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ABSTRACT

Recent years have seen a growing interest in spike based en-
coding of continuous time signals–a hallmark of biological
computation. In this context, we present a mathematical frame-
work for signal representation, leveraging a simple but robust
mechanistic model of a biologically plausible spiking neuron.
The framework considers encoding of a signal through spike
trains generated by an ensemble of neurons via a standard
convolve-then-threshold mechanism, albeit with a wide va-
riety of convolution kernels. Reconstruction is posited as a
convex optimization minimizing energy. Formal conditions
under which perfect and approximate reconstruction of the
signal from the spike trains is possible are then identified. The
strength of the framework is shown in experiments on a large
audio dataset, demonstrating good reconstruction at a spike
rate of one fifth the Nyquist rate. Comparison against a bench-
mark sparse coding technique, viz convolutional orthogonal
matching pursuit, shows competitive results in reconstruction
with orders of magnitude improvement in runtime efficiency.

Index Terms— coding, integrate-and-fire, spike, convolu-
tion, reconstruction

1. INTRODUCTION

In most animals, sensory stimuli are communicated to the brain
via ensembles of discrete spatio-temporally compact electrical
events generated by neurons, known as action potentials or
spikes [1]. It is widely assumed that this representation of a
continuous time signal using spike trains is achieved via a rate
code. In signal processing, this has been formally analyzed
under the banner of pulse density coding and ∆-Σ modula-
tors [2, 3]. There is however evidence (e.g., the H1 neuron
in the fly [4]) that there are spike codes that achieve high re-
construction accuracy while being much sparser/leaner than
would be warranted by a rate code. Sparse/lean spike trains
are not only intrinsically energy efficient, but can also facili-
tate downstream computation[5, 6]. Although there has been
substantial progress, an effective end to end signal processing
framework that deterministically represents signals via lean
spike train ensembles is yet to be laid out. Here we present

a new framework for coding and reconstruction leveraging a
biologically plausible coding mechanism which is a superset
of the standard leaky integrate-and-fire neuron model [7].

Our proposed framework identifies reconstruction guaran-
tees for a very general class of signals—those with finite rate
of innovation [8]—as shown in our perfect and approximate
reconstruction theorems. Most other classes, e.g. bandlimited
signals, are subsets of this class. The proposed technique first
formulates reconstruction as an optimization that minimizes
the energy of the reconstructed signal subject to consistency
with the spike train, and then solves it in closed form. We then
identify a general class of signals for which reconstruction
is provably perfect under certain ideal conditions. We then
present a mathematical bound on the error of an approximate
reconstruction when the model deviates from those ideal con-
ditions. Finally, we present simulation experiments coding and
reconstructing a large dataset of audio signals that demonstrate
the efficacy of the framework.

2. CODING

For encoding, we consider the set of input signals (F) to
be the class of all finite support bounded square integrable
function (i.e. formally F = {X(t)|X(t) ∈ L2[0, T ]}, for
some T ∈ R+, where the choice of T could be arbitrary
w.l.o.g), which satisfy a finite rate of innovation bound.

We assume an ensemble of spiking neurons K = {Kj |j ∈
Z+, j ≤ n}, each characterized by a kernel function
Kj(t), j = 1, . . . , n, where ∀j ∈ {1, . . . , n},Kj(t) ∈
C[0, T ], T ∈ R+. Finally, we assume that Kj has a time
varying threshold denoted by T j(t).

The ensemble of convolution kernels K encodes a given
input signal X(t) into a sequence of spikes {(ti,Kji)}, where
the ith spike is produced by the jthi kernel Kji at time ti if and
only if:

∫
X(τ)Kji(ti − τ)dτ = T ji(ti) In our experiments

a simplified threshold function is assumed in which the time
varying threshold T j(t) of the jth kernel remains constant at
Cj until that kernel produces a spike, at which time an after-
hyperpolarization potential (ahp) increments the threshold by
a value M j . The increment drops back to zero linearly withinIC
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a refractory period δj . Formally,

T j(t) = Cj +
∑

tjp∈[t,t−δj ]

M j −
M j(t− tjp)

δj
(1)

Where the sum is taken over all spike times tjp in the interval t
to t− δj at which the kernel Kj generated a spike. It is worth
noting that this seemingly simple threshold function carries
the essence of efficient biological signal encoding as will be
evident from the subsequent sections both from theory and
implementation perspectives. Such a threshold allows a neuron
to stay quiescent as long as the signal is uncorrelated with
its kernel Kj ; it starts firing when the correlation reaches a
certain threshold and continues to fire at higher threshold levels
communicating increasing correlation levels, only inhibited
by previous spikes. This phenomena of probing signals via a
lockstep series of spikes is depicted in fig1 for one kernel.

Input signal x(t)Sliding convolution kernel k(t)

Convolution x(t)* k(t)

Time varying threshold Convolve and threshold

Fig. 1: The convolve and threshold mechanism described in
the coding model for a single kernel. Top: a sample signal (in
blue) is shown overlayed with a convolution kernel (in red).
Below: the result of convolution in blue and the threshold
function for the kernel in green. Spikes times are marked at
the threshold crossing level with red dots.

3. DECODING

The objective of the decoding module is to reconstruct the
original signal from the encoded spike trains. Considering the
prospect of the invertibility of the coding scheme, we seek a
signal that satisfies the same set of constraints as the original
signal when generating all spikes apropos the set of kernels
in ensemble K. Recognizing that such a signal might not be
unique, we choose the reconstructed signal as the one with
minimum L2-norm. Formally, the reconstruction (denoted
by X∗(t)) of the input signal X(t) is formulated to be the
solution to the optimization problem:

X∗(t) = argmin
X̃

||X̃(t)||22

s.t.
∫

X̃(τ)Kji(ti − τ)dτ = T ji(ti); 1 ≤ i ≤ N
(2)

where {(ti,Kji)|i ∈ {1, ..., N}} is the set of all spikes gen-
erated by the encoder. The choice of L2 minimization is in

congruence with the dictum of energy efficiency in biological
systems. The assumption is that, of all signals, the one with
the minimum energy that is consistent with the spike trains
is desirable. Also, an L2 minimization in the objective of (2)
reduces the convex optimization problem to a solvable linear
system of equations as described below.

4. SIGNAL CLASS FOR PERFECT
RECONSTRUCTION

We observe that in general the encoding of L2[0, T ] signals
into spike trains is not an injective map; the same set of spikes
can be generated by different signals so as to result in the same
convolved values at the spike times. Naturally, with a finite
and fixed ensemble of kernels K, one cannot achieve perfect
reconstruction for all L2[0, T ] signals. Assuming, additionally,
a finite rate of innovation, as F was previously defined changes
the story. We now restrict ourselves to a subset G of F defined
as G = {X(t)|X(t) ∈ F , X(t) =

∑N
p=1 αpK

jp(tp−t), jp ∈
{1, ..., n}, αp ∈ R, tp ∈ R+, N ∈ Z+} and address the ques-
tion of reconstruction accuracy. Essentially G consists of all
linear combinations of arbitrarily shifted inverted kernel func-
tions. N is bounded above by the total number of spikes that
the ensemble K can generate over [0, T ]. For the class G the
perfect reconstruction theorem is presented below. The theo-
rem is proved with the help of two lemmas.
Perfect Reconstruction Theorem: Let X(t) ∈ G be an input
signal. Then for appropriately chosen time-varying thresholds
of the kernels, the reconstruction, X∗(t), resulting from the
proposed coding-decoding framework is accurate with respect
to the L2 metric, i.e., ||X∗(t)−X(t)||2 = 0.
Lemma1: The solution X∗(t) to the reconstruction problem
given by (2) can be written as: X∗(t) =

∑N
i=1 αiK

ji(ti − t)
where the coefficients αi ∈ R can be uniquely solved from
a system of linear equations if the shifted kernel functions
Kji(ti − t) are linearly independent.
Proof: An argument similar to that of the Representer Theo-
rem [9] on (2) directly results in: X∗(t) =

∑N
i=1 αiK

ji(ti−t)
where the αi’s are real valued coefficients. This holds true
because any component of X∗(t) orthogonal to the span of
the Kji(ti − t)’s does not contribute to the convolution (inner
product) constraints. In essence, X∗(t) is an orthogonal pro-
jection of X(t) on the span of shifted kernels {Kji(ti− t)|i ∈
1, 2, ..., N}. Therefore, the coefficients can be derived by solv-
ing the linear system: Pα = T where P is the N ×N Gram
matrix of the shifted kernels {Kji(ti − t)|i ∈ 1, 2, ..., N}
in the Hilbert space with standard inner product, [P ]ik =
⟨Kji(ti−t),Kjk(tk−t)⟩, and T = ⟨T j1(t1), ..., T

jN (tN )⟩T .
Furthermore, the system has a unique solution since the Gram
Matrix P is invertible. This happens because the set of con-
stituent spiking kernels Kji(ti − t) grows as a linearly inde-
pendent set because of the ahp effect which ensures separation
in time and therefore a new kernel cannot be fully represented
in the span of previous kernels.
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Lemma2: Let X∗(t) be the reconstruction of an input signal
X(t) and {(ti,Kji)}Ni=1 be the set of spikes generated. Then,
for any arbitrary signal X̃(t) within the span of {Kji(ti −
t)|i ∈ {1, 2, ..., N}}, i.e., the set of shifted inverted kernels at
respective spike times, given by X̃(t) =

∑N
i=1 aiK

ji(ti − t)

the following holds: ||X(t)−X∗(t)|| ≤ ||X(t)− X̃(t)||
Proof: This follows from the fact that X∗(t) is an orthogonal
projection on the span.

Exploring further, for a given input signal X(t) if S1 and
S2 are two sets of spike trains where S1 ⊂ S2 produced by
two different kernel ensembles, the second a superset of the
first, then Lemma 2 further implies that the reconstruction
due to S2 is at least as good as the reconstruction due to S1

because the reconstruction due to S1 is in the span of the
shifted kernel functions of S2 as S1 ⊂ S2. This immediately
leads to the conclusion that for a given input signal the more
kernels we add to the ensemble the better the reconstruction,
provided the kernels maintain linear independence.
Proof of the Theorem: The proof of the theorem follows
directly from Lemma 2. Since the input signal X(t) ∈ G,
let X(t) be given by: X(t) =

∑N
p=1 αpK

jp(tp − t) (αp ∈
R, tp ∈ R+, N ∈ Z+) Assume that the time varying thresh-
olds of the kernels in our kernel ensemble K are set in
such a manner that the following conditions are satisfied:
⟨X(t),Kjp(tp − t)⟩ = T jp(tp) ∀p ∈ {1, ..., N} i.e., each
of the kernels Kjp at the very least produces a spike at
time tp against X(t) (regardless of other spikes at other
times). Clearly then X(t) lies in the span of the appropri-
ately shifted and inverted response functions of the spike
generating kernels. Applying Lemma 2 it follows that:
||X(t)−X∗(t)||2 ≤ ||X(t)−X(t)||2 = 0

5. APPROXIMATE RECONSTRUCTION:

A practical challenge on which the reconstruction accuracy
depends is whether one can generate spikes at the correct
temporal locations. The lockstep time-varying threshold (1)
alludes to the fact that spikes could be produced arbitrarily
close to the desired time points, as adopted in our experiments
in Section 6, by setting the Cj’s, M j’s and the δjs at a reason-
ably low value. At this point we need to evaluate the deviation
of the spike times from certain points of interest in the setting
of the proposed thresholding scheme, as addressed next.
Lemma 4: Let X(t) be an input signal. Let Kp be a kernel
for which we want to generate a spike at time tp. Let the
inner product ⟨X(t),Kp(tp − t)⟩ = Ip. Then, if the baseline
threshold of the kernel Kp is Cp ≤ Ip and the absolute re-
fractory period is δ as modeled in Equation 1, the kernel Kp

must produce a spike in the interval [tp − δ, tp] according to
the threshold model defined in Equation 1.
Proof: The proof of the lemma appeals to the nature of the
lockstep threshold function defined in 1 and follows from the

intermediate value theorem.
The next obvious question that arises is: how much error

does one perceive in reconstruction as the spikes deviate from
the location as desired in the Perfect Reconstruction Theorem
for factors such as noise, the signal not being perfectly repre-
sented in the span of kernel functions, etc. We try to identify
those conditions in the following lemma:
Lemma 5: Let X(t) be represented as X(t) =

∑N
i=1 αifpi

(ti−
t), αi ∈ R+, where fpi(t) are bounded functions on finite
support that constitute the input signal. Assume that there
is at least one kernel function in the ensemble for which
||fpi

(t) − Kji(t)||2 < δ ∀ i ∈ {1, ..., N}. Also assume
that the framework is able to produce a spike within γ (for
some δ and γ ∈ R+) interval of ti,∀i. Also assume that
the constituents fpi satisfy a frame bound type of condition:∑

k ̸=i⟨fpi(t − ti), fpk
(t − tk)⟩ ≤ η ∀ i ∈ {1, ..., N} and

the kernel functions are Lipschitz continuous. Under such
conditions, the L2 error in reconstruction of X∗(t) is bounded.
Proof: The proof of this theorem follows from continuity
arguments and the use of bounds on the eigen values of the
Gram matrix P .

Effect of Ahp, Stability of the solution and Windowing:
The combination of Lemmas 4 & 5 shows that even under
non ideal conditions, the reconstruction of our technique only
suffers from bounded error, although this comes at the cost of
increasing spike rates, as dictated by Lemma 4. High spike
rates has the adverse effect of worsening the condition number
of P . An instability in the P matrix practically renders the
solution useless from an application standpoint where spike
times are represented in finite precision floating point numbers,
leading to quantization error. Indeed one can show that for a
general positive definite matrix P the condition number can
grow exponentially large as the size of the matrix grows. This
problem is partially mitigated by the effect of the ahp for a
finite size of P by ensuring linear independence among the
spikes. But it can still get worse as we process longer signals
and the size of P grows arbitrarily large. This is where the
combined effect of causality of the kernels and the ahp comes
to our defense. We observe that the addition of the n + 1th

spike on an existing set of n spikes can only affect the solution
substantially within a finite time window which in turn is
facilitated by the effect of the ahp, which ensures that new
spikes maintain reasonable separation with previous spikes
and therefore have a fading affect on the reconstruction back
into the past. This simple observation enables us to encode and
reconstruct signals in an online mode within a finite window
of spikes, leading to remarkable efficiency when tested on real
datasets as shown in Section 6.

6. EXPERIMENTS ON REAL SIGNALS

The proposed framework was tested on audio signals. Dataset:
We chose the Freesound Dataset Kaggle 2018, an audio dataset
of natural sounds referred in [10], containing 18,873 audio files.
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All audio samples in this dataset are provided as uncompressed
PCM 16bit, 44.1kHz, mono audio files. Set of Kernels: We
chose gammatone filters (atn−1e−2πbt cos(2πft+ ϕ)) in our
experiments since they are widely used as a reasonable model
of cochlear filters in auditory systems [11].

Average SNR of 20 DB at 0.185 
of Nyquist rate 

Fig. 2: Comprehensive result of an experiment with 50 kernels
reconstructing 200 sound snippets. The graph shows a scatter
plot of reconstructions (each dot represents a reconstruction)
with spike-rate of the ensemble (x-axis) against corresponding
SNR value of the reconstructions (y-axis). The trend line is
generated using seaborn regression fit.

Results: In all experiments, kernels were normalized, and
the parameters of the time-varying threshold function (1) were
initialized through a systematic grid search. We processed
each audio snippet of length ≈ 1 − 2s with a fixed set of
parameter values, except for the refractory period which was
decreased gradually leading to improvement in reconstructions
at increasingly higher spike rates.

The results of our experiment, as shown in figure 2, demon-
strate that by increasing the spike rate sufficiently by tuning
the refractory period, near perfect reconstruction is feasible
which is in agreement with our theoretical analysis. We see
some variability in reconstruction accuracy across signals,
which could be attributed to the idiosyncrasies of the dataset–
certain audio samples could be noisy or ill-represented in the
kernels. But the overall trend on reconstruction shows great
promise, on average showing ≈ 20dB at 1/5th Nyquist Rate.
This in conjunction with the fact that signals are represented
in this scheme only via set of spike times and kernel indexes
(thresholds can be inferred) holds potential for an extremely
efficient coding mechanism. Since generation of spikes re-
quires scanning through convolutions in one pass, encoding is
very efficient. Decoding is slightly time consuming because
we solve a linear equation Pα = T to derive the coefficients.
But then reconstruction is done in an online manner on a finite
window as described in Section 5. So the overall process
still remains linear making it a suitable choice for lengthy
continuous time signals.

Comparison With Convolutional Orthogonal Matching

Pursuit:
Our framework is capable of discovering sparse repre-

sentations of signals as demonstrated by the reconstruction
theorems and thus becomes a competitor of existing sparse
coding methods.

In another set of experiments we compared our technique
against convolutional orthogonal matching pursuit. The results
of the comparison are promising and are furnished in figure 3.
Since OMP is inherently computationally inefficient, for these
set of experiments we kept the length of signals relatively small
(≈ 100 − 200ms) and used a reduced set of kernels (≈ 10
kernels). Figure 3 reports the results of ≈ 20 randomly chosen
audio snippets from the dataset and our framework showed
better reconstruction accuracy for majority of the snippets.
This is likely attributable to the greedy nature of COMP which
may not always capture the locally important features, unlike
our technique. In terms of runtime complexity, our technique
far outshines COMP, as in COMP one needs to constantly
recalculate the convolutions and perform Gram-Schmidt. This
effect is more pronounced as the signal grows longer. Ad-
mittedly, there are many state-of-the art sparse convolutional
techniques based on L1 optimization, as shown in [12], [13],
[14], [15], that perform faster than COMP, but our technique is
supposed to outperform those asymptotically as it remains lin-
ear in the length of the signal due to the windowing mechanism
described in section 5.
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Fig. 3: Comparison between our framework vs COMP in terms
of overall reconstruction accuracy and spike rate.

7. CONCLUSION

We have formulated a framework that identifies the precise
conditions under which continuous time signals can be rep-
resented using an ensemble of spike trains, from which the
signal can be recovered perfectly. Although aligned in their
goals, this framework is very different from that investigated
in Niquist-Shanon theory. The primary difference between
the two lies in their respective modes of representation/coding.
Instead of sampling the value of a function at uniform or non-
uniform prespecified sample points the new coding scheme
reports the (non-uniform) sample points where the function
takes specific convolved values. Coding is intimately related
to compression and our experimental results indicate great
potential in this regard.
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