
Appears in the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001)

Using Text Classifiers for Numerical Classification

Sofus A. Macskassy, Haym Hirsh, Arunava Banerjee, Aynur A. Dayanik
{sofmac,arunava,aynur,hirsh}@cs.rutgers.edu

Department of Computer Science
Rutgers University

110 Frelinghuysen Rd
Piscataway, NJ 08854-8019

Abstract
Consider a supervised learning problem in which examples contain
both numerical- and text-valued features. To use traditional feature-
vector-based learning methods, one could treat the presence or ab-
sence of a word as a Boolean feature and use these binary-valued
features together with the numerical features. However, the use of a
text-classification system on this is a bit more problematic — in the
most straight-forward approach each number would be considered a
distinct token and treated as a word. This paper presents an alter-
native approach for the use of text classification methods for super-
vised learning problems with numerical-valued features in which the
numerical features are converted into bag-of-words features, thereby
making them directly usable by text classification methods. We
show that even on purely numerical-valued data the results of text-
classification on the derived text-like representation outperforms the
more naive numbers-as-tokensrepresentation and, more importantly,
is competitive with mature numerical classification methods such as
C4.5 and Ripper.

1 Introduction
The machine learning community has spent many years de-
veloping robust classifier-learning methods, with C4.5 [Quin-
lan, 1993] and Ripper [Cohen, 1995] two popular examples
of such methods. Although for many years the focus has been
on numerical and discrete-valued classification tasks, over the
last decade there has also been considerable attention to text-
classification problems [Sebastiani, 1999; Yang, 1999]. Typi-
cally such methods are applied by treating the presence or ab-
sence of each word as a separate Boolean feature. This is com-
monly performed either directly, by generating a large number
of such features, one for each word, or indirectly, by the use of
set-valued features [Cohen, 1996], in which each text-valued
field of the examples is viewed as a single feature whose value
for an example is the set of words that are present in that field
for this example.

The information retrieval community has similarly spent
many years developing robust retrieval methods applicable to
many retrieval tasks concerning text-containing documents,
with vector-space methods [Salton, 1991] being the best
known examples of techniques in this area. Although for
many years the focus has been primarily on retrieval tasks,
here, too, the last decade has seen a significant increase in in-
terest in the use of such methods for text-classification tasks.
The most common techniques use the retrieval engine as the
basis for a distance metric between examples, for either direct
use with nearest-neighbor methods [Yang and Chute, 1994],
or, based on the closely related Rocchio [1971] relevance
feedback technique, for use after creating a summary “docu-

ment” for each class and retrieving the nearest one [Schapire
et al., 1998].

The irony is that althoughwe now have much experience on
placing text-clasification problems in the realm of numerical-
classification methods, little attention has been brought to the
question of whether numerical-classification problems can be
effectively brought into the realm of text-classification meth-
ods. Since the text-retrieval methods on which they are based
have many decade’s maturity, if done effectively they have the
potential of broadening further our base of methods for nu-
merical classification.

More importantly for us, however, is the fact that many
real-world problems involve a combination of both text- and
numerical-valued features. For example, we came to ask
these questions by confronting the problem of email classifi-
cation, where we wanted to explore instance-representations
that considered not only the text of each message, but also
the length of the message or the time of day at which it is
received [Macskassy et al., 1999]. Although the machine-
learning-derived methods that we now know how to ap-
ply to pure text-classification problems could be directly ap-
plied to these “mixed-mode” problems, the application of
information-retrieval-based classification methods was more
problematic. The most straight-forward approach is to treat
each number that a feature may take on as a distinct “word”,
and proceed with the use of a text-classification method using
the combination of true words and tokens-for-numbers words.
The problem is that this makes the numbers 1 and 2 as dissimi-
lar as the numbers 1 and 1000 — all three values are unrelated
tokens to the classification method. What we would like is an
approach to applying text-classification methods to problems
with numerical-valued features so that the distance between
such numerical values is able to be discerned by the classifi-
cation method.

This paper presents one way to do just this, converting nu-
merical features into features to which information-retrieval-
based text-classification methods can apply. Our approach
presumes the use of text-classification methods that treat a
piece of text as a “bag of words”, representing a text object by
an unordered set of tokens present in the text (most commonly
words, but occasionally tokens of a more complex derivation).

The core of our approach is, roughly, to convert each num-
ber into a bag of tokens such that two numbers that are close
together have more tokens in common in their respective bags
than would two numbers that are farther apart. The high-level
idea is to create a set of landmark values for each numerical
feature, and assign two tokens to each such landmark. Every
value of a feature for an example will be compared to each

landmark for that feature. If the example’s value is less than
or equal to the landmark, the first of that landmark’s two to-
kens is placed in that example’s “bag”. If the value is more
than the landmark the second token is instead used in the bag.
The result is that every feature gets converted into a bag of
tokens, with each bag containing the same number of entries,
each differing only to reflect on which side of each landmark
a value lies.1

The key question then becomes how to pick landmark val-
ues. Although our experiments show that even fairly naive
approaches for selecting landmarks can perform quite well,
we instead appeal to the body of work on feature discretiza-
tion that has already been well-studied within machine learn-
ing [Catlett, 1991; Kerber, 1992; Fayyad and Irani, 1993;
Dougherty et al., 1995; Kohavi and Sahami, 1996; Frank and
Witten, 1999]. Learning methods such as C4.5 would nor-
mally have to consider a large number of possible tests on each
numerical feature, in the worst case one between each consec-
utive pair of values that a feature takes on. These discretiza-
tion methods instead use a variety of heuristic means to iden-
tify a more modest — and hence more tractable — subset of
tests to consider during the learning process. Our approach is
thus to apply such methods to identifya set of landmark values
for each numerical feature and create two possible tokens for
each landmark value, exactly one of which is assigned to each
example for each landmark. The result is a “bag of words”
representation for each example that can then be used by text-
classification methods.

In the remainder of this paper we first describe our approach
for converting numerical features into bag-of-words features
in more detail, including the landmark-selection methods that
we used. We then describe our experimental evaluation of
our approach: the learning methods, evaluation methods used,
and our results — which show that the text-classification
methods using our bag-of-words representation perform com-
petitively with the well-used methods C4.5 and Ripper when
applied to the original numerical data. We conclude the paper
with some analysis of these results and some final remarks.

2 Converting Numbers to Bags of Tokens
The approach taken in this paper is to convert every number
into a set of tokens such that if two values are close, these sets
will be similar, and if the values are further apart the sets will
be less similar. This is done for each feature by finding a set of
“landmark values” or “split-points” within the feature’s range
of legitimate values by analyzing the values that the feature is
observed to take on among the training examples. Given an
example, its numerical value for a given feature is compared
to each split-point for that feature generated by our approach,
and for each such comparison a token will be added, repre-
senting either that the value is less than or equal to the partic-
ular split-point or greater than that split-point. This will result
in exactly one token being added per split-point.

For example, consider a news-story classification task that
includes a numerical feature representing the story’s length.
We can artificially invent a set of split-points to demonstrate
our process, such as 500, 1500, and 4000. For each split-
point we define two tokens, one for either side of the split-
point a value may lie. Using the above split-points for the
length of a news-story would result in the tokens “length-
under500”, “lengthover500”, “lengthunder1500”, “length-
over1500”, “lengthunder4000”, and “lengthover4000”. A

1However, as we will explain later, there may be fewer values in
case of missing values.

 bin2 bin3 bin4bin1 bin5

split1 split2 split3 split4

Figure 1: An example feature range and construction of bins.
Dots represent values and rectangles represent bins.
new message of length 3000 would thereby have its length
feature converted into the set of tokens “lengthover500”,
“lengthover1500”, and “lengthunder4000”. These would be
added to the bag-of-words representation of the example —
whether the other words in the bag were created from other
numerical features, or the result of pre-existing text-valued
features. More abstractly, consider the hypothetical numeri-
cal feature plotted along a number line in Figure 1. If a train-
ing example is obtained whose value for this feature falls in
bin2, the set {morethansplit1, lessthansplit2, lessthansplit3,
lessthansplit4}would be the bag-of-words representation cre-
ated for this value. Note that more than one value can be given
the same representation, as long as they all fall between the
same two consecutive split-points.

The key question, of course, is how these split-points are
selected. We use two methods in our main results. The
first, called the MDL method, uses an existing entropy-based
method for discretization to find good split-points [Fayyad
and Irani, 1993]. This method is very similar to one that uses
C4.5 on the training data, restricting it to ignore all but the
single feature for which split-points are being selected, har-
vesting the decision points found within each of the internal
nodes of the tree [Kohavi and Sahami, 1996]. The second
method, which we call the density method, selects split-points
that yield equal-density bins — where the number of values
that fall between consecutive split-points stays roughly con-
stant. The number of bins is selected using hill-climbing on
error rate using a hold-out set. In the rest of this section we
describe these two methods in more detail, concluding with a
discussion of how we handle examples that are missing values
for one or more of their features.
2.1 The MDL Method
The MDL method [Fayyad and Irani, 1993; Kohavi and Sa-
hami, 1996] makes use of information-theoretic techniques
to analyse the values of a numeric feature and create split-
points that have high information gain. It does so in a recur-
sive fashion, finding one split-point in the overall set of val-
ues, then finding another split-point in each of the two created
subsets, until a stopping criteria based on Minimum Descrip-
tion Length priciples [Rissanen, 1987] is met. Each numerical
feature is treated separately, yielding a different set of split-
points for each feature. Due to space limitations we refer the
reader to the given citations for further details about this pop-
ular discretization algorithm.
2.2 The Density Method
The density method (described in algorithmic form in Fig-
ure 2) begins by obtaining and sorting all values observed in
the data for a feature f , yielding an ordered list Sf . Thus,
for example, the result for some feature f might be Sf =
〈1, 2, 2, 2, 5, 8, 8, 8, 9〉. Given some desired number of splits
k, the density method splits the feature set Sf intok+1 sets of
equal size (except when rounding effects require being off by
one) such that split-point sj is the (|Sf | × b j

k+1c)-th point in
Sf . Using this split-point, two tokens are generated; one for
when a numerical value is less than or equal to the split-point,
and another for when the numerical value is greater than the

Inputs: Sets of values for each numeric feature.
Algorithm:
currError← 100 /* assume errors run from 0− 100 */
lastError ← 100
numSplits← 1
maxSplits← argmaxf∈numerical features(|Sf |)
while(numSplits < maxSplits) do

for each numerical feature f
nf ← min(numSplits, |Sf |)
/* Create nf split-points for feature f . */
Use as split-points for f the j-th element of Sf

for j = |Sf | × b i
nf+1c with i running from 1 to nf

end
Divide data into 70% for train and 30% for test.
C ← Run learner on train with current split-points.
currError← Evaluate C on test.
if(currError = 0) do
maxSplits ← 0
lastError ← currError

else if(lastError < currError) do
numSplits ← numSplits/2
maxSplits ← 0

else
numSplits ← 2× numSplits
lastError ← currError

end
end
Outputs: lastError

Figure 2: Density algorithm for finding split-points.
split-point. k — the final number of split-points — is found
using a global hill-climbing search with the number of split-
points growing geometrically by a factor of two until the ob-
served error rate on a 30% hold-out set is observed to increase
or reach 0.

One final detail of the density method is that the algorithm
in Figure 2 is actually run twice. The first time is based
on a “volumetric” density calculation, where duplicate val-
ues are included in the analysis. After doing this the algo-
rithm is run a second time after duplicate values have been
removed, yielding a second set of split points that have an (ap-
proximately) equal number of distinct values between each
split-point. Thus, for example, for the feature f this second
run would now use the list Sf = 〈1, 2, 5, 8, 9〈. Whichever
method yielded a lower error rate gives the final set of split
points. If they have the same performance, whichever had
fewer split-points is selected.
2.3 Missing Values
A common occurrence for many learning problems is when
some examples are missing values for some of the features.
This can be a complicating factor both during the learning
phase, when assessing the importance of features in forming
some learning result, and in classification, when making a de-
cision when values of some of the attributes are unavailable.
Common approaches range from simply deleting data or fea-
tures to remove such occurrences, to imputing some value for
the feature — such as through learning or through something
as simple as using the median, mean, or mode value in the
training data, to more complex methods such as are used in
learning algorithms such as C4.5. Our approach for creating
bag-of-word features out of numerical features contributesan-
other interesting way to handle missing values. The idea is,
quite simply, to add no tokens for a feature of an example
when the value for this feature is missing. By not commit-

ting to any of the tokens that this feature might otherwise have
added it neither contributes nor detracts from the classifica-
tion process, allowing it to rely on the remaining features in
assigning a label to the example.

3 Learning Algorithms
In this section we briefly describe the learning algorithms that
we use in our experiments. Recall that our goal is to demon-
strate that, using our approach, text-classification methods
can perform as credibly on numerical classification problems
as more traditional methods that were explicitly crafted for
such problems. To show this we use a sampling of four dif-
ferent approaches for text classification. Our first is based
on the Rocchio-based vector-space method for text retrieval
mentioned earlier, which we label TFIDF [Joachims, 1997;
Schapire et al., 1998; Sebastiani, 1999]. We also consider two
probabilistic classification methods that have become popu-
lar for text classification, Naive Bayes [Domingos and Paz-
zani, 1996; Joachims, 1997; Mitchell, 1997] and Maximum
Entropy [Nigam et al., 1999]. Finally, we also use the Ripper
rule learning system [Cohen, 1995; 1996], using its capability
of handling set-valued features so as to handle text classifica-
tion problems in a fairly direct fashion. (The first three meth-
ods used the implementations available as part of the Rain-
bow text-classification system [McCallum, 1996].) The base-
lines to which we compare the text-classification methods are
two popular “off the shelf” learning methods, C4.5 (release
8) [Quinlan, 1993] and Ripper. Note that Ripper has been
mentioned twice, once as a text-classification method using
our transformed features encoded for Ripper as set-valued fea-
tures, and the other using the original numerical features in the
same fashion as they are used with C4.5. Thus Ripper is in
the unique position of being both a text-classification method
when used with one representation, and as a numerical clas-
sification method when used with the other. Missing values
were handled for the text-classification methods as discussed
earlier, by simply not generating any tokens for a feature of
an example when it had no given value, and for C4.5 and Rip-
per (when used with numerical features) by their built-in tech-
niques for handling missing values.

The TFIDF classifier is based on the relevance feedback al-
gorithm by Rocchio [1971] using the vector space retrieval
model. This algorithmrepresents documents as vectors so that
documents with similar content have similar vectors. Each
component of such a vector corresponds to a term in the doc-
ument, typically a word. The weight of each component is
computed using the TFIDF weighting scheme, which tries to
reward words that occur many times but in few documents.
In the learning phase, a prototype vector is formed for each
class from the positive and negative examples of that class. To
classify a new document d, the cosines of the prototype vec-
tors with the corresponding document vector are calculated
for each class. d is assigned to the class with which its doc-
ument vector has the highest cosine.

Naive Bayes is a probabilistic approach to inductive learn-
ing. It estimates the a posteriori probability that an example
belongs to a class given the observed feature values of the ex-
ample, assuming independence of the features. The class with
the maximum a posteriori probability is assigned to the exam-
ple. The naive Bayes classifier used here is specifically de-
signed for text classification problems.

The Maximum Entropy classifier (labeled MAXENT in our
results) estimates the conditional distributionof the class label
given a document, which is a set of word-count features. The
high-level idea of this technique is, roughly, that uniform dis-

tributionsshould be prefered in the absence of external knowl-
edge. A set of constraints for the model are derived from the
labeled training data, which are expected values of the fea-
tures. These constraints characterize the class-specific expec-
tations for the model distribution and may lead to minimal
non-uniform distributions. The solution to the maximum en-
tropy formulation is found by the improved iterative scaling
algorithm [Nigam et al., 1999].

Ripper is a learning method that forms sets of rules, where
each rule tests a conjunction of conditions on feature values.
Rules are returned as an ordered list, and the first successful
rule provides the prediction for the class label of a new ex-
ample. Importantly, Ripper allows attributes that take on sets
as values, in addition to numeric and nominal features, and
a condition can test whether a particular item is part of the
value that the attribute takes on for a given example. This
was designed to make Ripper particularly convenient to use
on text data, where rather than listing each word as a separate
feature, a single set-valued feature that contains all of an in-
stance’s words is used instead. Rules are formed in a greedy
fashion, with each rule being built by adding conditions one
at a time, using an information-theoretic metric that rewards
tests that cause a rule to exclude additional negative data while
still hopefully covering many positive examples. New rules
are formed until a sufficient amount of the data has been cov-
ered. A final pruning stage adjusts the rule set in light of the
resulting performance of the full set of rules on the data.

C4.5 is a widely used decision tree learning algorithm. It
uses a fixed sets of attributes, and creates a decision tree to
classify an instance into a fixed set of class-labels. At ev-
ery step, if the remaining instances are all of the same class,
it predicts that class, otherwise, it chooses the attribute with
the highest information gain and creates a decision based on
that attribute to split the training set into one subset per dis-
crete value of the feature, or two subsets based on a threshold-
comparison for continuous features. It recursively does this
until all nodes are final, or a certain user-specified threshold
is met. Once the decision tree is built, C4.5 prunes the tree to
avoid overfitting, again based on a user-specified setting.

4 Evaluation Methodology
To compare our text-likeencoding of numbers when used with
text-classification systems to the use of C4.5 and Ripper on the
original numerical features we used 23 data sets taken from
the UCI repository [Blake and Merz, 1998]. Table 1 shows the
characteristics of these datasets. The first 14 represent prob-
lems where all the features are numeric. The final 9 represent
problems in which the designated number of features are nu-
meric and the rest are discrete or binary-valued.

The accuracy of a learner was done through ten-fold strati-
fied cross-validation [Kohavi, 1995]. Each dataset was repre-
sented in one of four ways for our experiments:
• The original feature encoding — using numbers — for

use with C4.5 and Ripper.
• The bag-of-words encoding generated by the density

method, for use with the four text-classifications.
• The bag-of-words encoding generated by the MDL

method, for use with the four text-classifications.
• The bag-of-words encoding generated using the

tokens-for-numbers approach, for use with the five text-
classifications. This was accomplished by converting
every number into its English words – for example, “5”
becomes “five” and “2.3” becomes “twopointthree”.

The first of these represents our baseline, using a machine
learning method designed for numerical classification. The

of # of # of # of Base
Dataset Instances Features Numeric Classes Accuracy

Features (%)
bcancerw 699 10 10 2 66
diabetes 768 8 8 2 65
glass 214 9 9 6 36
hungarian 294 13 13 2 64
ionosphere 351 34 34 2 64
iris 150 4 4 3 33
liver 345 6 6 2 58
musk 476 166 166 2 57
new-thyroid 215 5 5 5 70
page-blocks 5473 10 10 5 90
segmentation 2310 19 19 7 14
sonar 208 60 60 2 53
vehicle 846 18 18 4 26
wine 178 13 13 2 40
arrhythmia 452 279 206 16 54
autos 205 26 16 2 88
cleveland 303 13 6 2 54
credit-app 690 15 6 2 56
cylinder-bands 512 39 20 2 61
echocardiogram1 132 13 9 2 44
horse 368 22 7 2 63
post-operative 90 8 1 3 71
sponge 76 45 3 3 92

1 The MDL approach was unable to find any split-points for this
data-set, so it is omitted in any comparisons on the MDL method.

Table 1: Properties of all datasets.
next two are the new approaches presented in this paper. The
final one is the representation that simply treats each number
as a distinct “word” without regard to its value.
5 Results
The first question we ask is the key one: To what extent does
our approach yield a competitive learning method on numer-
ical classification problems? Figure 3 shows the results of
comparing the four text-learning methods using our MDL-
algorithm features to the two numerical classification meth-
ods. Each point represents a single data set, where the x-axis
is the accuracy of either C4.5 or Ripper and the y-axis is the
accuracy of one of the four text methods. Points above the
y=x line represent cases where the numerical-classification
method was inferior to our use of a text-classification method,
and points below the line are cases where the numerical
method was superior. The qualitative flavor of this graph
is that the MDL-algorithm features allows text-classification
methods to perform credibly in many cases, exceeding numer-
ical methods in some cases, althoughperforming less success-
fully in many cases as well. We plot in Figure 4 a similar graph
comparing the four text methods using the density-algorithm
features to the two numerical methods. (The “outlier” cases
at the bottom of the graphs are for the post-operative data set,
which has only 90 examples and only 1 of its 8 features being
numeric.)

Since the preceding graphs collapse eight different com-
parisons (four text methods versus two numerical methods)

TFIDF NB MAXENT Ripper
MDL/C4.5 9/13/0 11/10/1 12/10/0 7/14/1
MDL/Ripper 8/14/0 11/9/2 11/11/0 8/12/2
Density/C4.5 4/19/0 7/15/1 13/10/0 9/13/1
Density/Ripper 4/19/0 8/14/1 13/9/1 8/13/2

Table 2: Comparing the number of wins/losses/ties for each
featurization (MDL first two rows, density second two rows)
when coupled with one of the four text-classification methods
labeling the columns, versus a numerical method.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

-m
dl

 a
ve

ra
ge

 a
cc

ur
ac

y

numeric average accuracy

Compare mdl vs. Numeric methods
maxent-c4.5

maxent-ripper
naivebayes-c4.5

naivebayes-ripper
ripper-c4.5

ripper-ripper
tfidf-c4.5

tfidf-ripper

Figure 3: Comparing learning with MDL-generated features
to numeric learning.
into a picture Table 2 also shows for how many data sets each
text method beat a numerical method. Each entry in the ta-
ble is the number of wins/losses/ties for the new featurization
method used with a text method compared to a numerical clas-
sification method. The columns label the text method used.
The first two rows are results when the MDL method is used,
the next two are for the density method, in each case the first
comparison is to numerical classification with C4.5 comes in
the first of the two rows, followed by Ripper. These results
show that in a non-trivial number of cases the use of our ap-
proach for converting numerical features into text-based data
beats out the popular learning methods, with absolutle im-
provements in accuracy ranging as high as 12%. While these
results do not show that the approach is unconditionally su-
perior to numerical classification, they do show that the ap-
proach does merit consideration for use as a numerical classi-
fication method.

The next question we ask is whether the use of two different
featurization methods is necessary: Does either dominate the
other? Figure /reffig:mdlvsdens shows the results of such a
comparison, where each point represents a single data set and
a text learning method, with the x-axis representing the result
of using the MDL method with that learning algorithm, and
the y-axis representing the result of using the density method
with that learning algorithm. Here, too, the results show that
neither method is clearly superior, with perhaps a bit better
performance in general by the MDL method, but with some
cases still going to the density method.
6 Additional Analysis
We began the paper stating that the obvious approach to con-
verting numbers into text-based feature is convert each num-
ber into a unique token, to be added as-is to the set of words

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

-d
en

si
ty

 a
ve

ra
ge

 a
cc

ur
ac

y

numeric average accuracy

Compare density vs. Numeric methods
maxent-c4.5

maxent-ripper
naivebayes-c4.5

naivebayes-ripper
ripper-c4.5

ripper-ripper
tfidf-c4.5

tfidf-ripper

Figure 4: Comparing learning with density-algorithmfeatures
to numeric learning.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

de
ns

ity
 a

ve
ra

ge
 a

cc
ur

ac
y

mdl average accuracy

Compare mdl and density approaches
maxent

naivebayes
ripper

tfidf

Figure 5: Comparing learning with MDL-algorithm features
to density-algorithm features.
for a given example. One additional question we can ask is
whether the complexity of our methods are necessary: Per-
haps this simple tokenization approach performs as effec-
tively? Figure 6 shows an analysis of this question. Each
point is a data set, with the x-axis value representing the ac-
curacy of the tokenization approach with a particular text-
classification method, and the y-axis represents the accuracy
with one of our two featurization methods using the same
learning method. As is clearly evident from the figure, the to-
kenization approach is not as effective in general as our more
sophisticated approach.

We conclude this section by noting that Kohavi and Sahami
[1996] discuss a different discretization method that is very
similar to the MDL method. This method simply runs C4.5 on
the data, ignoring all features except the one for which split-
points are being created. Kohavi and Sahami show that this
method is slightly inferior to the MDL approach. However,
just because it is inferior for discretization for decision-tree
learning does not imply that it must be the case here, too. To
test this we compared the four text classification methods us-
ing the MDL method to the C4.5 method. Figure 7 shows the
results of this experiment. Each point represents a data set and
a learning method. The x-axis represents the accuracy of the
C4.5 approach, and the y-axis represents the accuracy of the
MDL approach. As is clear, although there is some difference
between the performance of the methods, they are somewhat
similar in behavior.
7 Final Remarks
This paper has described an approach for converting nu-
meric features into a representation enabling the application
of text-classification methods to problems that have tradition-
ally been solved solely using numerical-classification meth-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B
ag

 o
f

T
ok

en
s

av
er

ag
e

ac
cu

ra
cy

Tokens average accuracy

Compare Tokenization vs. Bag of Tokens.
maxent-density

maxent-mdl
naivebayes-density

naivebayes-mdl
ripper-density

ripper-mdl
tfidf-density

tfidf-mdl

Figure 6: Comparing the text-learning approaches to the naive
tokenization approach.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m
dl

 a
ve

ra
ge

 a
cc

ur
ac

y

c4.5-split average accuracy

Compare c4.5-split and mdl approaches.
maxent

naivebayes
ripper

tfidf

Figure 7: Comparing the MDL and C4.5 approaches.
ods. In addition to opening up the use of text-methods to prob-
lems that involve “mixed-mode” data — both numerical- and
text-valued features — it yields a new approach to numerical-
classification method in its own right. Our experiments show
that in a non-trivialnumber of cases the resulting methods out-
perform highly optimized numerical-classification methods.
Also importantly, our experiments show that our approach
yields a vast improvement over the naive method of convert-
ing a numeric into its equivalent textual token.

There are many directions in which we are now taking this
work. Our original motivation for performing this work was
to broaden the class of learning methods that can be applied
to mixed-mode data. Now that we have done so, we can re-
turn to some of the work that motivated this, performing ad-
ditional evaluations of this work on mixed-mode data. Doing
so, however, requires a set of benchmark problems, something
that does not presently exist. We are therefore in the process of
creating such data sets so we can perform this evaluation pro-
cess. We also noted that our approach yields an intriguingway
to deal with data with missing values, and understanding its
benefits and liabilities compared to other approaches remains
a question that we hope to explore. Finally, as is usually the
case when comparing any two learning methods that are suc-
cessful in competing cases, it is difficult to make any defini-
tive statements about when they each may be successful. Var-
ious conjectures include differences in the amount of missing
values in the different data sets, the number of numeric versus
non-numeric features, etc. For the given data sets we were un-
able to discern any such pattern in our results. This remains an
important question that we also plan to study.
Acknowledgments
We would like to thank Foster Provost, Lyle Ungar, and mem-
bers of the Rutgers Machine Learning Research Group for
helpful comments and discussions.

References
[Blake and Merz, 1998] C. L. Blake and C. J. Merz. Uci repository

of machine learning databases, 1998.
[Catlett, 1991] J. Catlett. On changing continuous attributes into

ordered discrete attributes. In Y. Kodratoff, editor, Proceedings
of the European Working Session on Learning, pages 164–178.
Berling: Springer-Verlag, 1991.

[Cohen, 1995] W. W. Cohen. Fast effective rule induction. In
Proceedings of the Twelfth International Conference on Machine
Learning, Lake Tahoe, California, 1995.

[Cohen, 1996] W. W. Cohen. Learning trees and rules with set–
valued features. In AAAI96, 1996.

[Domingos and Pazzani, 1996] P. Domingos and M. Pazzani. Be-
yond independence: Conditions for the optimality of simple

bayesian classifier. In Proceedingsof the 13th International Con-
ference on Machine Learning, pages 105–112, 1996.

[Dougherty et al., 1995] K. Dougherty, R. Kohavi, and M. Sahami.
Supervised and unsupervised discretization of continuous fea-
tures. In Proceedingsof the 12th International Conferenceon Ma-
chine Learning, pages 194–202. Morgan Kaufmann, 1995.

[Fayyad and Irani, 1993] U. M. Fayyad and K. B. Irani. Multi-
interval discretization of continuous-valued attributes for classi-
fication learning. In Proceedings of the 13th International Joint
Conference on AI, pages 1022–1027. Morgan Kaufmann, 1993.

[Frank and Witten, 1999] E. Frank and I. H. Witten. Making better
use of global discretization. In Proceedings of the 17th Interna-
tional Conference on Machine Learning, Slovenia, 1999.

[Joachims, 1997] T. Joachims. A probabilistic analysis of the roc-
chio algorithm with tfidf for text categorization. In Proceedingsof
the Fourteenth International Conference on Machine Learning,
1997.

[Kerber, 1992] R. Kerber. Discretization of numeric attributes. In
Proceedings of the 10th National Conference on Artificial Intelli-
gence, pages 123–128, Menlo Park, CA, 1992. AAAI Press/MIT
Press.

[Kohavi and Sahami, 1996] R. Kohavi and M. Sahami. Error-based
and entropy-based discretization of continuous features. In Pro-
ceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pages 114–119, Menlo Park, CA,
1996. AAAI Press/MIT Press.

[Kohavi, 1995] R. Kohavi. A study of cross-validation and boot-
strap for accuracy estimation and model selection. In Proceed-
ings of the 14th International Joint Conference on Artificial In-
telligence, pages 1137–1143, San Francisco, CA, 1995. Morgan
Kaufmann.

[Macskassy et al., 1999] S. A. Macskassy, A. A. Dayanik, and
H. Hirsh. Emailvalet: Learning user preferences for wireless
email. In Proceedings of Learning about Users Workshop, IJ-
CAI’99, Stockholm, Sweden, 1999.

[McCallum, 1996] A. K. McCallum. Bow: A toolkit for statisti-
cal language modeling, text retrieval, classification and cluster-
ing. http://www.cs.cmu.edu/∼mccallum/bow, 1996.

[Mitchell, 1997] T. Mitchell. Machine Learning. McGraw Hill,
1997.

[Nigam et al., 1999] K. Nigam, J. Lafferty, and A. McCallum. Us-
ing maximum entropy for text classification. In Proceedings of
Machine Learning for Information Filtering Workshop, IJCAI’99,
Stockholm, Sweden, 1999.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA, 1993.

[Rissanen, 1987] I. Rissanen. Minimum description length princi-
ple. Encyclopedia of Statistical Sciences, 5:523–527, 1987.

[Rocchio, 1971] J. Rocchio. Relevance feedback in information re-
trieval. In Salton, editor, The SMART Retrieval System: Experi-
ments in Automatic DocumentProcessing, chapter14, pages313–
323. Prentice–Hall, 1971.

[Salton, 1991] G. Salton. Developments in automatic text retrieval.
Science, 253:974–979, 1991.

[Schapire et al., 1998] R. Schapire, Y. Singer, and A. Singal. Boost-
ing and rocchio applied to text filtering. In Proceedings of ACM
SIGIR, pages 215–223, 1998.

[Sebastiani, 1999] F. Sebastiani. Machine learning in automated
text categorisation: a survey. Technical Report IEI-B4-31-1999,
Istituto di Elaborazione dell’Informazione, 1999.

[Yang and Chute, 1994] Y. Yang and C. Chute. An example-based
mapping method for text classification and retrieval. ACM Trans-
actions on Information Systems, 12(3):252–277, 1994.

[Yang, 1999] Y. Yang. An evaluation of statistical approaches to text
categorization. Information Retrieval, 1(1/2):67–88, 1999.

