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Abstract—We introduce a new class of methods and inference
techniques for infinite mixtures of Inverse Gaussian, Multino-
mial Probit and Exponential Regression, models that belong to
the widely applicable framework of Generalized Linear Model
(GLM). We characterize the joint distribution of the response and
covariates via a Stick-Breaking Prior. This leads to, in the various
cases, nonparametric models for an infinite mixture of Inverse
Gaussian, Multinomial Probit and Exponential Regression. Esti-
mates of the localized mean function which maps the covariates
to the response are presented. We prove the weak consistency
for the posterior distribution of the Exponential model (SB-EX)
and then propose mean field variational inference algorithms
for the Inverse Gaussian, Multinomial Probit and Exponential
Regression. Finally, we demonstrate their superior accuracy in
comparison to several other regression models such as, Gaussian
Process Regression, Dirichlet Process Regression, etc.
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I. INTRODUCTION

Inverse Gaussian, Exponential, and Multinomial Probit Re-
gression belong to a unified framework called the Generalized
Linear Model (GLM) [1]. Regression, in its canonical form,
assumes that the response variable follows a given probability
distribution with its support determined by a linear combi-
nation of the covariates. Formally stated, Y |X ∼ f

(
XTβ

)
.

There are two aspects to this equation that GLM generalizes.
Firstly, f is generalized to the exponential family. f , in the case
of Inverse Gaussian regression, is the Inverse-Gaussian distri-
bution, and in the case of Exponential and Multinomial Probit
Regression, is the Exponential and Multinomial distributions
respectively. Secondly, the function that maps the response
mean (µ) to XTβ, which in the case of Multinomial Probit
regression is the probit function

(
XTβ = g (µ) = Φ−1 (µ)

)
,

(Φ is the Normal CDF) is generalized to one of any member
of a set of link functions. Link functions for Inverse Gaussian
regression is g (µ) = −µ−2 and for Exponential regression is
g (µ) = −µ−1.

Notwithstanding its generality, all three regression models
suffer from two intrinsic weaknesses. Firstly, the covariates
are associated with the model via only a linear function.
Secondly, the variance of the responses are not associated
with the individual covariates. This is not desirable because
it is conceivable that the response depend non-linearly on the
covariates, and furthermore, the variance vary with the values
of the covariates [3].

We overcome these limitations by introducing a mixture
of regression model where each mixture component is capable
of localizing itself to covariate ranges that shows similar
responses. Although each mixture component is a localized
regression model (therefore a linear combination of covariates),
marginalizing out the variance of the local densities creates a
non-linear regression model. It also models heterosecdasticity,
where the response variance changes across local densities
and therefore also varies across the covariates. Furthermore,
in order to allow the data to choose the number of clusters
non-parametrically [5] we impose a Stick-Breaking prior [4]
in the form of a Dirichlet Process [2]. We refer to the infinite
mixture of Inverse Gaussian as SB-IG, the infinite mixture
of Multinomial Probit as SB-PBT and the infinite mixture of
Exponential as SB-EX.

We prove the weak consistency for the SB-EX model which
acts as a frequentist justification for Bayesian Methods: as
more observations arrive, the posterior distribution converges
to the true density of the response-covariate pair. Weak consis-
tency of the other two models are almost the same, therefore
we have not presented it due to lack of space.

For inference with SB-EX, SB-PBT and SB-IG, a widely
used MCMC algorithm, namely Gibbs sampling [7]-[8] is an
immediate choice. However, the inherent deficiencies of Gibbs
sampling significantly reduces its practical utility. As is well
known, Gibbs sampling approximates the original posterior
distribution by sampling using a Markov Chain. However,
Gibbs sampling is prohibitively slow and moreover, its con-
vergence is very difficult to diagnose. In high dimensional
regression problems, Gibbs Sampling seldom converges to
the target posterior distribution in suitable time, leading to
significantly poor density estimation and prediction [9]. To
alleviate these problems, we introduce a fast and deterministic
mean field variational inference algorithm [10], [11], [12], [13]
for superior prediction and density estimation. Variational in-
ference is deterministic and possesses an optimization criterion
which can be used to assess convergence.

We derive the variational inference separately for the
SB-EX, SB-IG and SB-PBT models. These models differ
significantly in terms of the type of covariate and response
data, which results in markedly different variational distribu-
tions, parameter estimations and predictive distributions. In
each case, we formulate a class of decoupled and factorized
variational distributions as surrogates for the true posterior
distribution. We then maximize the lower bound (resulting



from imposing Jensen’s inequality on the log likelihood) to
obtain the optimal variational parameters. Finally, we derive
the predictive distribution from the posterior approximation to
predict the response variable conditioned on a new covariate
and the past response-covariate pairs.

We demonstrate the accuracy of the variational approach
for SB-EX and SB-IG models across different metrics such as
relative mean square and absolute error, in high dimensional
problems against Linear Regression, Bayesian and variational
Linear Regression, Gaussian Process Regression, and ordinary
Dirichlet Process Regression. We test the SB-PBT model
against Multiclass SVM, Multinomial Logistic Regression and
Naive Bayes Model.

The remainder of the paper is organized as follows. The
next section describes the Dirichlet Process and its Stick-
breaking Representation. Section 3 presents the SB-EX, SB-
IG and SB-PBT models as probabilistic graphical models.
In section 4, we prove the weak consistency of the SB-EX
model. In section 5, we formulate the variational distributions
of the models. Section 6 is devoted to the estimation of the
parameters of the variational distributions. Experimental results
are reported in section 7. Finally, section 8 presents concluding
remarks.

II. DIRICHLET PROCESS AND ITS STICK-BREAKING
REPRESENTATION

A Dirichlet Process [2], DP (α0, G0) is defined as a
probability distribution over a sample space of probability
distributions,

G ∼ DP (α0, G0) (1)

Here, α0 is a concentration parameter and G0 is the base
distribution. According to the stick-breaking construction [4]
of DP, G, which is a sample from DP, is an atomic distribution
with countably infinite atoms drawn from G0.

vi|α0, G0 ∼ Beta(1, α0), θi|α0, G0 ∼ G0

Mi = vi

i−1∏
l=1

(1− vl) , G =

∞∑
i=1

Mi.δθi
(2)

In the DP mixture model, DP [5], [6] is used as a non-
parametric prior over parameters of an infinite mixture model
[7].

zn| {v1, v2, ...} ∼ Categorical {M1,M2,M3....}
Xn|zn, (θi)∞i=1 ∼ F (θzn)

(3)

Here, F is a distribution parametrized by θzn .

III. SB-IG, SB-EX AND SB-PBT MODELS AS
PROBABILISTIC GRAPHICAL MODELS

We begin by viewing the continuous covariate-response
pairs in the SB-EX, SB-PBT, and SB-IG models through the
lens of probabilistic graphical models according to their stick
breaking representation.

A. Exponential Model (SB-EX)

In SB-EX model, the generative model of the covariate-
response pair is given by the following set of equations.

vi|α1, α2 ∼ Beta(α1, α2)

{λx,i,d} ∼ Gamma (λx,i,d|ax, bx)

{βi,d} ∼ Gamma (βi,d|cy,d, by,d)
zn| {v1, v2, .....} ∼ Categorical {M1,M2,M3....}

Xn,d|zn ∼ Exp (Xn,d|λx,zn,d)

Yn|Xn, zn ∼ Exp

(
Yn|βzn,0 +

D∑
d=1

βzn,dXn,d

) (4)

Here, Xn and Yn represents the continuous response-
covariate pairs. {z, v, λx,i,d, βi,d} is the set of latent variables
and the distributions, {λx,i,d} and {βi,d} are the base distri-
butions of the DP.

B. Inverse Gaussian Model (SB-IG)

In the SB-IG model, the covariate and the response is
modeled by Inverse Gaussian distribution. Here, too vi and
zn follow the same distributions as before. The remainder of
the generative model is given by,

{µi,d, λx,i,d} ∼ N
(
µi,d|ax,d, (bx,d, λx,i,d)−1)
Gamma (λx,i,d|cx,d, dx,d)

{βi,d, λy,i} ∼ N
(
βi,d|ay,d, (by, λy,i)−1)
Gamma (λy,i|cy, dy)

Xn,d|zn ∼ IG (Xn,d|µzn,d, λx,zn,d)

Yn|Xn, zn ∼ IG

(
Yn|βzn,0 +

D∑
d=1

βzn,dXn,d, λy,zn

)
(5)

Here, Xn and Yn represents the continuous response-
covariate pairs. {z, v, µi,d, λx,i,d, βi,d, λy,i} is the set of latent
variables and the distributions, {µi,d, λx,i,d} and {βi,d, λy,i}
are the base distributions of the DP.

C. Multinomial Probit Model (SB-PBT)

In the Multinomial Probit model, the continuous covariates
are modeled by a Gaussian mixture and a Multinomial Probit
framework is used for the categorical response. Here, too vi
and zn follow the same distributions as before. The remainder
of the generative model of the covariate-response pair is given
by the following set of equations.

{µi,d, λx,i,d} ∼ N
(
µi,d|ax,d, (bx,d, λx,i,d)−1)
Gamma (λx,i,d|cx,d, dx,d)

Xn,d|zn ∼ N
(
Xn,d|µzn,d, λ

−1
x,zn,d

)
βi,d,k ∼ N

(
βi,d,k|my,d,k, s

2
y,d,k

)
λy,i,k ∼ Gamma (λy,i,k|ay,k, by,k)

Y ∗n,k,i|Xn, zn ∼ N

(
Yn|βi,0,k +

D∑
d=1

βi,d,kXn,d, λ
−1
y,i,k

)

Yn|Y ∗n,k,zn ∼
Y ∗n,k,zn∑K
k=1 Y

∗
n,k,zn

(6)

Here,
{
z, v, µi,d, λx,i,d, βi,d,k, λy,i,k, Y

∗
n,k,i

}
are the latent

variables and the distributions, {µi,d, λx,i,d}, {βi,d,k}, {λy,i,k}
and

{
Y ∗
n,k,i

}
are the DP base distributions.



IV. WEAK CONSISTENCY OF THE SB-EX MODEL

The idea of weak consistency is that the posterior distribu-
tion, Πf (f | (Xi, Yi)

n
i=1) concentrates in weak neighborhood

of the true distribution, f0 (x, y). A weak neighborhood of f0
of radius ε, Wε (f0), is defined as follows,

Wε (f0) = {f : |
∫
f0 (x, y) g (x, y) dx dy −

∫
f (x, y) g (x, y) dx dy

< ε}
(7)

for every bounded, continuous function g. Now, the proof
of the weak consistency of SB-EX model depends on a
theorem by Schwartz [14], which says, if Πf is a prior on F
and if Πf places a positive probability on all neighborhoods,

f : |
∫
f0 (x, y) log f0(x,y)

f(x,y) dx dy < δ

for every δ > 0, then Πf is weak consistent at f0. The
proof is similar to Ghosal et al. [15] and Hannah et al. [3]. f0
for the Exponential Model (SB-EX) has a compact support.
So, there exists x0 and y0, such that f0(x, y) = 0 for |x| > x0
or |y| > y0, fixing ε > 0, we have,∫ ∫

f0 (x, y) log
f0 (x, y)∫ ∫

θxexp(−θxx)θyexp(−θyy)f0 (x, y) dθx dθy

< ε/2
(8)

Let P0 is a measure on {λx, β0, β0}. We define dP0 =
f0× δ0. Fixing k > 0, we choose a set K such that support of
P0 ⊂ K. Let B = {P : |P (K)/P0(K) − 1| < k}, therefore,
Π(B) > 0. From Ghosal et al. [15] and Hannah et al. [3], there
exists a set C such that Π(B∩C) > 0 and for every P ∈ B∩C,
for some k,∫ x0

0

∫ y0

0

f0 (x, y) log

∫
K
θxexp(−θxx)θyexp(−θyy) dP0∫

K
θxexp(−θxx)θyexp(−θyy) dP

< k/(1− k) + 2k < ε/2

(9)

Therefore, from previous two equations, for every P ∈
B ∩ C, for f = φ ∗ P ,∫

f0 (x, y) log
f0 (x, y)

f (x, y)
dx dy < ε (10)

So, the positive measure by Πf on weak neighborhoods of
f0 ensures that the SB-EX model is weak consistent.

V. VARIATIONAL DISTRIBUTION OF THE MODELS

The inter-coupling between Yn, Xn and zn in all three
models described above makes computing the posterior of Yn
analytically intractable. We therefore introduce the following
fully factorized and decoupled variational distributions as
surrogates.

A. Exponential Model (SB-EX)

The variational distribution for the Exponential model is
defined formally as:

q (z,v,λx,i,d,βi,d) =

T−1∏
i=1

q (vi|γi)
N∏
n=1

q (zn|φn)

T∏
i=1

D∏
d=1

q (λx,i,d|ax,i,d, bx,i,d)
T∏
i=1

D∏
d=0

q (βi,d|cy,i,d, dy,i,d)

(11)

Firstly, each vi follows a Beta distribution. As in [13], we
have truncated the infinite series of v

′

is into a finite one by
making the assumption q (vT = 1) = 1 and Mi = 0∀i > T .
Note that this truncation applies to the variational surrogate
distribution and not the actual posterior distribution that we
approximate. Secondly, zn follows a variational multinomial
distribution. Thirdly, {λx,i,d} and {βi,0 : βi,D}, both follow a
variational Gamma distribution.

B. Inverse Gaussian Model (SB-IG)

The variational distribution for the Inverse Gaussian Model
model is given by:

q (z,v,µi,d, λx,i,d,βi,d, λy,i) =

T−1∏
i=1

q (vi|γi)
N∏
n=1

q (zn|φn)

T∏
i=1

D∏
d=1

q
(
µi,d|ax,i,d, (bx,i,d, λx,i,d)−1) q (λx,i,d|cx,i,d, dx,i,d)

T∏
i=1

D∏
d=0

q
(
βi,d|ay,i,d, (by,i, λy,i)−1) q (λy,i|cy,i, dd,i)

(12)
{µi,d, λx,i,d} and {βi,0 : βi,D, λy,i} both follows a varia-

tional Normal-Gamma distribution.
C. Multinomial Probit Model(SB-PBT)

The variational distribution for the Multinomial probit
Model is

q (z,v,ηx,ηy) =

T−1∏
i=1

q (vi|γi)
N∏
n=1

q (zn|φn)

T∏
i=1

D∏
d=1

q
(
µi,d|ax,i,d, (bx,i,d, λx,i,d)−1) q (λx,i,d|cx,i,d, dx,i,d)

T∏
i=1

D∏
d=1

K∏
k=1

q
(
βi,d,k|my,i,d,k, s

2
y,i,d,k

) K∏
k=1

T∏
i=1

q (λy,i,k|ay,i,k, by,i,k)

N∏
n=1

K∏
k=1

T∏
i=1

q

(
Y ∗n,k,i|βi,0,k +

D∏
d=1

βi,d,kXn,d, λ
−1
y,i,k

)
(13)

Here, βi,d,k follows a Normal distribution. {µi,d, λx,i,d}
and

{
Y ∗
n,k,i, λy,i,k

}
follows a variational Normal-Gamma dis-

tribution. βi,d,k follows a normal distribution.

VI. PARAMETER ESTIMATION FOR THE VARIATIONAL
DISTRIBUTIONS

We bound the log likelihood of the observations (same for
all the models) using Jensen’s inequality, φ (E [X])≥E[φ (X)],
where, φ is a concave function and X is a random variable.
This generalized ELBO is the same for all the three models
under investigation and it is a function of the variational pa-
rameters as well as the hyper-parameters. We differentiate the
individuall ELBOs with respect to the variational parameters
of the specific models to obtain their respective estimates.

A. Parameter Estimation for the SB-EX Model

We differentiate the ELBO w.r.t. γ1i and γ2i and set them
to zero to obtain estimates of γ1i and γ2i ,

γ1
i = α1 +

N∑
n=1

φn,i, γ2
i = α2 +

N∑
n=1

T∑
j=i+1

φn,j (14)



Estimating φn,i is a constrained optimization with∑
φn,i = 1. We differentiate the Lagrangian w.r.t. φn,i to

obtain,

φn,i =
exp (Mn,i)∑T
i=1 exp (Mn,i)

(15)

The term Mn,i is represented as,

Mn,i =

i∑
j=1

{
Ψ
(
γ2
j

)
−Ψ

(
γ1
j + γ2

j

)}
+ Pn,i (16)

where,

Pn,i =

N∑
n=1

T∑
i=1

D∑
d=1

{
Ψ (ax,i,d)− ln (bx,i,d)−Xn,d

ax,i,d
bx,i,d

}
+

N∑
n=1

T∑
i=1

{− cy,i,0
dy,i,0

−
D∑
d=1

Xn,d
cy,i,d
dy,i,d

− Yn
Γ (cy,i,0)

(dy,i,0 + 1) cy,i,0

+Yn

D∑
d=1

Γ (cy,i,d)

(dy,i,d +Xn,d) cy,i,d
}

(17)

The variational parameters for the covariates and responses
are found by maximizing the ELBO w.r.t. them.

ax,i,d = ax,d +

N∑
n=1

φn,i, bx,i,d = bx,d +

N∑
n=1

φn,iXn,d (18)

cy,i,d = cy,d +

N∑
n=1

(φn,i + Yn) , dy,i,d = dy,d +

N∑
n=1

φn,i (Xn,d + Yn)

(19)

B. Parameter Estimation for the SB-IG Model

For the Inverse-Gaussian Model, the estimation of
γ1i , γ

2
i , φn,i are identical to the Exponential model with the

only difference being that Pn,i is given as,

Pn,i =
1

2

D∑
d=1

{log
(

1

2π

)
+ Ψ (cx,i,d)− log (dx,i,d)

−b−1
x,i,d −

cx,i,d
dx,i,d

(Xn,d − ax,i,d)2}+
1

2
{log

(
1

2π

)
+Ψ (cy,i)− log (dy,i)− b−1

y,i

(
1 +

D∑
d=1

X2
n,d

)

− cy,i
dy,i

(
Yn − ay,i,0 −

D∑
d=1

ay,i,dXn,d

)2

}

(20)

The variational parameters for the covariates and responses
are found by maximizing the ELBO w.r.t. them.

bx,i,d = bx,d +

N∑
n=1

φn,i, cx,i,d = cx,d +

N∑
n=1

φn,i (21)

dx,i,d =
1

2
{bx,d (ax,i,d − ax,d)2 + 2dx,d

+

N∑
n=1

φn,i (Xn,d − ax,i,d)2

a2x,i,dXn,d
}

(22)

ax,i,d =

∑N
n=1 φn,iXn,d + bx,dmx,d∑N

n=1 φn,i + bx,d
(23)

by,i =
(D + 1)by +

∑N
n=1 φn,i

(
1 +

∑D
d=1X

2
n,d

)
D + 1

(24)

cy,i =

D∑
d=0

cy +
1

2

N∑
n=1

φn,i (25)

dy,i =
1

2
{
D∑
d=0

by (ay,i,d − ay,d)2 + 2dy

+

N∑
n=1

φn,i
(
Yn − ay,i,0 −

∑D
d=1 ay,i,dXn,d

)2
(
ay,i,0 −

∑D
d=1 ay,i,d

)2
Xn,d

}
(26)

ay,i,0 =

ay,dby +
∑N
n=1 φn,i

(
Yn −

∑D
d=1 ay,i,dXn,d

)
by +

∑N
n=1 φn,i

(27)

ay,i,d =
ay,dby

by +
∑N
n=1 φn,iX

2
n,d

+

∑N
n=1 φn,i (Yn − ay,i,0 + ay,i,dXn,d)

by +
∑N
n=1 φn,iX

2
n,d

−
∑N
n=1 φn,i

∑D
d=1 ay,i,dXn,d

by +
∑N
n=1 φn,iX

2
n,d

(28)

C. Parameter Estimation for the SB-PBT Model

Again, in the Poisson Model, estimation of
γ1i , γ

2
i , ax,i,d, bx,i,d, cx,i,d, dx,i,d, are similar to the Exponential

model. The variational parameters are given by,

ay,i,k = ay,k +

N∑
n=1

φn,i, by,i,k = by,k (29)

And, my,i,0,k = my,d,k + s2y,d,k
∑N
n=1 φn,iYn,k

my,i,d,k = my,d,k + s2y,d,k

N∑
n=1

φn,iYn,kXn,d (30)

D. Predictive Distribution

Finally, we derive the predictive distribution for a new re-
sponse given a new covariate and the set of previous covariate-
response pairs.

p (YN+1|XN+1,X,Y) =∑
z

∫ ∫
p (YN+1|XN+1, ηy, z) p (v, ηy|Y,X) p (z|v) dvdηy

(31)

Since the inner integrals are analytically intractable,
we approximate the predictive distribution by replacing the
true posterior, p (v, ηy|Y,X), with its variational surrogate,
q (v) q (ηy,i). The density, q(v), with the density, p (z|v) is



Initialize Hyper-parameters of the Generative Model.
Repeat
Evaluate γ1

i and γ2
i According to Eq. 14 (SB-EX model).

Evaluate φn,i of the respective Model According to Eq. 15 (SB-EX model).
Evaluate Variational Parameters of the Covariate Distribution Accroding
to Eq. 18. (SB-EX model)
Evaluate Variational Parameters of the Response Distribution Accroding
to Eq. 19. (SB-EX model)
until converged

TABLE I. THE COMPLETE VARIATIONAL INFERENCE
ALGORITHM

integrated out to give the weight factor wi for each mixture.
Here, wi is given by,

wi =
γ1
i γ

2
i

(
γ2
i + 1

)
.............

(
γ2
i + T − 1− i

)
(γ1
i + γ2

i ) (γ1
i + γ2

i + 1) ........ (γ1
i + γ2

i + T − i)
(32)

The integration of the densities q (ηy,i) and p (YN+1) is
not analytically tractable. We have therefore used basic Monte
Carlo Integration by sampling from the distribution of the
latent variables, just like computing erf(z). This does not at all
suffer the difficulties faced in a MCMC sampler as there is no
Markov chain used for sampling. The integrals were computed
within milliseconds.

E [YN+1|XN+1,X,Y] = E
[
E
[
YN+1|XN+1, ηy,i(1:T)

]
|X,Y

]
=

1

M

M∑
m=1

E
[
YN+1|XN+1, η

m
y,i(1:T)

]
(33)

In all experiments presented in this paper, we collected 100
i.i.d. samples from the density of ηy,i to evaluate the expected
value of YN+1 from the density of p (YN+1). The complete
variational inference algorithm is given in Table 1.

VII. EXPERIMENTAL RESULTS

A broad set of experiments were conducted to evaluate
the SB-EX, SB-IG and SB-PBT models. Samples from the
predictive posterior were used to evaluate the accuracy of the
SB-EX and SB-IG models against its competitor algorithms,
such as, Linear regression with no feature selection (OLS),
Bayesian Linear regression, Variational Linear regression [17],
Gaussian Process regression [16], and ordinary DP regression
[3]. The accuracy of the SB-PBT model was evaluated against
Multiclass Support Vector Machine [19], Naive Bayes Model
[18] and Multinomial Logistic Model [17].

Next, to highlight SB-EX and SB-IG as a practical tool, it
was employed as a new GLM-based technique to model the
volatility dynamics of the stock market. Specifically, it was
used to determine how individual stocks tract predetermined
baskets of stocks over time.

A. Datasets

One artificial group of datasets and three real world datasets
were used. In the artificial set, we generated several 50 to
100 dimensional regression datasets with 10 clusters each
in the covariate-response space (Y,X). The covariates were
generated from independent Inverse Gaussians with means
varying from 1 to 27 in steps of 3 for the 10 clusters. The shape
parameter was drawn independently from the range [.1, 1] for

Time-Period Cisco Goldman Sachs Chevron McDonald Boeing

2000-07
Verizon JPM XOM J and J DD

IBM VISA Boeing Coca-Cola GE
GE AXP MMM NKE GS

2007-09
AXP XOM AT-T MMM MCD

INTEL NKE PG IBM VISA
DIS DD Coca-Cola TRX MMM

2009-13
INTEL AXP XOM Coca-cola CAT
MSFT PG CAT Merck DD

DD JPM GE J and J JPM

TABLE II. LIST OF FIVE DIFFERENT STOCKS WITH TOP 3 MOST
SIGNIFICANT STOCKS THAT INFLUENCE EACH STOCK. HERE, INTEL,

VERIZON, CISCO, IBM, AT-T ARE TECH. STOCKS, MMM, CAT, DD,
BOEING, GE ARE MACHINERY/CHEMICAL STOCKS, XOM, CHEVRON ARE
ENERGY STOCKS, AXP, GS, PG, TRX, JPM, VISA ARE FINANCE/RETAIL

STOCKS AND MCD, J-J, COCA-COLA ARE FOOD STOCKS.

the 10 clusters. For a fixed cluster, the shapes were set to
be the same for each dimension. The second dataset was a
compilation of daily stock price data (retrieved from Google
Finance) for the ”Dow 30” companies from Nov 29, 2000
to Dec 29, 2013. It had 3268 instances and was viewed as
30 different 29-1 covariate-response datasets. The goal was to
model the stock price of an individual Dow-30 company as a
function of the remaining 29 companies, over time. Accuracy
results were averaged over all 30 regressions. The third dataset
was the Parkinson’s telemonitoring dataset [20] from the UCI
Machine Learning Repository that has 5875 instances over 16
covariates. The final dataset was the Breast Cancer Wisconsin
(Original) dataset [21] from the UCI Repository that has
699 instances over 10 covariates. This dataset was used to
evaluate SB-PBT against competitors like Multiclass SVM
[19], Multinomial Logistic regression [17] and Naive Bayes
model [18].

B. Accuracy

We report the mean absolute error (MAE) and Mean Square
Error (MSE) for all the algorithms in Table 3 for the first
3 datasets. Note that SB-EX and SB-IG yield the least error
values among its competitors. For the classification dataset, we
have reported the class accuracy percentage where SB-PBT has
obtained the highest class accuracy percentage.

C. SB-IG and SB-EX as a Tool to Understand Stock Market
Dynamics

SB-EX and SB-IG is presented as a new tool to an-
alyze the dynamics of stocks from the ”Dow 30” compa-
nies. ”Dow 30” stocks belong to disparate market sectors
such as, technology (Microsoft, Intel etc.), finance (Goldman
Sachs, American Express etc.), food/pharmaceuticals (Coca-
cola, McDonald,Johnson and Johnson), Energy and Machinery
(Chevron, GE, Boeing, Exxon Mobil). We divided the dataset
into 3 time segments on the two sides of the financial crisis of
2008. The first comprised of the stock values from Nov-00 to
Nov-07 and the third of the stock values from Dec-08-Dec13.
The middle, set as the remainder, was representative of the
financial crisis.

Using SB-EX and SB-IG, we modeled each company’s
stock value as a function of the values of the others in
DOW 30. We recorded the stocks having the most impact
on the determination of the value of each stock. The impacts
are necessarily the magnitude of the weighted coefficients of



Synthetic Data MAE MSE
Training Percent 30 60 90 30 60 90

SB-IG 1.21 .89 .79 1.78 1.55 1.39
SB-EX 1.32 1.26 1.16 1.85 1.78 1.44
ODP 1.47 1.37 1.29 1.95 1.82 1.52
GPR 1.56 1.42 1.63 2.34 2.17 1.79
VLR 1.71 1.53 1.29 2.49 2.28 2.82
BLR 1.92 1.59 1.41 2.71 2.44 1.92
LR 1.55 1.47 1.36 2.78 2.57 2.12

Stock Market Data MAE MSE
Training Percent 30 60 90 30 60 90

SB-IG .74 .63 .56 1.39 1.28 1.13
SB-EX 1.01 .92 .79 1.62 1.51 1.40
ODP .99 .88 .73 1.74 1.57 1.38
GPR .83 .76 .68 1.53 1.44 1.29
VLR 1.07 .99 .90 1.82 1.71 1.50
BLR 1.16 1.05 .92 1.89 1.76 1.56
LR 1.25 1.13 1.01 1.94 1.83 1.64

Telemonitoring Data MAE MSE
Training Percent 30 60 90 30 60 90

LR 1.86 1.55 1.36 2.09 1.66 1.36
BLR 1.91 1.60 1.32 2.13 1.63 1.30
VLR 1.88 1.52 1.28 2.07 1.70 1.33
ODP 1.85 1.59 1.33 2.10 1.64 1.29
GPR 1.80 1.56 1.27 2.04 1.57 1.26

SB-IG 1.79 1.54 1.25 2.01 1.59 1.25
SB-EX 1.77 1.48 1.23 1.99 1.53 1.20

Breast Cancer Data Class Percentage Accuracy
Training Percent 30 60 90

SB-PBT 86.4 92.1 98.3
Naive Bayes 69.7 76.9 82.8

SVM 74.4 78.7 86.9
Logistic 75.3 81.2 89.5

TABLE III. FIRST 3 PORTION DEPICTS MSE AND MAE OF THE
ALGORITHMS FOR THE SYNTHETIC DATASET(50,75,100 DIMENSIONS),

STOCK MARKET DATASET AND TELEMONITORING DATA SET WITH 30, 60
AND 90 % OF DATA SET AS TRAINING. THE LAST PORTION REPRESENTS

CLASS PERCENTAGE ACCURACY OF THE ALGORITHMS FOR THE BREAST
CANCER DATA.

the covariates (the stock values) in SB-EX and SB-IG. Two
significant trends were noteworthy.

Firstly, when the market was stable (the first and third
segments), stocks from any given sector had impact largely
on the same sector, with few stocks being influential overall.
Secondly, the sectors having the most impact on a specific
stock were the same on both sides of the crisis. For example,
Microsoft (tech. sector), is largely modeled by Intel, IBM
(tech), GE (machinery) and JPM (finance) previous to the
crisis and modeled by Cisco, Intel (tech), Boeing (machinery)
and GS (finance) (in descending order of weights) post crisis.
However, during the crisis, the stocks showed no such trends.
For example, Microsoft is impacted by GS, MMM, TRX and
Cisco showing no sector wise trend. We report 5 additional
such results in Table 2.

VIII. CONCLUSION

In this paper, we have formulated infinite mixtures of
Inverse Gaussian, Multinomial Probit and Exponential Re-
gression via a Stick Breaking Prior as Hierarchical Bayesian
graphical models. We have derived fast mean field variational
inference algorithms for each of the models. The algorithm is
particularly useful for high dimensional datasets where Gibbs
sampling fails to scale and is slow to converge. The algorithm

has been tested successfully on four datasets against its well
known competitor algorithms across many settings of train-
ing/testing splits. While SB-IG, SB-EX and SB-PBT has been
developed in a simple setting, developing its counterparts for
the Hierarchical Generalized Linear Models remain topics for
future research. Furthermore, we have considered here mean
field variational methods; it would be worth exploring other
variational methods in the non-parametric Bayesian context to
the Generalized Linear Model.
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