
Inductive Learning of Feature-Tracking Rules for Scientific
Visualization

Arunava Banerjee Haym Hirsh Thomas Ellman
Department of Computer Science

Hill Center for the Mathematical Sciences
Busch Campus

Rutgers, The State University of New Jersey
Piscataway, New Jersey 08855

farunava,hirsh,ellmang@cs.rutgers.edu

Abstract

Numerical simulation and scientific visualization are often used by scientists to help them under-
stand physical phenomena. One approach taken by some visualization systems is to identify and
quantify coherent features in a simulation and track their trajectories as they evolve over time. Such
feature-tracking systems operate either by relying on manual (human) efforts, or by utilizing ad hoc
programs embodying heuristics that are computationally expensive to use. Our research demon-
strates the use of inductive learning to construct feature-tracking programs for fluid flows. Our ap-
proach uses manually generated feature trajectories as training data, and applies inductive learning
to construct feature-tracking rules that can then be incorporated into a feature-tracking program.
This results in a more efficient system that can match up objects across large time steps without
inspecting intermediate steps. We demonstrate our approach on the problem of tracking vortices in
turbulent viscous fluids.

Keywords: mechanical engineering, scientific visualization, decision tree induction.

1 Introduction

Continuing advancement in the power and speed of computers have opened up new opportunities
in a wide range of engineering tasks. One example is the use of a combination of computer simu-
lation and scientific visualization to help engineers better understand various physical phenomena.
It is often the case that the mathematical models underlying such phenomena are too difficult to
understand analytically, so numerical simulations of the mathematical models are studied instead.
Unfortunately, such simulations typically generate datasets at too detailed a level to be understand-
able by humans, and thus humans rely on visualization tools that depict such datasets in helpful
visual forms.

One important task often faced in such work is the need to track the trajectory of objects in a
simulation as they evolve over time. For example, it might be necessary to follow the movements
of clouds in meteorological data, bubbles in fluids, fissures in land masses, and more generally the



progress of coherent objects in many other forms of simulation data. Unfortunately, object tracking
tends to be a job either done manually, or via ad hoc programs embodying simple heuristics that
can be computationally costly to use. For example, to match up objects at the start and finish of a
simulation, typical feature-tracking programs track objects through intermediate time steps of the
simulation, a process that can be quite costly since just the loading of datasets from disks is a time-
consuming task.1

The goal of this work is to use inductive learning methods on examples of tracked objects to learn
accurate and tractable feature-tracking rules. Our approach is to generate a collection of examples
of pairs of objects in different time steps, each pair labeled by whether or not they correspond to
the same object. We use inductive learning to form a classifier that takes as input the description of
two objects in different time steps and predicts whether or not they correspond to the same object.
This classifier is then used to track objects by comparing an object in one time step to all objects in
the later time step to see which match up according to the learned classifier.

Our inductive learning approach can be used to construct a new feature tracking program, where
none previously exists. It can also be used to improve the performance of an existing, heuristic
feature-tracking program. In the first case, we use a human as the “gold standard” for learning:
Given new simulation data without an appropriate tracking program, we rely on a human to label
pairs of objects in different time steps of the initial portion of the simulation, according to whether
or not they refer to the same object. Inductive learning generates tracking rules that can then be
used for the remainder of the simulation. Our system thus uses learning to “bootstrap” the human
analysis of the initial portion of the simulation into an automatic analysis of the remainder. In the
second case, we use the existing tracking program as the “gold standard” for learning: The exist-
ing program is used to track objects incrementally over a long period of time, and to label pairs of
objects in widely separated time steps as to whether they are the same object. Inductive learning
generates rules that decide whether objects match, without looking at intervening time steps. Our
system thus uses learning to “compile” the results of the existing feature-tracking program into a
more efficient form.

We have applied our approach to the problem of learning rules for tracking vortices in turbulent
viscous fluids. We begin with a description of this domain and the existing approach to tracking
vortices. We then give details and an evaluation of our application of inductive learning in this
domain. We conclude with a summary and discussion of future work.

2 Tracking Vortices in Turbulent Viscous Fluids

The goal of computational fluid dynamics (CFD) is to gain a better understanding of the dynamics
of fluids through the use of computer simulations [5, 2, 7, 8]. Scientists can, in principle, gain an
understanding of all such phenomena by conducting numerical simulations of the Navier-Stokes
equations that govern the dynamics of fluids. Shifting from an understanding of the dynamics of

1In this paper we use the term “feature” to refer to coherent objects in a simulation, to be consistent with its use in
the scientific visualization literature. It should not be confused with the use of the term “feature” in machine learning
— we use the term “attribute” in such cases instead.



fluid particles at this low level to a comprehension of the global behavior of fluid masses under
variable conditions has, however, proven to be a difficult task.

Scientists have begun using visualization tools to enhance their understanding of turbulence phe-
nomena [3, 4, 1, 6, 11]. First, the temporal behavior of all particles in a mass of fluid under turbulent
conditions is simulated using the Navier-Stokes equations. The fluid mass is then segmented into
regions based on computed characteristics of constituent particles. These regions can be measured,
displayed and tracked over time, enabling scientists to observe how these segmented regions evolve.

One category of abstract objects studied in CFD are vortices. A vortex is a closed region, every
element of which has a vorticity larger than a specific threshold. The region corresponding to a
specific vortex is computed by first calculating the vorticity vector field, which corresponds to the
curl of the velocity vector field (defined by the trajectories of the fluid elements), and subsequently
segmenting the complete space into closed regions, using a threshold operator on the magnitude
of the vorticity field. Figure 1 depicts vortices that result from performing such operations on a
specific case of a turbulent fluid medium.

Figure 1: A snapshot of vortices in a turbulent fluid medium.

Tracking a vortex through time in a three-dimensional fluid space is a very difficult task. Not
only can vortices change shape very rapidly, they can split into multiple vortices, merge with other
vortices, come into existence quite unexpectedly, and cease to exist in a similar fashion. Vortices



are, however, known not to translate very rapidly through space. Most tracking programs in this do-
main therefore use physical proximity as a cue to track objects. The tracking program on which our
work is based matches up objects in one time step with objects in the next time step in the following
fashion.

� Object O in one time step has split into objects O1; : : : ; On in the next time step if each of
O1; : : : ; On are close to the location of O as well as to one another and the sum of the volumes
of O1; : : : ; On

is close to the volume of O.

� Objects O1; : : : ; On in one time step have merged into object O in the next time step if each of
O1; : : : ; On are close to the location of O as well as to one another and the sum of the volumes
of O1; : : : ; On is close to the volume of O.

Objects in one time step that are not matched up with objects in the next time step are labeled as
disappearing at the given time step, and objects in the second time step that do not match up with
objects in the preceding time step are labeled as emerging at the given time step. Note that the
tracking program matches objects in consecutive time steps only with respect to their positions and
volumes. Moreover, notions such as “close” are defined by the tracking-system creators in an ad
hoc fashion to yield suitable tracking results on the given simulation.

3 Learning Feature-Tracking Rules

The preceding feature-tracking method exploits the fact that objects do not move very far in con-
secutive time steps. The use of this tracking program is therefore only appropriate when tracking is
done over small time steps. The accuracy of feature-tracking degenerates as the length of the time
step is increased. In order to determine whether an object at a specific time corresponds to another
at a later time, where the time elapsed is large, the tracking program has to track the object incre-
mentally through intermediate time frames. The time complexity of tracking objects across large
time gaps is therefore very large.

To explore our method for learning feature-tracking rules, we applied it to learn rules for tracking
objects across distant time steps without inspecting intermediate time steps. Vortices are defined as
an ordered set of attributes representing

� the total volume of the vortex,

� the total mass of the vortex, defined as the summation of local vorticities over the complete
volume of the vortex,

� the position of the centroid of the vortex defined with respect to a fixed set of co-ordinate
axes, and

� the six second order moments of inertia of the vortex, defined with respect to the same set of
co-ordinate axes.

Our training data consisted of descriptions of pairs of objects labeled by whether they correspond
to the same entity. The set of attributes describing the pair of objects fall into five categories, those
describing



� the vortex in the first time step,

� the environment of that vortex in its time step,

� the vortex in the second time step,

� the environment of the second vortex in its time step, and

� other global properties.

The attributes used to describe a vortex were its volume plus all of its second order moments. The
attributes describing the position of the vortex were discarded because the vortices were noted to
move large distances over the intervals of time across which they were matched. The attribute rep-
resenting the mass of the vortex was also discarded because it yielded inferior results. The environ-
ment of a vortex was described by the volumes and the distances of five closest vortices. The global
properties consisted of the time gap between the two time frames, the euclidean distance between
the centroids of the two vortices, and the difference between the volumes of the two vortices. In
all there were forty attributes. The concept classes were defined as a “1” if the two vortices were
related to each other or as a “0” if not. Here, two vortices are said to be related to each other if
the vortex further on in time was a result of any number of merges and splits that involved the first
vortex.

The simulation dataset on which we conducted our experiments has 240 time frames, each frame
containing about 10 large vortices and about 90 other smaller vortices. To mimic the situation where
a human labels some initial portion of a simulation, and learning is used to form a tracking program
for the remainder of the simulation, we partitioned the dataset into two groups of 120 time frames
each. Training data was generated from the initial 120 time steps and testing data was generated
from the disjoint second set of 120 time steps. Examples were created by choosing two time steps
and one object from each of the time steps. The examples were represented using the 40 attributes
described above, and labeled by whether or not the two vortices were related to each other. (Note
that this process generates O(n2) examples from class “0” for every O(n) examples from class “1”,
where n denotes the average number of vortices in a time step.) Since many learning methods per-
form poorly when examples are not distributed evenly among the concept classes, the set of ex-
amples generated was randomly re-sampled to obtain a set that was balanced with respect to the
frequency of objects from both classes. 96,472 examples were generated for the resulting training
set, and 54,841 for the test set.

Comparative studies [9, 12] have shown that, during training, decision tree algorithms run sig-
nificantly faster than connectionist methods. Since one of our objectives was to reduce the time
complexity for tracking, we chose C4.5 (version 6) [10] as our learning method. We ran three ran-
dom trials of C4.5 with windowing turned on. Error rates were computed as the ratio of the number
of misclassified pairs to the total number of pairs representing a given time gap. Figure 2 presents
the results for the best of the three trials (all three trials had very similar outcomes, generating trees
containing 239, 245 (for the best tree), and 261 nodes). Error rates are plotted as a function of the
number of time steps that the two objects being matched are apart. Recall that data is labeled by



the tracking program applied through all intermediate time steps. The results of learning are rep-
resented by the dashed curve. As a baseline, the solid curve presents the error rate of the tracking
program when applied directly to the objects in the two time steps, without it tracking through inter-
mediate time steps. These results show that learning from an initial portion of the simulation yields
fairly accurate tracking for the later portions of the simulation that was not used in training. It also
shows that learning compiles the results of tracking across intermediate steps to yield results supe-
rior to direct application of the tracking program when the gap between time steps is sufficiently
large.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

P
er

ce
nt

ag
e 

E
rr

or

Time Gap

Tracking Program
Decision Tree Method

Figure 2: Training on initial 120 times steps and testing on subsequent 120 time steps.

We were surprised to discover that the accuracy of our rules improves as the distance between
time steps increases - only later beginning to degenerate in quality. One possible explanation for
this is that learning will only perform well if the general characteristics of two objects some distance
apart in the training data are similar to the general characteristics of two objects the same distance
apart in the testing data. If not, the classifier learned for objects a given distance apart in the train-
ing data would not predict as well on testing data an equal distance apart. If this explanation were
correct, one would expect that the descriptions of objects in the training data that are between 40
and 100 time steps apart are similar to those objects in the testing data that are comparable distances
apart. This would mean that switching the training and test sets — training on data generated from
the second 120 time steps and testing on data from the first 120 time steps — should yield compa-
rable results, with best performance for objects between 40 and 100 time steps apart. The results
of this experiment are shown in Figure 3, and are consistent with this explanation.



0

10

20

30

40

50

60

0 20 40 60 80 100 120

P
er

ce
nt

ag
e 

E
rr

or

Time Gap

Tracking Program
Decision Tree Method

Figure 3: Testing on initial 120 times steps after training on second 120 time steps.

4 Concluding Remarks

This paper has described the application of inductive learning to learning feature-tracking rules for
vortices in turbulent viscous fluids. This approach can be used to bootstrap off human tracking ef-
forts to generate tracking programs for an entire simulation (simulated here by training on an initial
portion of a simulation and testing on the remaining portion). It can also be used to compile the re-
sults of feature-tracking across intermediate time steps to enable feature tracking of objects across
distant time steps without inspecting intermediate steps.

There are a number of important directions for future work. First, we would like to understand
how our method behaves as a function of the amount of classification noise in the training data.
Second, this paper has described the application of our method in one engineering domain; there
are many other domains that entertain similar problems. Third, we have used only one learning
method, C4.5, and other methods may yield different results. Fourth, we have explored our ap-
proach with one feature-tracking program. It would be valuable to explore the quality of learned
feature-tracking rules when data are labeled using other feature-tracking methods. Finally, in most
contexts simulation data come from some physical domain where a rich collection of background
knowledge is often available. Integrating background knowledge into the learning process could
prove an important source of additional information.



Acknowledgments

This research has benefited from numerous discussions with members of the Rutgers HPCD project,
including Saul Amarel, Deborah Silver and Norm Zabusky. We would also like to thank Ravi Sam-
taney and Simon Xin Wang for helping us understand the code of various software. This research is
part of the Rutgers-based HPCD (Hypercomputing and Design) project supported by the Advanced
Research Projects Agency of the Department of Defense through contract ARPA-DAST 63-93-C-
0064

References

[1] Bitz, F., Zabusky, N. (1990) DAVID and Visiometrics: Visualizing, Diagnosing and Quantify-
ing Evolving Amorphous Objects. Computers in Physics. pp 603-13.

[2] Boratov, O., Pelz, R., Zabusky, N. (1990) Winding and Reconnection Mechanisms of Closely
Interacting Vortex Tubes in Three Dimensions. AMS-SIAM Seminar on Vortex Dynamics and
Vortex Methods.

[3] Brown, M., McCormick, B., Defanti, T. (1987) Visualization in Scientific Computing. Com-
puter Graphics, 21(6).

[4] Buning, P., Steger, J. (1985) Graphics and Flow Visualization in Computational Fluid Dynam-
ics. Proceedings of the 7th computational fluid dynamics conference.

[5] Buntine, J. D., Pullin D. I. (1989) Merger and Cancelation of Strained Vortices. Journal of Fluid
Mechanics,205. pp 263-95.

[6] Dickinson, R., (1989) Unified approach to the Design of Visualization Software for the Anal-
ysis of Field Problems. SPIE Proceedings.

[7] Dritschel, D. (1989) Strain-Induced Vortex Stripping. Mathematical Aspects of Vortex Dynam-
ics. SIAM,NY, pp 107-13.

[8] Melander, M., V., Zabusky, N., McWilliams, J., C. (1988) Symmetric Vortex Merger in Two
Dimensions: Causes and Conditions. Journal of Fluid Mechanics,195. pp 303-40.

[9] Mooney, R., J., Shavlik, J., W., Towell, G., G., and Gove A. (1989) An Experimental Compar-
ison of Symbolic and Connectionist Learning Algorithms. Proceedings of the 11th IJCAI.

[10] Quinlan, J., R. (1993) C4.5: Programs for machine learning. San Francisco, CA: Morgan
Kaufmann Publishers.

[11] Silver, D., Zabusky, N., (1991) 3D Visualization and Quantification of Evolving Amorphous
Objects. SPIE/SPSE Conference Proceedings.

[12] Weiss, S., and Kapouleas, I. (1989) An Empirical Comparison of Pattern Recognition, Neural
Nets, and Machine Learning Classification Methods. Proceedings of the 11th IJCAI.


