problem of learning a spiking neuron network
controller into sharp relief, we abstract away all aspects of
the system that are of secondary concern and replace them
with simple, fixed, and predefined alternatives. In particular,
we model the entire process beginning at the spike train
output of the controller and culminating at the control signal
generated (such as the force exerted by the muscle) using
fixed convolution kernels. The impact of the control signal
on the organism in its environment, we model using a fixed
plant. Finally, we model the input of the process variables
as postsynaptic potential inputs into specifically identified
neurons of the controller. Our objective is to devise a formal
synaptic weight update rule that when applied to the neurons
of the controller, causes the controller to learn to perform the
control task.

That the above problem differs from those previously
studied in feedback control, can be discerned from the fol-
lowing observation. Traditional feedback controllers such as
the proportional-integral-derivative (PID) controller [1] or its
variants are designed to solve a control problem in the con-
tinuous domain with few restrictions. The process variable
is a bounded continuous function of time, and so is the
control signal generated by the controller; there is little else
that constrains these functions. In contrast, the control output
generated by the spiking neuron network controller is an
ensemble of spike trains. The spike trains when convolved
with the fixed convolution kernel referred to above, leads to a
highly restricted and stereotyped signal. In particular, it is easy
to observe that given a kernel, there exists a bound C' such that
any non-zero control signal f satisfies | f| oo > C—informally,
the controller has the choice between generating no output or
an output larger than a fixed strength. This has immediate
implications for the stability of the fixed point (determined by
the set point) of the combined (the controller and the plant
in closed loop) dynamical system; the process variable can at
best be made to oscillate around the set point.

The overall goal of the paper is to demonstrate that deter-
ministic spiking neuron based controllers can be learned, and
not to characterize a pre-given spike based controller. To our
knowledge, this is the first deterministic spike based controller
that has been demonstrated to learn a classical task. The
controller does operate very much like a bang bang controller,
and it has learned to operate that way. This work is a first
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Fig. 1. The hybrid dynamical system that models the control problem. For more details, refer to the text. (a) Plant. The cart-pole plant has a state that can be
changed by an external force. The state is described by the vertical angle 6 and the angular velocity 6. The cart can only move left or right. For more details,
refer to Section III. (b) Controller. The proposed spiking neuron controller is a feedforward neuron network that takes the plant state as input and produces
an output force to control the plant. The synaptic update rules are set such that the weights on the synapses receiving the continuous process variable inputs
change only when there are spikes generated by the “output neurons” of the controller. This is indicated by the vertical dotted lines. Perturbing the synaptic
weights perturb the output spikes of the network in time (dotted arrows), which when convolved with the kernel creates a perturbation in the control signal.
The control signal is optimized based on an error function that embodies the deviation of the process signal from its set point. (c) Models. We present two
models, Model 1 and Model 2, based on the number of output neurons of the controller and their corresponding force magnitude. A circle indicates an output
neuron of the proposed controller shown in (b). The vertical arrow stemming from a circle denotes a force produced by the neuron with its length representing
the force magnitude. The longer the length, the larger the force magnitude. Model 1 has two output neurons to generate a force in the left direction (left force)
and a force in the right direction (right force) with both forces having the same magnitude. Model 2 has 4 or more output neurons with half contributing
to the left force and half right force, with forces having different magnitudes. In both models, the number of output neurons and the force magnitudes are
symmetric for the left and right. The final output force that would be applied to the plant is shown at the top. It is generated by summing up the left and

right forces. Note that the left force has a positive sign and the right force has a negative sign.

step toward control of more complex dynamical systems such
as winged flight or bipedal walking.

Our objective is described schematically in Figure 1. We
consider a hybrid dynamical system constructed out of a closed
loop between a plant (we consider the classical problem of
the inverted pendulum in this paper as described in Section
III, but this could be replaced with any well defined plant),
and a network of spiking neurons that models the controller.
In the figure, the black vertical bars indicate the weights on
spikes. That is, we virtually assign weights to spikes (denoted
by the height of the bars) instead of the corresponding synapse.
The conceptual underpinnings of this are described in section
IV. The vertical double-headed arrows next to the black bars
denote the perturbation of the corresponding weights. The four
dashed arrows beginning at the second vertical lines from t =
T (Past) denote the impact of the weight perturbations on the
subsequent future spike times. We present two models, Model
1 and Model 2, based on the number of output neurons of the
controller and their corresponding force magnitudes. Model 1
is defined as a network with two output neurons (for left and
right directions) with the same force magnitude, and Model
2 is defined as a network with four or more output neurons
(two or more left and two or more right) with distinct force
magnitudes. The goal is to incrementally update the synaptic
weights on the neurons of the network such that the network’s
output spike trains when convolved with the force kernel
causes the process variables of the plant to deviate as little
as possible from predefined set points. The process variables
are in turn input into the spiking neuron network controller as
postsynaptic potentials.

Our approach is based on the observation that if (a) synaptic
weights are only updated at the times that the network gener-

ates spikes, and (b) one analyzes the past times at which the
network generated spikes, one can then perform a perturbation
analysis that would recommend a superior set of weights in
the past. Since we can not reach into the past to change
synaptic weights, the current synaptic weights of the network
are updated to reflect these improvements. The synaptic update
rule is used to train the network from randomly generated
initial conditions of the plant in an online manner until
failure. At failure, the plant is reinitialized to a different initial
condition and the learning process continues.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the neuron model. Section 3 briefly describes
the plant used in this paper, as well as the process variables and
their corresponding set points. Section 4 comprises the core
of our contribution where the synaptic weight update rule is
derived. Section 5 describes experimental results from several
variations of the controller, and Sections 6 and 7 present
related work and conclusions.

II. NEURON MODEL

We use a minor variation of the Spike Response Model
(SRM) [2] for the neurons in our controller. The neuron re-
ceives continuous time process variable inputs at its synapses.
Although our analysis seamlessly generalizes to postsynap-
tic potentials generated from afferent (incoming) spikes at
synapses, we do not consider that here. The membrane po-
tential at the soma of the neuron is the synaptically weighted
sum of postsynaptic potentials (PSPs) generated by the current
values of the process variables and afterhyperpolarizing poten-
tials (AHPs) generated by the efferent (outgoing) spikes that
have departed the soma of the neuron. The neuron generates
a spike when the membrane potential crosses the threshold ©



from below. Formally, the membrane potential of a neuron at
the current time is given by

P(t) = w; zi(t) + Y n(tg). (1)
i€l keF

where T is the set of synapses, w; is the weight of synapse ¢,
x;(t) is the continuous process variable input signal at synapse
7, and t = 0 is the current time (with positive ¢ indicating
past). Similarly, n is the prototypical after-hyperpolarizing
potential (AHP) elicited by an efferent spike of the neuron,
tko is the elapsed time since the departure of the k" most
recent efferent spike, and F is the set of past efferent spikes
of the neuron. We assume in addition that all efferent spikes
that were generated earlier than ¢t = Y in the past have no
effect on the present membrane potential of the neuron (See
Figure 1). The functional form of the AHP of a spike that
we have used (and this can be modified without affecting the
analysis) is

n(t) = Re™"7 for 0 <t<7T andO otherwise (2)

where R denotes the instantaneous fall in potential after a
spike and ~y controls its rate of recovery.

ITII. PLANT

The plant we consider in this paper is the classical control
problem of the cart-pole (also known as the inverted pendu-
lum). The cart-pole comprises of an inverted rigid pendulum,
with the mass at the top. The pendulum is fulcrumed at its
base to the cart which rests on a frictionless surface. Force
can be applied to the cart to move it along the horizontal
axis. The control problem is to apply forces to the cart to
maintain the upright position of the pendulum. The process
variables that we have considered in this paper are: 6, the
angular deviation of the pendulum from the upright position,
and 6, the angular velocity of the pendulum. The set points
for the process variables are 6 = 0,6 = 0. The details of the
system dynamics can be found in [3]. All quantities of interest
as presented in the next section, we have derived through
numerical computations.

IV. FEEDBACK CONTROL USING SPIKING NEURONS

As described above, the desired state of the plant is to
maintain a zero vertical angle and a zero angular velocity of
the inverted pendulum. These process variables are input into
different synapses of the controller neurons in the following
form: the angles 6, and —0, and the angular velocities 9, and
—6. As described in Section 5, we have experimented both
with the case where 6 is a process variable to be controlled
at the set point 0, and the case where it is not. The control
signal output of a neuron is generated by convolving the output
spike trains of the neurons with a fixed force kernel (t) as
defined in the next section. Even number of neurons are used
to generate forces, the first set generating forces to the right
and the second set to the left. We analyze the general case
of multiple neurons with different «(¢) force kernels coming
together to constitute the final control signal.

A. The Error Function

The proposed spiking neuron based controller depicted in
Fig 1 can be formally modeled as follows. Consider a plant
with process variables represented by vector (z1(0), z2(0),
..., p(0)), where D is the number of process variables to be
controlled. The desired state of the plant (i.e., the set point
of the process variables) is represented by (z7(0), 5(0), ...,
23(0)). The error E can then be defined by 1 le:l(xi(O) -

*

x}(0)2. The synaptic update rule that we derive next is based
on minimizing this objective using gradient descent, which in
the case of the full set of process variables and assuming set

points of 0, reduces to:

B =5 @) @)
i=1

A traditional controller receives continuous time process
signals from the plant and generates a continuous time control
output. The proposed controller, however, generates spike
trains, one for each neuron, instead of a continuous output.
The spike train output of each neuron j is then convolved

with the kernel

K(t) = te /s “)
to generate a force:
Fy=p; Yy (1)) )
ief]‘

where 7; is the time constant, y; is the magnitude assigned to
neuron j, J t? is the time elapsed since the generation of the
i*" most recent efferent spike of the output neuron j, and F;
is the set of past spikes of output neuron j. The final force F'
applied to the plant is

F=>) +F, (6)
J

where £ represents the direction of F}, + for neurons that
push to the right and — for those that push to the left.

B. Gradients of the Error function

Our overall objective is to compute the gradient of the error
with respect to the synaptic weights on the controller neurons.
We do this in stages. We first compute the gradient with respect
to the output spike times of the controller neurons. Applying
chain rule, we then have

OFE  OFE OF
o(t7) ~ OF 90tD)
where 7 tlo is the time elapsed since the departure of the
most recent efferent (outgoing) spike of neuron j, and
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OF  OF OF, Os(t0) ok o)
a(t9) ~ OF; or(it?) 0(t9) 1t Lo

In Eq (8), 2%

5F is drawn as a numerical derivative from the
plant:

Ox; ~ Az,




C. Perturbation analysis

Our goal now is to determine how perturbations in synaptic
weights of the controller neurons translate to perturbations
in the times of their output spikes. We achieve this by first
assuming that synaptic weights are only perturbed at the times
of the output spikes (see Figure 1). Consider the state of a
neuron at the time of the generation of output spike ¢{. The
membrane potential of the neuron before perturbations of the
weights on the input signals is given by

O = wii(t?) + > n(tg —t7)

el keF

(10)

where I is the set of synapses of the neuron and w;; is the
weight of synapse ¢ immediately prior to output spike . Note
that we have replaced © with © to account for those output
spikes that at the time of the generation of tlo were less than
T old, but are now past that bound. If the synaptic weights
were perturbed, this would cause the output spike tlo to be
correspondingly perturbed according to

O = (wiy + Aw;)a; (tf + AtP) (11)
i€l
+ >t =t + At — AtP). (12)
kEF
Using a first order Taylor approximation, we get
6= Z(w” + Aw; ) xi(tlo) + Oz At? 13)
; ’ ’ ot e
el
+> 0 (g — 1) +@ (A2 — AtP) ). (14)
= ot 1(t9-12)

Combining Eq (10) and (13), dropping higher order terms and
rearranging, we get

ZAw,m tl —|—Z N

O
k

(t() tO)

Atlo _ i€l keF an (15)
zezrw” ot Z Ot 1(t9—19)

We can now derive the final set of quantities of interest
from Eq (15). If we perturb the weight w; ;, there will only be
a direct effect of the perturbation since w;; does not impact
spikes prior to t{. Therefore, we have

o9 z;(t0)

dwi, d
o Zw”at za?

i€l
If instead, we perturb w; , where p > [ (so that t§ > t),
there will only be an indirect effect of the perturbation through

(16)

(tQ—t2)

previously generated spikes. Therefore, for p > [ we have the
recursion

S
oto o Ot —) Owiyp an
6wi7p Ox; @
Zw” t0 Z ot (t0—t9)
i€l EF

D. Learning rules

Learning is accomplished via gradient descent. The learning
rule is a type of Spike Timing-Dependent Plasticity (STDP)
[4]; the weight updates depend on spike times. The reason that
the weights should be updated only when there are spikes is
as follows. If there are no spikes generated, the pole is in a
safe kinematic range and thus no control signal is necessary.
This, in turn, indicates no need to update the weights. The
weight updates are not independent. They get related to each
other due to the common error functional on which gradient
descent is performed. Applying chain rule, we get

orE Z oF 8to
ow; 8150 ow; p
This is computed using Eq 7, 16, and 17. The weight modifi-
cation rule for synapse ¢ at t;? is defined as

oF
3w1v,p

(18)

(19)

Wip = Wip —

where « is the learning rate. Clearly we can not reach into the
past to make these changes. We therefore institute a summed
delayed update to the synapse at the current time.

Wy — w; — Zoz

U)
peF Lp

OFE

(20)

The weight update is performed immediately after the
generation of a spike by any of the output neurons. This way
we are guaranteed that the weights on the synapses remain
constant between any two successive spikes (on any neurons).

V. EXPERIMENTS
A. Setup

To demonstrate the efficacy of the proposed controller, we
performed multiple simulations. For these simulations, we
defined a successful learning event of the controller as having
balanced the pole without failure for one hour of simulation
time. A failure was defined as an event where the process
variables of the pole was not within a certain predefined range.
For example, given the 1ms time step, the number of steps
for a successful run was 3600000 (1 hour). The predefined
range was [-0.2094, 0.2094] for 6 and [-2.01, 2.01] for 0.
Training of the controller was continued until success. During
the training phase, the controller learned by changing the
synaptic weights. Once it had successfully learned the task,
we fixed the weights and tested the controller with random
initial plant states to evaluate its robustness. If the pole fell
before training succeeded, we restarted training with random
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Fig. 2. Snapshots of the plant state (top) and spike trains of the controller (bottom) for Model 1 with two output neurons before and after training. In all
top figures, the blue dotted line is the vertical angle 6, the green dash-dot is the angular velocity 6, the cyan dashed line is the error function E, and the red
solid line is the force applied to the plant. (a) Before training, the synaptic weights are randomly chosen and fixed (no updates). As expected, the pole falls
down quickly as the controller did not learn how to stabilize the plant. The spike train exhibits no particular pattern. The final force applied to the plant is
scaled down 10 fold (x0.1) of the actual values for improved visualization. (b) After training, the controller stabilizes the plant within a short amount of time
(1000 ms). The spike trains are a bit dense but exhibit some patterns. The final force applied to the plant is scaled down 10 fold (x0.1) of the actual values
for improved visualization. (c) In the stable state, the pole oscillates around the set point (0, 0) and the error function E is also at around 0. The trained
controller behaves like a bang-bang controller. This results from the patterns of the output spike trains. After one neuron fires three times, the other neuron
also fires three times, then the first neuron fires again, and so on. Compared to the start condition, the spike trains are sparse. The final force applied to the
plant is scaled down 100 fold (x0.01) of the actual values for improved visualization. It can be seen that the patterns of the spike trains are different in the
start condition from those in the stable state. In the start condition, one output neuron generates spikes continuously while the other does intermittently. This
is because the controller attempts to repeatedly push the plant in one direction. In the stable state, however, both neurons produce spikes alternately.
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Fig. 3. Trajectories and coverages of Model 1 with two output neurons. (a) Trajectories of the plant state (6, ) for Model 1 after training and the PID
controller over time with different initial settings. The trajectories start at two points (-0.15, 1.4) and (-1.5, 1.5). They are chosen to compare the performance
of Model 1 against the PID controller. The blue solid line shows the trajectory of the plant state for Model 1 with the initial plant state (-0.15, 1.4). The green
dotted line shows the trajectory of the plant state for the PID controller with the same initial state. While the plant for Model 1 eventually settles down, its
trajectory is different from that of the PID controller. This demonstrates the fact that the proposed controller behaves differently suggesting a novel control
mechanism. The red dashed line represents the trajectory of the plant state for Model 1 with the initial state (-1.5, 1.5). The cyan dash-dot is the trajectory
for the PID controller with the same initial state. While Model 1 succeeds, the PID controller fails. (b) Trajectories in (a) zoomed in around the set point (0,
0). The plant for Model 1 oscillates between (0, -0.02) and (0, 0.02) in the stable condition. (c) Coverage of initial states (6, ) with Model 1 controller. A
green circle indicates a success while a red "x’ mark indicates a failure for the corresponding initial state. (d) Coverage of PID controller. The number of
dots covered (green circle) is 36 for Model 1 controller and 32 for the PID controller. The proposed controller covers a larger area than the PID controller.

initial weights since the same weights would yield the same
results of the failed run.

The plant was configured as: half-pole length [ = 0.5
(m), pole mass m = 0.1 (kg), cart mass M = 1.0 (kg),
and gravity g = 9.8 (m/s?) . The configuration for the
controller was: time step = Ims, threshold = 0.0, 7y = 20
(ms), R = —1000, v = 1.2, and « = 0.01 . The unit of R
is the same as that of the membrane potential. The magnitude
of R was set large to prevent a spike from being generated
within 4-5 msec after a spike was generated by bringing down
the membrane potential dramatically. We measured the firing
rates of the output neurons in Hz (number of spikes per

second). Specifically, the firing rate of a neuron is the total
number of spikes generated by the neuron divided by the total
running time of the simulation. In all the experiments, the
same PID controller was used and its parameters were Kp =
20, K1 =0.01, and Kp = 1.

B. Results

We start by describing a model that successfully learned the
control response. Not surprisingly, when 6 as a state variable to
control was removed, the controller failed to learn regardless
of whether the controller was based on Model 1 or Model 2.
To elaborate, although the controller was able to hold the pole
upright for a short period in the training stage, it failed to hold
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Fig. 4. Snapshots of the plant state (top) and the output spike trains of the controller (bottom) in the start and stable condition for Model 2 with 4, 6, and 8
output neurons after training. In the top figures, the blue dotted line and the green dash-dot represent the vertical angle 6 and angular velocity 6 of the pole
in radian (°), respectively. The red solid line is the force applied to the cart and the cyan dashed line is the error function E. Note that the force applied to
the plant is scaled down 100 fold (x0.01) of the actual values for improved visualization. For each spike trains snapshot, the force magnitude assigned to
each output neuron is symmetric: big to small and small to big. (a), (b) 4 output neurons. For the spike trains snapshot, the force magnitude assigned to each
output neuron is 1000, 500, 500, and 1000 from top to bottom. (c), (d) 6 output neurons. The force magnitude assigned to each output neuron is 300, 200,
100, 100, 200, and 300 from top to bottom. (e), (f) 8 output neurons. The force magnitude assigned to each output neuron is 250, 200, 150, 100, 100, 150,
200, and 250 from top to bottom.
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Fig. 5. Stability coverages of the initial states (6, 8) of Model 2 controllers. The PID coverage is reproduced from Fig. 3d for convenient visual comparison.
A green circle indicates a success while a red ’x’ indicates a failure for the corresponding initial state. The 6 neuron controller covers a larger region than the
4 neuron controller, and the 8 covers a larger region than the 6. This implies that controllers with more neurons are more robust. When compared to the PID
controller, the proposed controller covers more in general. Especially 6 and 8 neurons cover the whole region of that of the PID. This indicates the proposed

controller has better control capability than the traditional PID controller.

the pole upright for 1 hour. Surprisingly, the controller with
either model worked once we added 6. In what follows, we
discuss the experimental results for each model.

1) Model 1: Fig. 2 shows snapshots of the plant state
(top) and the spike trains of the output neurons (bottom) of
the proposed controller with 2 output neurons before and
after training. The controller received 4 continuous inputs
4, -0, 9, —6) from the plant and produced output spike trains
at the two output neurons. The output spike trains correspond
to the left direction force and right direction force, respectively.
In the top panels, the blue dotted line and the green dash-dot
represent the time evolution of the vertical angle 6 and angular
velocity 0 of the pole in radian (°) and rad/sec, respectively.
The red solid line is the force applied to the cart and the
cyan dashed line is the error F. The force magnitude assigned
to each output neuron was 100. The average firing rates of
the output neurons were 33.94Hz and 34Hz. Fig. 2a shows
a snapshot before training where the synaptic weights were
randomly chosen and not updated. As shown in the top panel,
the pole fell down shortly after the start of the simulation as
the controller was untuned. This is further obvious from the
bottom panel where the spike trains were randomly generated
regardless of the state of the plant. After training, the pole
successfully stood upright for 1 hour. The trained controller
was tested on random initial conditions. Fig. 2b shows the start
condition in the testing phase to demonstrate how the proposed
controller behaved in controlling the plant initially. Fig. 2c
shows the stable state after a while. From the figures, it can be
seen that the patterns of the spike trains are different in the start
condition versus the stable state. In the start condition, one
output neuron generates spikes continuously while the other
does intermittently. This is because the controller attempts
to repeatedly push the plant in one direction. In the stable
state, however, both neurons produce spikes alternately. Fig. 3
shows the trajectories of the plant state (6, 6) over time with
two different initial settings. Further testing was performed
over several initial states to determine the robustness and the
coverage over initial states for the proposed controller with
Model 1 as compared to the PID controller. In Fig. 3a, we

can observe that the trajectory of the proposed controller is
different from that of the PID controller. This implies that our
controller behaves in a different manner in order to control the
plant suggesting a novel control mechanism. Fig. 3b shows the
trajectories in Fig. 3a zoomed in around the set point (0, 0) for
better visualization. Fig. 3c and Fig. 3d show the coverages
of stability for Model 1 and the PID controller, respectively.
Although they do not exclusively include each other, Model
1’s coverage is larger than the PID. For example, the initial
state (-0.2, 1.5) covered by Model 1 is not covered by the PID
controller.

2) Model 2: We performed the same learning experiments
above for 4, 6, and 8 output neurons with successively larger
force kernels. In this case, the force magnitude assigned to
each output neuron was symmetric: pairs of equal magnitude
for the left and right force. For 4 output neurons, the force
magnitude assigned to each output neuron was 1000, 500, 500,
and 1000. For 6 output neurons, it was 300, 200, 100, 100,
200, and 300. For 8 output neurons, it was 250, 200, 150, 100,
100, 150, 200, and 250. Fig. 4 shows snapshots of the plant
and the controller. It shows the start and stable conditions
after training. As shown in the figure, Model 2 controllers
achieved the objective of stabilizing the plant. As in the case
of Model 1, the spike trains exhibit regular patterns; neurons
fired alternately periodically. In general, the spike train in the
stable state was sparser than that in the start condition. It can
be observed that there are unnecessary spikes in the stable
state. To elaborate, since we have neurons generating large as
well as small forces, we need only the small force neurons
to fire in the stable state. This can be mitigated by adding
communication between output neurons so that they are aware
of one another’s spike trains. Fig. 5 shows the coverages of
initial conditions that are controlled. As shown in the figures,
the stability coverage increases with the number of neurons
in the controller. 4 has a larger region than 2, 6 has a larger
region than 4, etc. Fig. 5d is reproduced from Fig. 3d to ease
visual comparison with Model 2’s coverage. It is clear that
Model 2 covers a much wider area than the PID. It should be
noted that the coverage of 6 or 8 neurons subsumes the entire



PID area. This suggests that the proposed controller is more
robust than the traditional PID controller.

VI. RELATED WORK

Neural networks have been the tool of choice for solving
various problems since Rumelhart et al. introduced the gradi-
ent descent based error backpropagation algorithm [5]. Similar
algorithms have also been used for spiking neural networks
[6], [7]. [8] introduced SpikeProp to solve the XOR problem
by applying the error backpropagation algorithm to spiking
neuron networks based on temporal coding or spike timing
based coding [9]. Their supervised learning rule generates a
desired pattern of spikes with the constraint that each output
neuron be allowed to fire only once in a prescribed time
window. [10] extended this rule to multiple output spikes,
albeit with the first output spike used in the error function.
[11] presented a spiking neural network based controller to
regulate a robot’s arms with 4-degrees of freedom. The neuron
model they used is the Izhikevich model [12] and the learning
algorithm is Spike Timing-Dependent Plasticity (STDP) [4].
Their controller shows high firing rates due to rate-based
coding.

Recently, Gerstner et al. [13], [14] studied control problems
for motor systems using reinforcement learning. They used the
actor-critic model [3], [15] to train the networks. [16] studied
the perturbation analysis [17] to reveal how perturbations in
the weights and times of the input spikes of a neuron translate
to perturbations in the timing of its output spikes. Although our
proposed controller can be described to be most similar to [16]
and [8], unlike these, ours does not require the prescription
of the desired spike train and the input to the network is
continuous.

VII. CONCLUSION

We have proposed a spiking neuron network controller and
have applied it to the classical cart-pole control problem to
demonstrate its efficacy. The derivation presented is general
and can be applied to any feedforward network. The primary
advantage of our controller is that it has a larger region
of stability as compared to the traditional PID controller.
Furthermore, our controller behaves in a manner different
from the traditional PID controller. As demonstrated in our
experiments, the proposed controller succeeds in several ini-
tial conditions where the PID controller fails. The proposed
controller produced different trajectories than that of the PID
controller. We presented two controller models with different
output neuron settings: two output neurons with the same force
magnitude (Model 1) and 4 or more neurons with different
force magnitude kernels (Model 2). From the experiments,
we observe that more neurons with diverse force magnitudes
can learn larger ranges and are thus more flexible and robust.
In particular, the 6 or 8 output neuron controller performs
substantially better than the PID controller. In future work, we
plan to add a kernel for filtering the inputs and shall consider
other control costs. The former can readily be added to the
current controller keeping the derivation the same. The latter

requires using a more general error function that included the
number of control spikes and other output statistics. One of
the issues in Model 2 is that some spikes are produced re-
dundantly. We can mitigate this by adding recurrent inhibitory
connections among the output neurons. This will lead to sparse
spike trains which is more natural in biological systems as they
signify higher energy efficiency. Finally, we plan to extend our
controller to apply to the locomotion of a fish with 3 or more
degrees of freedom which is a more realistic and complex
control problem than the cart-pole.
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